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N6-methyladenosine: a key regulator in ocular disease
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N6-methyladenosine (m6A), a pivotal RNA modification, has garnered considerable attention in cell biology and disease research.
m6A plays a critical role in the regulation of gene expression, cell proliferation, differentiation, and apoptosis, with particular
relevance to the onset and progression of ocular diseases. This review examines the current research on m6A in ocular diseases,
including keratitis, cataracts, glaucoma, retinopathy, thyroid ophthalmopathy, and ocular tumors, highlighting its functional
significance and potential mechanisms in these conditions. Recent studies suggest that m6A modification influences cellular fate
and pathophysiological processes by modulating the expression of key genes. However, a deeper understanding of the precise
mechanisms underlying m6A action in ocular diseases is still needed. By synthesizing the existing literature, this review seeks to
offer novel insights and identify potential therapeutic targets, thereby advancing clinical applications for ocular disease treatment.
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FACTS

1. The molecular mechanisms by which m6A modification
regulates ocular diseases remain to be fully elucidated.
While current research has revealed that m6A modification
influences cellular fate and pathophysiological processes
through modulating the expression of key genes, the
specific regulatory mechanisms of m6A modification in
different types of ocular diseases require further exploration.
Clarifying these mechanisms will provide a more solid
theoretical foundation for the treatment of ocular diseases.

2. The dynamic regulatory mechanisms of m6A modification in
ocular diseases remain unclear. m6A modification is a
dynamic and reversible process influenced by various
factors such as environmental conditions and disease
progression. However, the dynamic changes in m6A
modification during the onset and progression of ocular
diseases, as well as their regulatory mechanisms, are still
poorly understood. Future research should focus on
investigating the dynamic regulatory patterns of m6A
modification in ocular diseases and the mechanisms of
interaction between m6A modification and other signaling
pathways.

3. The potential of m6A modification as a therapeutic target
for ocular diseases requires validation. Current research has
identified some key m6A regulatory proteins and related
signaling pathways involved in ocular diseases, but the
safety and efficacy of therapies targeting m6A modification
need to be further evaluated. In-depth studies on the
therapeutic potential of m6A modification will help develop

novel therapeutic strategies for ocular diseases and advance
their clinical applications.

4. The interplay between m6A modification and other
epigenetic modifications in ocular diseases is worth explor-
ing. Epigenetic modifications such as DNA methylation and
histone modification play significant roles in the regulation
of ocular diseases. The relationship between m6A modifica-
tion and other epigenetic modifications and their combined
effects in ocular diseases remains largely unknown. Future
research should investigate the synergistic or antagonistic
effects of m6A modification with other epigenetic modifica-
tions to uncover their complex regulatory networks in ocular
disease pathogenesis.

INTRODUCTION

Epigenetic modifications, including DNA methylation, RNA mod-
ification, histone modification, and chromatin remodeling, reg-
ulate gene expression through chemical or structural alterations
without changing the underlying DNA sequence [1]. Among these,
RNA methylation—an essential and reversible form of RNA
modification—has garnered considerable attention due to its
pivotal role in post-transcriptional regulation [2]. Notably, N6-
methyladenosine (m6A) modification, the most prevalent base
methylation in mRNA, has attracted significant interest in light of
studies on mM6A content expression, the distribution of its
modifiers in human tissues, and its involvement in cellular
functions, as well as its potential as a biomarker [3, 4]. Under
physiological conditions, m6A modification regulates gene
expression, cell differentiation, and tissue homeostasis, ensuring

"Department of Nanjing Tongren Eye Center, Nanjing Tongren Hospital, School of Medicine, Southeast University, Nanjing, China. 2Department of Ophthalmology, Chengdu First
People’s Hospital, Chengdu, China. *School of Medicine, Southeast University, Nanjing, China. ®email: Iszdo@sina.com; Qingsongnjtr1969@163.com

Received: 3 July 2025 Revised: 4 November 2025 Accepted: 11 November 2025

Published online: 28 November 2025

Official journal of CDDpress

SPRINGER
CDDpress


http://crossmark.crossref.org/dialog/?doi=10.1038/s41420-025-02867-1&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41420-025-02867-1&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41420-025-02867-1&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41420-025-02867-1&domain=pdf
http://orcid.org/0000-0003-0587-4375
http://orcid.org/0000-0003-0587-4375
http://orcid.org/0000-0003-0587-4375
http://orcid.org/0000-0003-0587-4375
http://orcid.org/0000-0003-0587-4375
http://orcid.org/0009-0008-3617-3233
http://orcid.org/0009-0008-3617-3233
http://orcid.org/0009-0008-3617-3233
http://orcid.org/0009-0008-3617-3233
http://orcid.org/0009-0008-3617-3233
https://doi.org/10.1038/s41420-025-02867-1
mailto:lszdo@sina.com
mailto:Qingsongnjtr1969@163.com
www.nature.com/cddiscovery

Y. Lin et al.

Epithelium— <

5

Bowman’s layer —

Descemet’s membrane —
Endothelium — (

|

|

|

|

|

|

|

|

|

|

|

|

: Stroma —|
|

|

|

|

|

|

|

|

|

| .
| Cornea Schematic
|

Fig. 1

/
, Cornea
1 Iris

Vitreous humor

Eye (horizontal section)

\

Optic nerve and
retinal vessels

Retina
Choroid
Sclera

Lens

/

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| !
|
|
|
|
!
|/
|/

The structure of the eye and the layering of the cornea. As an important part of the visual organ, the eye includes the cornea, lens,

vitreous body, retina, optic nerve, etc. The cornea is composed of five different layers: the epithelial cell layer, Bowman'’s layer, corneal stromal
layer, Descemet’s membrane, and endothelial cell layer. Each layer is essential for the function of the cornea, not only as the first mechanical
and immunological barrier of the eye, but also responsible for the transmission and convergence of external light to the retina to produce

vision.

normal cellular function and development. In pathological
contexts, dysregulation of m6A modification is closely associated
with the onset and progression of various diseases, affecting
processes such as cell proliferation, apoptosis, inflammatory
responses, and cell-cell interactions, thereby driving disease
progression [5, 6].

The eye is a precise optical organ composed of structures such
as the cornea, lens, and retina that are responsible for focusing
light and converting it into neural signals to transmit to the brain
(Fig. 1). Eye diseases represent a leading cause of visual
impairment and blindness, with their pathogenesis intricately
linked to epigenetic modifications [7]. Recent studies have
highlighted the association between DNA and RNA methylation
and the pathological processes of several common ocular diseases
[8, 9]. In particular, m6A modification exhibits significant altera-
tions in the cornea, retina, and choroid under pathological
conditions, offering new insights into the pathophysiological
mechanisms of ophthalmic diseases [10]. Given its importance,
investigating RNA methylation in ocular diseases is essential, as it
lays a crucial foundation for identifying potential gene therapy
targets.

This paper aims to introduce the fundamental concepts,
mechanisms, and detection methods of m6A modification.
Furthermore, it investigates its regulatory role and potential
therapeutic implications in various ocular diseases, including
corneal diseases, cataracts, glaucoma, uveitis, retinopathy, Trau-
matic Optic Neuropathy (TON), thyroid eye disease (TED), myopia,
and ocular tumors. Finally, the paper addresses future research
directions and the challenges that must be overcome to deepen
our understanding of m6A modification in ophthalmic diseases.

M6A MODIFICATION

N6-methyladenosine (m6A) modification is one of the most
prevalent RNA modifications in eukaryotes. It regulates gene
expression by adding a methyl group to the nitrogen atom at the
N6 position of adenosine in both mRNA and non-coding RNA.
m6A is widespread across various organisms, including viruses,
yeast, plants, insects, and mammals, occurring every 700-800 base
pairs on average in polyadenylated RNA, and at lower frequencies
in other types of RNA [11, 12]. In the human genome, over 12,000
m6A loci have been identified, primarily located in the coding
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regions and 3’ untranslated regions (3’ UTR) of approximately 7000
genes. The consensus sequence for these loci is RRACH (where
R=G/A and H=A/C/U) [13, 14]. M6A modification is a dynamic
and reversible process that plays a central role in post-
transcriptional regulation, including RNA splicing, stability, traffick-
ing, translation, and degradation. It influences various biological
processes, such as cell differentiation, development, immune
response, and neurological function [15, 16]. Furthermore,
dysregulation of m6A modification is closely associated with the
onset and progression of various diseases, including cancer,
neurological disorders, metabolic diseases, and immune-related
conditions [17, 18]. The dynamic regulation of m6A modification is
controlled by three classes of enzymes: m6A methyltransferases
(referred to as “writers”), demethylases (“erasers”), and m6A-
binding proteins (“readers”), which are responsible for adding,
removing, and recognizing the m6A modification, respectively
(Table 1).

Writers

The m6A “writer” comprises an m6A methyltransferase complex
(MTC), consisting of core members such as methyltransferase-like
3 (METTL3), METTL14, and Wilms tumor 1-associated protein
(WTAP), along with METTL16, zinc finger CCCH-containing type 13
(ZC3H13), RNA-binding methylprotein 15 (RBM15), and vir-m6A
motif transferase-associated protein (VIRMA) [19]. METTL3 serves
as the major catalytic subunit, transferring methyl groups from
S-adenosylmethionine (SAM) to adenosine on RNA [20]. METTL14
enhances METTL3's catalytic activity by stabilizing its conforma-
tion and facilitating RNA substrate recognition [21]. The METTL3/
14 complex predominantly recognizes the GGACU consensus
sequence. Although WTAP lacks intrinsic methyltransferase
activity, it facilitates m6A deposition by interacting with the
METTL3-METTL14 complex and plays a key regulatory role in RNA
targeting and splicing [22]. VIRMA guides the METTL3/METTL14/
WTAP complex to mediate region-specific mRNA methylation
within the 3’ untranslated region (3’ UTR) and near the stop codon
[23]. ZC3H13 ensures the nuclear localization of the MTC by
bridging RBM15 to WTAP [24, 25].

Erasers

m6A modification on RNA can be reversed by demethylases, often
referred to as “Erasers,” with Fat mass and obesity-associated
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protein (FTO) and AlkB homolog 5 (ALKBH5) being the two
primary RNA demethylases. FTO was the first identified m6A
demethylase, achieving demethylation by oxidizing m6A to the
intermediate N6-hydroxymethyladenosine (hm6A), which is
further oxidized to N6-formyladenosine (f6A) and ultimately
decomposes into adenosine (A) in aqueous solution [26, 27]. In
contrast, ALKBH5, a nuclear protein that binds single-stranded
nucleotides, catalyzes m6A demethylation by directly removing
methyl groups from methylated adenosine in m6A, unlike FTO,
which operates through an oxidative process [28]. Recently, a
novel m6A demethylase, ALKBH3, has been identified and shown
to be involved in tRNA demethylation [29]. FTO, ALKBH5, and
ALKBH3 all belong to the alpha-ketoglutarate-dependent dioxy-
genase family, and their demethylation process utilizes
2-oxoglutarate (20G) and Fe (ll) as cofactors [29, 30].

Readers

The “reader” of m6A mainly consists of the YT521B homology
(YTH) domain family (YTHDF1/2/3, YTHDC1/2), insulin-like growth
factor 2 mRNA-binding proteins (IGF2BP1/2/3), heterokaryotic
nuclear factor RNA proteins (HNRNPC, HNRNPG, and HNRNPA2B1),
and eukaryotic initiation factor 3 (elF3).

The YTH domain is a conserved m6A-binding domain that
selectively interacts with the m6A site in RNA. These molecules
represent the most crucial “readers” of m6A modification [31]. As the
first identified reader, the C-terminal YTH domain of YTHDF2
recognizes a specific m6A locus, while its N-terminal domain binds
to the SH domain of the CCR4-NOT transcription complex subunit 1
(CNOT1), facilitating the recruitment of the CCR4-NOT deadenylase
complex. This interaction directs m6A-modified RNA to the
processing body (P-body), promoting the deadenylation and
degradation of its poly(A) tail, thereby enhancing RNA degradation
[32, 33]. YTHDF1, specifically recognizing m6A-modified mRNAs
through its YTH domain, interacts with the translation initiation
factor elF3 to direct these mRNAs into the translation initiation
complex, thereby promoting translation initiation [34]. Additionally,
the regulation of YTHDF1 depends on an elF4G (eukaryotic initiation
factor 4 G)-mediated loop structure, which enhances the efficiency
of translation initiation for m6A-modified MRNAs, significantly
boosting translation efficiency [35]. In contrast, YTHDF3 collaborates
with the other two paralogues to regulate the translation and
degradation of mRNA containing m6A in the cytoplasm [36].

YTHDC1 collaborates with nuclear RNA export factor 1 (NXF1) and
the three-prime repair exonuclease (TREX) mRNA export complex,
interacting with serine/arginine-rich splicing factor 3 (SRSF3) to
facilitate mRNA nuclear export and regulate splicing [37, 38]. As a 3"/
5 RNA helicase, YTHDC2 promotes the degradation of m6A-
modified mRNAs through its helicase activity. It also enhances
mRNA stability by interacting with 5’3’ exoribonuclease 1 (XRN1),
thereby improving the translational efficiency of target mRNAs while
simultaneously reducing their overall abundance [39, 40].

In RNA biology, m6A modification profoundly influences the
secondary structure of RNA. HNRNPC and HNRNPG regulate mRNA
abundance and its splicing process upon recognizing m6A, a
mechanism referred to as the “m6A switch.” Additionally, HNRNPC
and HNRNPG participate in the processing of precursor mRNAs,
thereby affecting their stability, splicing, export, and translation
[41, 42]. Moreover, HNRNPA2/B1 recognizes the m6A core motif
RGAC and regulates selective RNA cleavage in a METTL3-
dependent manner, thus promoting precursor miRNA processing.
IGF2BPs recognize m6A-modified mRNAs and enhance mRNA
stability and translation by recruiting RNA stabilizers in an m6A-
dependent fashion (Fig. 2) [43, 44].

TECHNIQUES FOR IDENTIFYING RNA M6A MODIFICATIONS
Studies on RNA modifications date back to the 1970s; however, it was
not until 2012 that the combination of RNA immunoprecipitation with
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next-generation sequencing led to significant advances in m6A
research [45]. Initially, identifying the m6A locus posed challenges due
to technical limitations. The introduction of second-generation
sequencing (seq) marked a milestone in M6A research, enabling
substantial progress in the field [13].

MeRIP-seq (also known as m6A-seq) was the first widely used
technique for transcriptome-wide mapping of m6A modifications.
It employs anti-m6A antibodies to immunoprecipitate methylated
mRNA fragments, which are then identified through high-
throughput sequencing as enriched genomic regions known as
“m6A peaks” [46]. The main advantages of this method include its
relatively low RNA input requirement and a well-established
experimental workflow, making it suitable for obtaining a broad,
discovery-oriented overview of m6A modifications across the
transcriptome. However, MeRIP-seq has several notable limita-
tions. Its resolution is low—approximately 100-200 nt—which
prevents the precise identification of methylated adenosines and
yields only approximate modification regions [47]. More critically,
the technique is highly dependent on the quality and specificity of
the anti-m6A antibodies [48]. Issues such as non-specific binding
to unrelated RNA structures or epitopes, as well as cross-reactivity,
can lead to false-positive signals, while insufficient affinity for m6A
in certain sequence contexts may result in false negatives.
Furthermore, as an enrichment-based rather than an absolute
quantitative approach, MeRIP-seq offers limited accuracy in
comparing m6A dynamics across different samples.

To address the resolution limitations of MeRIP-seq, PA-m6A-seq
was developed. This technique builds upon the MeRIP-seq
protocol by incorporating a 4-thiouridine (4SU)-enhanced cross-
linking step. A key advantage of PA-m6A-seq is its improved
resolution—around 30nt near the m6A site—enabling more
precise mapping of modified regions [49]. The incorporation of
4SU introduces characteristic mutations at crosslinking sites
during reverse transcription, providing a clearer molecular
footprint of m6A locations. However, a major limitation of this
method is its “blind-spot” nature: it can only detect m6A
modifications situated near 4SU incorporation sites, thereby
restricting its coverage and potentially missing functionally
important m6A sites outside these regions. Moreover, like
MeRIP-seq, PA-m6A-seq relies on anti-m6A antibodies for immu-
noprecipitation, meaning it remains susceptible to antibody-
related artifacts such as non-specific binding and background bias
[50].

The development of m6A individual-nucleotide-resolution
crosslinking and immunoprecipitation (miCLIP) marked a major
advance by enabling single-base resolution mapping of m6A sites
[51]. In miCLIP, UV crosslinking covalently attaches antibodies to
m6A-modified residues. During subsequent reverse transcription,
the crosslinked antibody residues induce nucleotide misincorpora-
tion or truncation events in the cDNA, which are then detected by
sequencing to pinpoint m6A sites with high precision. Despite this
breakthrough, miCLIP still fundamentally depends on antibody
recognition. Incomplete crosslinking efficiency can limit sensitivity,
causing some authentic m6A sites to be missed. Additionally, the
crosslinking process itself may introduce sequence-specific biases
and lead to false-positive identifications. Consequently, even at
single-base resolution, potential inaccuracies stemming from
antibody specificity remain a concern, underscoring the need for
careful data interpretation and validation using orthogonal
experimental approaches.

M6A-REF-seq can quantitatively detect m6A loci at single-base
resolution and accurately identify them across the entire
transcriptome using the RNA endonuclease MazF and antibody-
dependent methods [52]. In contrast, DART-seq eliminates the
need for antibodies. It employs cytidine deaminase (APOBECT)
and YTH domain fusions to deaminate cytosines adjacent to uracil
in m6A, detecting C-to-U editing events via RNA-seq and enabling
high-resolution detection of m6A loci [53]. M6A-label-seq
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among three key groups of enzymes: the “writers,

‘erasers,” and “readers.” These enzymes and associated factors work in concert to add,

remove, and recognize m6A marks on RNA, thereby regulating various aspects of RNA metabolism. Specifically, m6A modifications influence
critical RNA processes such as splicing, nuclear export, translation efficiency, and degradation, ultimately impacting gene expression and

cellular function.

introduces N6-allyladenosine (a6A) at the m6A modification site
using metabolic markers, which cyclizes to N1, N6-cyclic
adenosine (cycA) through iodination. This method induces A-to-
C/T/G mutations during reverse transcription, achieving single-
base resolution detection at the m6A site [54]. The m6A-SEAL
technology specifically labels the m6A site through FTO oxidation
and a Dithiothreitol (DTT) chemical reaction, followed by biotin
binding for enrichment. This approach enables highly sensitive
detection of m6A modification sites across the transcriptome
using high-throughput sequencing [55].

Building on m6A-seq, m6A-seq2 introduces multiplex sample
mixing and barcode labeling technologies, which enhance
experimental throughput and statistical power, improve the
quantitative analysis of m6A modification, and enable efficient
and accurate detection across multiple samples from a single
sample [56]. MICLIP2 significantly increases the accuracy and
sensitivity of m6A detection by optimizing the experimental
process and incorporating the machine learning model m6Aboost,
while reducing the input material requirements [57]. M6A-LAIC-
seq achieves single-nucleotide resolution detection of m6A-
modified sites by photocrosslinking to immobilize m6A-modified
RNA-protein complexes, followed by enrichment and sequencing
using specific antibodies [50]. Techniques such as SELECT, MeRIP-
gPCR, and MazF-qPCR are highly sensitive methods for detecting
m6A, particularly suited for validation and quantitative analysis of
m6A modifications at the single-gene level [52, 58]. SCARLET
precisely localizes m6A modification sites through specific
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cleavage, radiolabeling, ligation-assisted extraction, and Thin-
Layer Chromatography (TLC) analysis, without requiring antibo-
dies, making it versatile for various RNA types [59]. In addition,
Mass Spectrometry (MS), Dot-blot, and Colorimetry are commonly
employed to measure global m6A levels [60, 61] (Table 2).

M6A MODIFICATION IN THE PATHOLOGY OF OCULAR DISEASE
The study of m6A modification in ocular diseases is rapidly
expanding, yet its precise role in specific ocular conditions
remains poorly understood. M6A modification holds significant
potential for ophthalmological research, particularly regarding its
fundamental pathophysiological functions, such as oxidative
stress, angiogenesis, inflammatory responses, and neurodegen-
eration. These processes are pivotal in the development of ocular
diseases, and the regulatory mechanisms of m6A modification in
these pathways require further exploration.

Oxidative stress
Oxidative stress (OS) refers to an imbalance between the oxidative
and antioxidant systems within the body, typically characterized
by an increased production of Reactive Oxygen Species (ROS) and
Reactive Nitrogen Species (RNS). When this imbalance surpasses
the body’s antioxidant capacity, it disrupts the intracellular redox
balance and results in cellular damage [62].

OS can damage retinal vascular endothelial cells, contributing
to retinal vascular diseases such as Age-Related Macular
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Degeneration (AMD) and Diabetic Retinopathy (DR) [63]. Crystal-
lins, which are major proteins in the lens, play a crucial role in
maintaining transparency. Excessive ROS induces conformational
changes in crystallin proteins, ultimately leading to cataracts [64,
65]. OS markers, including 8-hydroxy-2’-deoxyguanosine (80HdG)
and malondialdehyde (MDA), are elevated in the serum, aqueous
humor, and trabecular meshwork of glaucoma patients. These
markers are strongly correlated with elevated intraocular pressure
(IOP), visual field defects, and an increased cup-disc ratio (CDR)
[66, 67]. Moreover, antioxidants have shown promise in treating
dry eye disease. For example, vitamin B12 eyedrops and
hyaluronic acid-containing eyedrops have been shown to reduce
oxidative stress and improve dry eye symptoms [68]. Recent
studies indicate that m6A modification plays a pivotal role in the
development of various oxidative stress-related ocular diseases,
offering a promising new avenue for treatment based on m6A
modulation [69].

Angiogenesis

Angiogenesis is crucial for wound healing and tissue repair under
normal physiological conditions. However, abnormal angiogenesis
can lead to severe vision loss and, in some cases, irreversible
blindness in ocular diseases [70, 71]. For instance, wet AMD is
triggered by excessive activation of vascular endothelial growth
factor (VEGF), resulting in abnormal vascular growth, leakage, and
macular damage, which contribute to significant visual impair-
ment. While current anti-VEGF therapies slow disease progression,
they do not fully reverse visual loss [72, 73]. Similarly, Diabetic
Retinopathy (DR) is closely associated with abnormal angiogenesis
and can lead to retinal vascular injury due to hyperglycemia (HG),
inducing abnormal vessel formation, rupture, and bleeding. These
changes result in blinding complications such as retinal edema,
vitreous hemorrhage, and retinal detachment [74]. Retinal vein
occlusion (RVO) causes retinal hypoxia due to obstructed venous
blood flow, stimulating the release of pro-angiogenic factors like
VEGF and precipitating abnormal vascular growth. These newly
formed blood vessels, characterized by their immaturity, suscept-
ibility to bleeding, and leakage, can further damage retinal
structure and impair visual acuity [75, 76].

Hypoxia is a primary driver for the release of pro-angiogenic
factors, and recent studies have demonstrated that m6A modifica-
tion regulates hypoxia-induced angiogenic processes [77]. For
example, hypoxia-induced upregulation of METTL3 was observed
in endothelial progenitor cells (EPCs), activating the PI3K/AKT
signaling pathway, which subsequently promoted EPC-mediated
angiogenesis [78]. In contrast, under hypoxic conditions, ALKBH5
expression increases in cardiac microvascular endothelial cells,
leading to a reduction in m6A levels. This decrease in m6A triggers
WNT5A mRNA degradation, ultimately inhibiting angiogenesis [79].
These findings highlight that m6A-related regulators exert complex
effects on angiogenesis, depending on the cellular context.

Previous studies have highlighted the critical role of METTL3-
dependent m6A modification in hypoxia-induced pathological
ocular angiogenesis, demonstrated through an in vivo ocular
neovascularization model [80]. Under hypoxic conditions, METTL3
activity increases, upregulating the protein expression of MMP2
and TIE2 via m6A modification. This, in turn, promotes the
migration and tubular formation ability of Retinal Endothelial Cells
(RECs), ultimately driving abnormal angiogenesis [81]. Addition-
ally, Cytochrome P450 epoxygenase 2J2 (CYP2J2) overexpression
enhances Annexin A1 (ANXA1) protein expression through
METTL3-mediated ANXA1 m6A modification, protecting retinal
vascular endothelial cells from oxidative stress and preserving the
integrity of the Blood-Retinal Barrier (BRB) [82]. Furthermore, FTO
regulates endothelial cell (EC) function and Focal Adhesion Kinase
(FAK) expression via its demethylase activity and the m6A-
YTHDF2-dependent mechanism, contributing to pathological
angiogenesis [83].
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Angiogenesis is intricately linked to oxidative stress, often
resulting from tissue hypoxia and unmet oxygen demands. Under
physiological conditions, moderate oxidative stress promotes
angiogenesis, playing a vital role in tissue repair and regeneration.
However, excessive oxidative stress can lead to abnormal
angiogenesis and vascular dysfunction under pathological condi-
tions [84, 85].

Inflammatory response
Inflammation is the body’s immune response to injury or infection,
characterized by redness, swelling, heat, pain, and dysfunction,
with the primary aim of clearing pathogens and repairing tissues.
In ocular diseases, inflammation activates a variety of cells and
signaling pathways that drive pathological processes, with m6A
modification playing a central role in regulating these processes.
Feng et al. found that FTO downregulation under diabetic
conditions (DM) promotes macrophage polarization toward the
M1 type, enhances the expression of inflammatory mediators, and
exacerbates diabetic retinopathy (DR)-related microvascular
inflammation. Mechanistically, FTO regulates FGF2 mRNA through
YTHDF2-dependent m6A modification and activates the PI3K/Akt
signaling pathway [86]. Dry eye disease (DED) is often secondary
to DM. Guo et al. observed that the expression of WTAP and
NEAT1 was upregulated in a mouse model of diabetic dry eye
(DMDED), leading to severe corneal injury and inflammation.
Knockdown of WTAP/NEAT1 alleviated these symptoms [87].
Moreover, the DM-induced hyperglycemic (HG) environment leads
to FTO upregulation, which removes the m6A modification from
TNIPT mRNA, decreasing its stability and reducing TNIP1 protein
expression. The reduction of TNIP1 relieves the inhibition of the
NFkB signaling pathway, resulting in elevated levels of inflamma-
tory factors (e.g., IL-1P and IL-18) and exacerbating retinal vascular
inflammation and endothelial dysfunction [88]. Decreased FTO
may promote microglial inflammation in autoimmune uveitis
(EAU), suggesting that restoring or activating FTO function could
serve as a potential therapeutic strategy for uveitis [89].

The complexity of m6A regulation

The expanding body of research on m6A in ocular diseases reveals
a complex and often context-dependent regulatory landscape. A
critical examination of apparent inconsistencies in the functions of
individual m6A regulators is essential for a nuanced under-
standing of their roles in pathophysiology.

The expression and pathological contribution of the demethy-
lase FTO demonstrate striking divergence across different
disease environments, sometimes presenting a seeming para-
dox. In diabetic retinopathy, recent studies have demonstrated
that FTO expression is upregulated in endothelial cells under
diabetic conditions. This increase, driven by lactate-mediated
histone lactylation, promotes angiogenesis, disrupts vascular
integrity, and exacerbates inflammation by enhancing the m6A-
dependent mRNA stability of targets like CDK2, thereby
positioning FTO as a key driver of pathology [90]. In contrast
to a hypothetical pro-inflammatory role, accumulating evidence
indicates that FTO is downregulated in microglia during uveitis.
This downregulation exacerbates the disease by disrupting m6A
homeostasis and activating the GPC4/TLR4/NF-kB pathway,
positioning FTO as a potential suppressor of microglia-driven
inflammation [89].

The role of the methyltransferase METTL3 in inflammatory eye
diseases demonstrates a complex, context-dependent pattern. In
experimental autoimmune uveitis (EAU), METTL3 expression is
significantly decreased in T cells, and its overexpression amelio-
rates disease by suppressing pathogenic Th17 responses through
the ASH1L-YTHDC2 axis, revealing a clear anti-inflammatory
function in this specific cellular context [91]. This protective role
stands in contrast to its reported functions in broader immune
dysregulation, where METTL3 is often associated with suppressing
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antiviral immunity and disrupting immune tolerance, with its
overexpression linked to increased susceptibility to viral infections
and autoimmune conditions [92]. These divergent findings
underscore that the function of METTL3 is not intrinsic but is
determined by the specific disease environment and, critically, the
cell type in which it is expressed—demonstrating distinct
consequences in lymphoid cells (e.g., T cells) versus myeloid cells.
In conclusion, the seemingly paradoxical functions of m6A
regulators like FTO and METTL3 are not experimental artifacts but
rather reflections of a sophisticated and dynamic regulatory
network. Their ultimate biological output is determined by a
confluence of factors, including the specific pathological context,
cell type, disease stage, and the particular repertoire of target
mRNAs they act upon. Acknowledging and systematically
investigating this complexity is a crucial step toward moving
from phenomenological observations to a mechanistic under-
standing that could inform future therapeutic strategies.

THE MULTIFACETED ROLES OF M6A MODIFICATION IN
SPECIFIC OCULAR DISEASE

As the core organ of visual perception, the integrity of both the
structure and function of the human eye is essential for
maintaining clear vision. The complexity of the eye is reflected
not only in its intricate anatomy but also in its unique
physiological functions and high sensitivity to various internal
and external stimuli. In recent years, with the deepening of ocular
disease research, m6A modification—a key epigenetic regulatory
mechanism—has emerged as an important area of study. M6A
modification plays a pivotal role in the pathogenesis of various
ocular diseases by regulating gene expression, RNA stability, and
translational efficiency. From oxidative stress to neurodegenera-
tion, and from inflammatory responses to angiogenesis, m6A
modification exerts diverse regulatory roles in different patholo-
gical processes. However, its specific mechanism of action in
various ocular diseases remains incompletely understood, and in
some cases, it may exert opposing effects. Therefore, a
comprehensive investigation into the role of m6A modification
in specific ocular diseases will not only illuminate its function in
the development of eye diseases but also offer new insights for
the development of targeted therapeutic strategies (Fig. 3).

Anterior segment and adnexal diseases

Keratitis. Keratitis is a common corneal disorder, typically
characterized by pain, redness, lacrimation, photophobia, and
decreased vision, often caused by bacteria, fungi, or viruses [93,
94]. If left untreated, infectious keratitis can result in corneal
scarring, leading to opacity and significantly impairing vision
[95, 96].

Fungal keratitis (FK) is a severe corneal infectious disease
associated with vision loss. It is highly destructive and can result in
permanent blindness or even the loss of the eyeball [97]. The main
pathogens of FK include Fusarium, Aspergillus, and Candida, with
Fusarium solani (F. solani) being the most commonly reported
species [98]. In investigating the role of METTL3 in F. solani-
induced FK, studies by Hu et al. and Huang et al. have each
contributed to this area. Hu et al. focused on global changes in
m6A modification and transcriptome analysis, revealing a broad
upregulation of m6A modification in corneal tissue following
infection. Huang et al. further explored the specific mechanism of
METTL3 in the PI3K/AKT signaling pathway and found that
METTL3 significantly influences the onset and progression of
keratitis by regulating this pathway. The findings of these two
studies complement one another, offering a more comprehensive
understanding of the role of m6A modification in fungal keratitis.
[99, 100]. Moreover, Tang et al. demonstrated that inhibition of
METTL3 mitigated the reduction in NFkB signaling, thereby
alleviating Fusarium solani keratitis [101]. Therefore, METTL3
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may regulate multiple signaling pathways that contribute to the
development of FK, making it a potential target for therapeutic
strategies.

Corneal neovascularization. Corneal neovascularization is typi-
cally triggered by factors such as trauma, infection, ischemia,
hypoxia, inflammation, or following keratoplasty. It compromises
vision by activating pro-angiogenic factors that promote the
growth of blood vessels from the limbus to the center of the
cornea, leading to the loss of corneal transparency [102].

Yao et al. found that hypoxia significantly increased m6A
modification levels in both in vitro cell experiments and in vivo
animal models. This increase may influence angiogenesis by
regulating the expression of genes involved in the process.
Moreover, hypoxia activated Hypoxia-Inducible Factor (HIF), which
induced METTL3 expression and promoted angiogenesis. Yao
et al. further validated the role of METTL3 in pathological
angiogenesis using an alkali burn-induced mouse corneal
neovascularization model. METTL3 regulates the expression of
Wnt signaling pathway-related genes (e.g, LRP6 and DVL1)
through m6A modification, which subsequently affects angiogen-
esis. In the alkali burn model, specific knockdown of METTL3
reduced the expression of these genes, inhibiting neovasculariza-
tion [80].

In addition, Dai et al. found that METTL3 knockout mice
exhibited a significantly faster rate of corneal injury repair in an
alkali burn-induced model, with sodium fluorescein staining
showing a markedly increased rate of repair. This result may be
linked to METTL3's regulation of target genes AHNAK and DDIT4
expression through m6A modification, which in turn inhibits the
function of limbal stem cells (LSCs). Previous studies have shown
that LSCs suppress the formation of vascular endothelial cells
under normal conditions, and their loss of function leads to the
generation of new blood vessels [103, 104]. Therefore, knockdown
of METTL3 may accelerate corneal injury repair and reduce
neovascularization by relieving the inhibition of LSCs, promoting
their proliferation and migration [105]. Wang et al. also found that
METTL3, which is highly expressed in the herpes stromal keratitis
(HSK) mouse model, promotes pathological angiogenesis through
canonical Wnt and VEGF signaling in vitro and in vivo, providing a
potential pharmacological target to prevent the progression of
corneal neovascularization in HSK [106].

Furthermore, Shan et al. found that FTO silencing inhibited
endothelial cell function and corneal neovascularization by
increasing m6A modification levels, which prompted YTHDF2 to
degrade FAK mRNA, resulting in decreased Focal Adhesion Kinase
(FAK) protein expression [83].

In summary, m6A modification plays a pivotal role in the
formation of corneal neovascularization and injury repair by
regulating key genes and signaling pathways. Therefore, precise
modulation of m6A modification levels may provide novel
strategies for the prevention and treatment of corneal
neovascularization.

Cataract. The lens focuses light onto the retina through its
transparent biconvex structure, forming a clear image essential for
visual function [107]. Cataracts are caused by lens opacities, most
of which develop after birth, primarily due to aging and oxidative
stress [108]. Cataracts are classified into age-related cataract (ARC),
congenital cataract, traumatic cataract, and metabolic cataract.
ARC primarily affects individuals over 50 years of age and results
from the gradual opacification of the lens with age, making it the
most common type of cataract. Based on anatomical location or
opacity features, cataracts can also be categorized as nuclear
(opacification of the fetal and adult nucleus), cortical (spoke-like
opacification of the lens fibers), and posterior (plaque-like
opacification in the back portion of the lens fibers). From 2000
to 2020, cataract-related blindness increased by 30%, while
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moderate to severe visual impairment rose by 93%. Although
advances in cataract surgery have reduced cataract-related
blindness, the overall number of cataract cases continues to rise
due to the aging population, particularly the increasing number of
individuals over 60 years of age [108].
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In the Malay adult population in Singapore, Lim et al. found
through Mendelian randomization that rs9939609 in the FTO gene
was significantly associated with an increased risk of nuclear
cataract, but not cortical or posterior subcapsular cataract [109]. In
a northern Indian population, Chandra et al. conducted a case-
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Fig. 3 MG6A regulatory proteins play a role in the onset and progression of eye diseases. A Key regulatory factors of m6A modification in
different ocular cell types and related diseases. This includes the expression and function of m6A methyltransferases (METTL3, METTL14),
demethylases (FTO, ALKBH5), and reader proteins (YTHDF1, YTHDF2, IGF2BP1) in retinal ganglion cells (glaucoma, optic neuritis), endotheliocyte
(diabetic retinopathy, age-related macular degeneration, retinopathy of prematurity), microglia (glaucoma, diabetic retinopathy, uveitis), and RPE cells
(diabetic retinopathy, retinitis pigmentosa, age-related maculardegeneration). B Molecular regulatory pathways of m6A modification in the ocular
microenvironment. a FTO regulates COX10mRNA, affecting ATP production; METTL3 participates in the autophagy process by regulating Beclin1
mRNA. b METTL3/YTHDF1/YTHDF2 and FTO respectively regulate VEGF-A and Nrf pathways, influencing angiogenesis and oxidative stress. ¢ METTL3
mediates inflammatory factors TNF-o/IL-6, and METTL14 is associated with iNOS mRNA expression, participating inneurotoxic responses. d ALKBH5
and YTHDF2 regulate RPE65 and TFEB mRNA, affecting retinol metabolism and mitochondrialfunction; METTL3/YTHDF1 regulate p16INK4a

expression, participating in the cell cycle process.

control study and found that this locus was significantly
associated with an increased risk of cataracts, although it did
not clearly differentiate between cataract subtypes [110]. Despite
differences in study methods, these findings suggest that
FTO gene polymorphisms may influence the development of
cataracts through mechanisms independent of obesity. However,
the specific mechanisms of action and affected cataract
subtypes appear to vary across populations and warrant further
investigation.

Investigating the effect of lens epithelium cell (LEC) RNA
transcripts on cataract formation is critical, as the integrity and
metabolic activity of LECs are essential for maintaining lens
transparency. These functions depend on a normal transcriptome.
Multiple proteins involved in m6A modification have been found
to be aberrantly expressed in LECs from cataract patients. For
instance, levels of m6A-modified circular RNAs (circRNAs) were
found to be significantly reduced in LECs from age-related
cataract (ARC) patients compared to normal controls, with high
m6A-modified circRNAs predominantly downregulated. These
m6A-modified circRNAs are closely associated with ARC-related
pathways, including oxidative stress, DNA damage repair, and
autophagy, suggesting that m6A modification may play a role in
ARC development by inhibiting circRNA expression. Additionally,
the demethylase ALKBH5 is significantly upregulated in ARC
patients and may affect m6A-modified circRNAs through
demethylation, thereby promoting ARC pathogenesis [111].

Additionally, Li et al. determined that m6A modification was
significantly upregulated in ARC through MeRIP-Seq, with
methyltransferase METTL3 being significantly increased in ARC
tissues and high glucose-induced lens epithelial cells (HLE-B3).
METTL3 overexpression was shown to promote m6A modification
and the expression of hascirc0007905, which regulates EIF4EBP1
expression by sponging miR-6749-3p. Upregulation of
EIF4EBP1 suppressed proliferation and promoted apoptosis in
HLE-B3 cells, driving ARC development. This study highlights the
critical role of the METTL3/hascirc0007905/miR-6749-3p/EIFAEBP1
axis in ARC and provides a novel target for ARC treatment [112].

Diabetic cataract (DC) is a type of metabolic cataract caused by
lens metabolic disorders resulting from long-term hyperglycemia
(HG), leading to lens opacification. Its pathogenesis is closely
associated with oxidative stress and apoptosis in lens epithelial
cells (LECs). Recent studies have revealed that m6A modification
reduces the expression of its target gene superoxide dismutase 2
(SOD2) through METTL3-mediated miR-4654 maturation, exacer-
bating oxidative stress and apoptosis in LECs, and promoting lens
opacification [113]. Moreover, METTL3 was found to be upregu-
lated in high glucose-induced HLECs by MeRIP-Seq analysis, where
it contributes to the pathogenesis of DC by targeting the 3’ UTR of
ICAM-1, stabilizing its mRNA, and promoting protein expression
[114].

Interestingly, Cai et al. revealed a significant increase in m6A
modification levels in DCs and notable changes in m6A
modification across multiple mRNAs, as determined through
microarray analysis of the m6A transcriptome. Gene ontology
(GO) and pathway enrichment analysis indicated that these
differentially expressed mRNAs were primarily enriched in the
ferroptosis pathway, suggesting that m6A modification may play a
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role in DC progression by regulating this pathway. Furthermore,
the RNA methyltransferase RBM15 was found to be significantly
upregulated in DCs, potentially promoting oxidative stress and
ferroptosis in lens epithelial cells through m6A modification,
thereby driving disease progression [115].

Overall, while significant progress has been made in studies of
m6A modification in cataracts, a consistent observation across
different types of cataracts is that METTL3 promotes LEC
apoptosis. However, many unresolved questions remain in the
existing literature. For example, is the regulatory mechanism of
m6A modification in DC consistent with that in ARC? Is there a
specific m6A modification pattern or target that can distinguish
DC from ARC? Furthermore, the precise role of the ferroptosis
pathway in DC remains unclear. How does m6A modification
affect the survival of LECs by regulating the ferroptosis pathway,
thereby influencing DC pathogenesis? Addressing these questions
will help further elucidate the complex mechanisms of m6A
modification in cataracts and provide new insights for the
development of targeted therapeutic strategies.

Glaucoma. Glaucoma is a leading irreversible cause of blindness
worldwide, characterized by optic nerve damage and the
progressive loss of retinal ganglion cells (RGCs). The primary
causes are elevated intraocular pressure (IOP) or impaired retinal
blood flow, which result in thinning of the optic nerve fiber layer
and cupping of the optic disc, leading to visual field defects and
decreased visual acuity [116]. However, not all patients with
elevated IOP develop glaucoma, and some individuals may
present with typical glaucomatous optic neuropathy, known as
normal tension glaucoma (NTG), even within the normal IOP
range. The pathogenesis of glaucoma is multifactorial, involving
genetics, oxidative stress, mechanical compression, vascular
compression, neuroinflammation, and mitochondrial dysfunction.
Oxidative stress is closely associated with cellular aging, mito-
chondrial dysfunction, and neuroinflammation, all of which
contribute to the pathological progression of glaucoma [117].
With the aging global population, the incidence of glaucoma is
expected to continue rising, presenting a significant public health
challenge [118].

Pseudoexfoliation glaucoma (PXG) is a major form of secondary
glaucoma, characterized by the accumulation of abnormal
extracellular fibrillar material in anterior segment structures. This
leads to increased trabecular meshwork outflow resistance,
elevated IOP, and, ultimately, optic nerve injury and visual field
defects [119, 120].

Guan et al. analyzed the m6A modification profile in aqueous
humor (AH) from PXG patients and found that m6A levels were
significantly higher than those in ARC patients, suggesting that
m6A modification may play an important regulatory role in PXG.
Transcriptome analysis revealed numerous differential m6A
modification peaks in the AH of PXG patients, primarily enriched
in coding sequences (CDS) and 3'-untranslated regions (3'-UTR),
which may influence the pathological process of PXG by
regulating mRNA stability, translational efficiency, and intracellular
localization. Additionally, m6A modification is closely associated
with extracellular matrix (ECM) formation and histone deacetyla-
tion in PXG. Genes such as MMP14, ADAMTSL1, FN1, and HDAC1
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exhibited significant m6A methylation and expression changes in
PXG, highlighting the importance of ECM remodeling and cell
phenotype regulation in the disease [121].

Additionally, recent studies have shown that IncRNAs in the
aqueous humor (AH) of PXG patients exhibit significant m6A
modification differences, which may contribute to the pathogen-
esis of PXG by influencing the expression and function of IncRNAs.
By constructing an IncRNA-miRNA-mRNA competitive endogen-
ous RNA (ceRNA) network, it was found that specific IncRNAs (e.g.,
ENST00000485383) may bind multiple miRNAs through a sponge
mechanism, relieving their inhibition of downstream mRNA (e.g.,
ROCK1) expression. This interaction may influence the inflamma-
tory response of retinal pigment epithelial cells and the
fibroproliferation of trabecular meshwork cells [122].

These findings not only offer new insights into the pathogen-
esis of PXG but also provide a direction for further investigation
into its pathophysiology and potential therapeutic targets, which
could lead to breakthroughs in PXG research. Future studies
should validate these mechanisms through cellular and animal
models and assess their generalizability across diverse ethnic and
geographical populations.

The degeneration of RGCs shares a similar pathomechanism
with Retinal Ischemia-Reperfusion (RIR) injury [123]. Recent
studies have shown that RIR injury activates the autophagic
process, leading to RGC death and impaired retinal electro-
physiological function. Further mechanistic studies revealed that
METTL3-mediated m6A modification levels decreased after RIR
injury. Overexpression of METTL3 reduced FoxO1 protein
expression by increasing m6A modification on FoxO1 mRNA,
thereby inhibiting autophagy activation and protecting RGCs.
Moreover, the use of FoxO1 inhibitors also alleviated RGC loss
and retinal dysfunction caused by RIR injury by inhibiting
autophagy [124]. In contrast, YTHDF2 is highly expressed in
mouse RGCs, and its conditional knockout (cKO) significantly
increased dendritic branch complexity in RGCs, while improving
visual function. In an acute intraocular pressure elevation (AOH)-
induced glaucoma model, RGCs from YTHDF2 cKO mice showed
greater resistance to injury, reduced dendritic atrophy, and less
neuronal loss [125].

Glaucoma Filtration Surgery (GFS) is a standard surgical
approach for treating glaucoma, but postoperative scar forma-
tion remains the primary cause of surgical failure [126]. Studies
have shown that excessive activation of human Tenon’s capsule
fibroblasts (HTFs) and abnormal accumulation of extracellular
matrix (ECM) are key factors in scar formation [127]. TGF-B1 was
found to significantly enhance the proliferation and ECM
accumulation of HTFs, elevating m6A modification levels by
upregulating METTL3. Moreover, METTL3 modulated HTF func-
tion by regulating mothers against decapentaplegic homolog 3
(Smad3) expression. Overexpression of Smad3 reversed the
inhibitory effect of METTL3 inhibition on ECM accumulation and
cell proliferation. In a rabbit GFS model, METTL3 and Smad3
expression were significantly elevated in postoperative scar
tissue, further confirming the critical role of the METTL3/Smad3
axis in scar formation after GFS [128].

In summary, m6A modification could serve as a potential
therapeutic target for glaucoma by influencing gene expression
and regulating cell phenotype. However, current studies have
not fully elucidated the universal role of m6A modification in
different glaucoma subtypes or its specific molecular mechan-
isms. While certain m6A-related genes, such as METTL3 and
YTHDF2, have been identified as regulated in glaucoma models,
it remains unclear whether the m6A modification pattern is
consistent across all patients or universally applicable across
different ethnic groups and individuals. This question requires
further in-depth investigation. Therefore, accurately regulating
m6A modification may represent a crucial direction for future
glaucoma treatment research.
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Uveitis. Uveitis is a complex disease characterized by intraocular
inflammation, primarily affecting uveal structures such as the iris,
ciliary body, and choroid. It is classified into two major categories:
infectious and non-infectious. The former is primarily caused by
pathogens, including bacteria, viruses, or parasites, while the latter
is often associated with systemic immune-mediated inflammatory
diseases, such as juvenile idiopathic arthritis (JIA), ankylosing
spondylitis (AS), and Behcet's disease [129]. Uveitis can present as
either acute or chronic inflammation, involving the anterior,
middle, or posterior segments of the eye, or even the entire uvea.
Symptoms vary and include eye redness, pain, photophobia,
blurred vision, and dark shadows, which, in severe cases, can lead
to vision loss or blindness [130]. Globally, uveitis is a significant
cause of visual impairment, particularly among children and
adolescents, with a high incidence and rate of blindness. Due to its
complex etiology, diagnosis, and treatment require close colla-
boration between ophthalmology and rheumatology is required
to identify the underlying cause and develop an individualized
treatment plan [131].

Microglia are the primary immune effector cells of the retina,
exhibiting high plasticity and playing a critical role in the
pathogenesis of uveitis. Their activation state is primarily
categorized into two types: the M1 pro-inflammatory “classical
activation” state and the M2 anti-inflammatory “alternative
activation” state [132].

In the experimental autoimmune uveitis (EAU) mouse model
and a LPS/IFN-y-induced inflammatory environment, He et al.
observed downregulation of FTO expression. FTO deletion
significantly enhanced the pro-inflammatory properties of micro-
glia, as evidenced by increased secretion of inflammatory factors,
enhanced cell migration, and significantly elevated chemotaxis
toward CD4 T cells. RNA sequencing analysis identified GPC4 as a
downstream target gene of FTO, with its upregulation closely
associated with the downregulation of YTHDF3. Increased GPC4
expression further activated the TLR4/NF-kB signaling pathway,
driving microglial polarization toward the M1 phenotype and
exacerbating the inflammatory response. In vivo, FB23-2, an FTO
inhibitor, significantly aggravated inflammation in EAU by
activating the GPC4/TLR4/NF-kB signaling axis. However, this
exacerbated inflammation was alleviated by TAK-242, a TLR4
inhibitor [89].

Similarly, FTO expression in retinal pigment epithelial (RPE) cells
was significantly downregulated in the EAU mouse model. FTO
loss significantly enhanced the pro-inflammatory properties of RPE
cells, as evidenced by increased secretion of inflammatory factors,
enhanced cell migration, and decreased expression of tight
junction proteins (e.g, ZO-1 and occludin). Further studies
revealed that FTO regulates the translation efficiency of ATF4 by
modulating its m6A modification level. Knockdown of FTO
resulted in increased m6A modification of ATF4, thereby suppres-
sing ATF4 protein expression. As a key transcription factor,
reduced ATF4 expression activates the p-STAT3 signaling pathway,
promoting the secretion of inflammatory factors and the
degradation of tight junction proteins. Moreover, low FTO
expression has been associated with enhanced proliferative
capacity in RPE cells, potentially exacerbating the inflammatory
response [133].

Moreover, significant downregulation of YTHDC1 expression in
retinal microglia is closely associated with uveitis. Loss of YTHDC1
impairs the maintenance of SIRT1T mRNA stability, making it more
prone to degradation, which in turn reduces SIRT1 protein levels.
This alteration promotes acetylation and phosphorylation of
STAT3, ultimately driving microglial polarization toward the M1
phenotype. This polarization is characterized by a marked
upregulation of pro-inflammatory markers such as iNOS and
COX2, along with increased expression of inflammatory factors
like TNF-a, thereby exacerbating the inflammatory response in
uveitis [134].
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Pathogenic Th17 cells play a critical role in the pathology of
uveitis [135]. The significance of METTL3 in EAU was first
demonstrated in 2023 by Zhao et al. It was observed that METTL3
expression and m6A levels were both reduced in the ocular tissues
and T cells of EAU mice. Lentivirus-mediated overexpression of
METTL3 restored m6A levels, significantly alleviated EAU symp-
toms, reduced inflammatory cell infiltration, and improved retinal
structural damage. METTL3 decreases Th17 cell activity by
stabilizing ASH1L mRNA, inhibiting pathogenic Th17 cell
responses, and reducing the expression of IL-17 and IL-23R.
YTHDC2 plays a pivotal role in regulating ASH1L mRNA stability
through METTL3, and its knockdown weakens the regulatory
effect of METTL3 [91].

In the same year, Wei et al. injected miR-338-3p overexpressing
dendritic cells (DCs) into mice with EAU and observed more severe
symptoms, including increased inflammatory cell infiltration and
retinopathy, as observed through ophthalmoscopy and OCT
imaging. DCs are central to the development of Th17 cells, acting
as a crucial bridge between innate and adaptive immunity. They
provide essential microenvironmental support for Th17 cell
polarization by secreting pro-inflammatory cytokines such as IL-
6, IL-1B, and IL-23. METTL3 significantly upregulated miR-338-3p
expression by promoting the maturation of pri-miR-338 and
alleviating its inhibition of the p38 signaling pathway by targeting
dual-specificity phosphatase 16 (Dusp16), thereby enhancing the
ability of DCs to secrete cytokines associated with Th17 cell
polarization [136].

In summary, the effect of METTL3 in uveitis varies depending on
cell type and experimental conditions. In the EAU model, METTL3
expression was significantly reduced in T cells and ocular tissues,
and this reduction was closely associated with disease severity,
suggesting that downregulation of METTL3 may promote the
pathogenic response of Th17 cells, thereby exacerbating the
development of EAU. However, METTL3 expression in DCs
exhibited the opposite trend, ultimately enhancing Th17 cell
polarization and pathogenic responses. This difference highlights
the complex regulatory mechanisms of METTL3 in various cell
types and pathological conditions, underscoring its versatility in
immune responses. Therefore, differences in cell types and
experimental conditions must be thoroughly considered when
investigating METTL3’s role in uveitis to gain a comprehensive
understanding of its mechanism in disease development.

Zhou et al. were the first to elucidate the distinctive metabolic
profile of modified nucleosides in the serum of uveitis patients.
Using liquid chromatography-tandem mass spectrometry (LC-MS/
MS), they analyzed a total of 23 modified nucleosides, identifying
13 that were significantly altered in patients compared to healthy
controls. Notably, different subtypes of uveitis exhibited unique
combinations of these modified nucleosides. This discovery not
only introduces novel biomarkers for more accurate diagnosis but
also offers fresh insights into the underlying pathomechanisms of
uveitis [137]. Furthermore, the findings underscore the potential
role of RNA modifications in uveitis, laying a theoretical
foundation for the development of “RNA epigenetics-based”
diagnostic and therapeutic strategies. Such strategies could
significantly advance the progress of precision medicine for
uveitis.

Graves’ ophthalmopathy (GO)/thyroid eye disease (TED). GO, also
known as TED, is the most common extrathyroidal manifestation
of Graves’ disease and is classified as an autoimmune disorder. Its
pathogenesis is complex and primarily involves the abnormal
expression of thyroid-stimulating hormone receptor (TSHR) in
orbital tissues, which triggers inflammation and tissue remodeling
in orbital fat, fibrocytes, and extraocular muscles (EOMs). This
leads to exophthalmos, eyelid retraction, diplopia, and visual
impairment. The pathogenesis of GO is closely associated with
genetic and environmental factors, as well as thyroid dysfunction
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[138]. Treatment for GO depends on the severity and activity of
the disease. Mild GO is generally managed symptomatically, while
glucocorticoids are commonly required for moderate to severe
active GO, although the recurrence rate remains high. Recently,
targeted therapies such as teprotumumab, an insulin-like growth
factor 1 receptor (IGF-1R) blocker, have shown promising efficacy,
offering new hope for treatment. Surgical intervention may be
necessary for refractory or advanced cases of GO [139, 140].

Zhu et al. found significantly elevated m6A levels in EOM
samples from GO patients, suggesting that m6A methylation may
play a crucial role in the pathology of GO. Aberrant expression of
several m6A methylation regulators, including WTAP, ALKBH5, and
YTHDF2, was also observed. Changes in the expression of these
regulators were closely associated with the upregulation of genes
involved in inflammation and immune responses, indicating that
m6A methylation may influence the inflammatory response in GO
by regulating these genes. Furthermore, the expression of
inflammatory cytokines, such as IL-6, TNF, and IFN-y, was
significantly increased in the EOM of GO patients, further
supporting the critical role of m6A methylation in the inflamma-
tory pathology of GO [141]. Importantly, specific autoantibodies
against EOM antigens have been identified in GO patients,
strongly suggesting that EOM is a major target of autoimmune
attack [142, 143].

DR is closely associated with the presence of DM, and similarly,
the onset of GO/TED is strongly linked to thyroid disease. Recent
studies have demonstrated a clear association between m6A
modification and thyroid disease, which not only aids in under-
standing the pathogenesis of GO/TED but also provides a theoretical
foundation for the development of targeted treatments and
preventive strategies. HNRNPC significantly enhanced the transcrip-
tional activity and translational efficiency of ATF4 by mediating its
m6A modification. Activated ATF4 induced apoptosis and necrosis
of thyroid follicular epithelial cells (ThyFoEp) through the ER stress
pathway, contributing to the progression of Hashimoto's thyroiditis
(HT) [144]. Additionally, METTL3 expression was downregulated in
thyroid tissue from Graves’ disease (GD) patients, accompanied by
upregulation of suppressor of cytokine signaling (SOCS) family
members. This suggests that METTL3 may influence immune cell
function by regulating the m6A modification of SOCS family mRNAs,
thereby playing a role in the pathogenesis of GD [145].

Despite significant progress in revealing epigenetic regulatory
networks in thyroid-associated ophthalmopathy (TAO), this study
has some limitations, including a small sample size, a lack of
mechanistic validation, insufficient investigation of dynamic changes
in epigenetic modifications, and limited depth of multi-omics data
integration. Such limitations may impact the scope and practical
value of the study’s conclusions. Future studies should validate these
findings further and explore their potential clinical applications in
TAO management by expanding sample size, conducting in vitro
and in vivo experiments, analyzing dynamic changes in epigenetic
modifications, and integrating multi-omics data more comprehen-
sively.

Recent studies have revealed the epigenetic regulatory network
in thyroid-associated ophthalmopathy (TAO) through the integration
of multi-omics sequencing data, including DNA methylation, RNA-
seq, and tRFs sequencing. These studies have shown that epigenetic
modification levels undergo significant changes in TAO patients and
are closely associated with the PI3K-Akt and IL-17 signaling
pathways. In particular, m6A methylation regulates numerous genes
involved in key processes such as cytokine production, immune
response, and cell chemotaxis [146]. However, the study relied solely
on bioinformatics analysis. Moving forward, dynamic changes in
epigenetic modifications should be analyzed in greater detail
through in vitro and in vivo experiments. Additionally, the
integration of multi-omics data should be further refined to validate
these findings and explore their potential applications in the clinical
management of TAO.
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Although these studies provide new insights into the pathogen-
esis of GO/TED, existing research is limited to a single molecular
mechanism and does not fully elucidate the complex interactions
between m6A methylation and other epigenetic modifications. An
important question for future studies is whether they can explore
the synergistic effects of various epigenetic modifications (e.g., DNA
methylation, non-coding RNAs) in GO/TED, thereby offering a more
comprehensive theoretical foundation for precision treatment.

Posterior segment diseases

Diabetic retinopathy (DR). Diabetic retinopathy (DR) is one of the
primary microvascular complications of diabetes mellitus (DM)
and remains the leading cause of vision loss in working-age
individuals. According to the 2021 data from the International
Diabetes Federation (IDF), approximately 537 million adults
worldwide are living with DM, with projections indicating that
this number will rise to 783 million by 2045 [147]. It is estimated
that between 20% and 50% of DM patients will develop DR, a
condition closely associated with prolonged hyperglycemia (HG),
hypertension, and obesity [148]. Children and adolescents
diagnosed with type 2 diabetes (T2D) face an extended disease
course and are at a heightened risk for DR, with a significantly
increased prevalence observed beyond five years after diagnosis
[149]. Current treatment options for DR include anti-VEGF therapy,
laser photocoagulation, and vitrectomy, although these interven-
tions have limitations in terms of efficacy and are often
accompanied by side effects [150]. Consequently, annual DR
screening is strongly recommended for all patients with DM.
Concurrently, further investigations into the pathogenesis of DR,
as well as the identification of novel diagnostic biomarkers and
therapeutic targets, are essential for improving patient outcomes
and reducing the risk of vision impairment. Recent advances in
research on m6A modification—an important epigenetic mod-
ification—have shed new light on its potential role in DR, offering
valuable insights into the complex mechanisms underlying this
disease.

The Neurovascular Unit (NVU) encompasses a variety of cellular
components, including retinal vascular endothelial cells, pericytes,
neuroglial cells (such as Miiller cells and retinal microvascular cells,
rMC), neurons, and resident immune cells (e.g.,, microglia). The
primary functions of the NVU are to maintain the integrity of the
blood-retinal barrier (BRB), regulate retinal blood flow, support
neural function, and modulate immune responses, thereby
ensuring the normal physiological activity of the retina [151].
Diabetic retinopathy (DR) is classified into two main types: non-
proliferative diabetic retinopathy (NPDR) and proliferative diabetic
retinopathy (PDR) [152]. NPDR is further divided into mild,
moderate, and severe stages based on the severity of the disease.
It is primarily characterized by microaneurysms, hemorrhages, and
exudates, which reflect abnormal changes in the retinal vascu-
lature. In contrast, PDR represents the advanced stage of DR,
typically triggered by retinal ischemia and hypoxia, which induce
retinal neovascularization (RNV). These neovascularizations are
fragile and prone to rupture and bleeding, potentially leading to
significant vision loss and, in severe cases, blindness [153].

Studies have shown that abnormal changes in the migration,
proliferation, and capillary lumen formation of retinal microvas-
cular endothelial cells (RMECs) are closely associated with the
development of retinal neovascularization (RNV) and the progres-
sion of proliferative diabetic retinopathy (PDR) [154]. Additionally,
retinal microglial cells (rMCs), the principal glial cells of the retina,
undergo gliosis under pathological conditions and secrete various
pro-inflammatory factors, including IL-1(, IL-6, TNF-a, and VEGF.
These factors play a critical role in key pathological processes such
as retinal inflammation, vascular leakage, and abnormal RNV
formation [155, 156]. Lysine acetyltransferase 1 (KAT1), a key
epigenetic regulator, has garnered attention due to its potential
involvement in DR. Research by Qi et al. revealed that KAT1
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expression is significantly downregulated in the retinal tissue of
diabetic mice. Interestingly, overexpression of KAT1 was found to
notably inhibit retinal inflammation, RNV formation, and vascular
leakage. Molecular mechanistic studies indicated that KAT1
accelerates the degradation of ITGBT mRNA and suppresses its
protein expression by activating the transcription of YTHDF2,
which enhances the m6A modification of ITGB1T mRNA. This
process not only impedes the proliferation and migration of
RMECs but also mitigates the abnormal activation and inflamma-
tory response of rMCs by inhibiting the FAK/PI3K/AKT signaling
pathway [157]

Pericytes, which surround the endothelial cells (ECs) of
capillaries, play a crucial role in maintaining vascular integrity
and function [158, 159]. Dysfunction of pericytes can lead to
endothelial cell abnormalities and contribute to microvascular
complications [160]. In diabetic retinopathy (DR), hyperglycemia
(HG) triggers pericyte dysfunction, resulting in microaneurysms,
destruction of the blood-retinal barrier (BRB), disruption of
pericyte-endothelial cell interactions, and the formation of
pathological retinal neovascularization (RNV). These alterations
are closely associated with capillary remodeling, fibrosis, and
retinal detachment [161, 162]. In the context of diabetes mellitus
(DM), the upregulation of m6A modification mediated by
METTL3 suppresses the expression of key genes, including PKC-
n, FAT4, and PDGFRA. This inhibition impairs the survival,
proliferation, and differentiation of pericytes, ultimately contribut-
ing to retinal vascular complications. In vitro experiments
demonstrated that silencing METTL3 significantly alleviated high
glucose-induced apoptosis and dysfunction of pericytes. Addi-
tionally, specific knockdown of METTL3 in pericytes in a diabetic
mouse model reduced pericyte loss, diminished retinal vascular
leakage, and alleviated microangiopathy [163].

The retinal pigment epithelium (RPE) normally maintains BRB
integrity, regulates nutrient and ion transport, absorbs light
energy, and engulfs the outer photoreceptor segment, while also
secreting multiple factors to maintain retinal homeostasis [164].
Recently, pyroptosis, a form of programmed cell death, has
garnered significant attention due to its crucial role in inflamma-
tion and cell injury [165]. In DR, high glucose-induced RPE
dysfunction is a critical pathological event. High glucose has been
shown to inhibit RPE cell proliferation and induce apoptosis. For
example, METTL3 overexpression targets PTEN and activates the
Akt signaling pathway by upregulating miR-25-3p, thereby
alleviating the inhibitory effect of high glucose on RPE cell
proliferation and reducing both apoptosis and pyroptosis [166].
Similarly, circFAT1 is significantly downregulated in high glucose-
induced RPE, while its overexpression protects cells from high
glucose-induced injury by promoting autophagy and inhibiting
pyroptosis [167]. Furthermore, downregulation of miR-192 expres-
sion promotes FTO expression and activation of NOD-like receptor
pyrin domain containing 3 (NLRP3) inflammasomes under high
glucose (HG) conditions, subsequently promoting pyroptosis of
RPE cells [168].

Moreover, in DR, pathological factors such as high glucose (HG)
not only inhibit RPE cell proliferation and induce apoptosis but
also disrupt the balance of secreted factors, including the
upregulation of pro-angiogenic factors (e.g., VEGF), the down-
regulation of anti-angiogenic factors (e.g., PEDF), and the increase
of inflammatory factors (e.g., IL-6, IL-8). These changes lead to BRB
destruction, vascular leakage, pathological RNV formation, and
promote DR progression [164]. Therefore, targeting these
molecular mechanisms, beginning with RPE cells, could offer
new strategies for treating DR and may delay disease progression
by regulating pyroptosis and secretory function.

The phenotypic switch of cells is a pivotal biological event, with
endothelial-mesenchymal transition (EndoMT) referring to the loss
of endothelial cell characteristics and the acquisition of mesench-
ymal traits by endothelial cells. This process is intricately linked to
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embryonic development, tissue repair, and several pathological
conditions [169]. High glucose impairs endothelial cell (EC)
function and induces EndoMT [170]. EndoMT is considered a
critical early event in the pathological angiogenesis of retinal
vasculopathy, and its regulation by m6A modification plays a
crucial role in diabetic retinopathy (DR). METTL3 has been shown
to inhibit EndoMT by enhancing the stability of SNHG7 and
reducing the stability of MKL1T mRNA. In animal models, over-
expression of METTL3 improved retinal architecture and reduced
the expression of EndoMT markers, while knockdown of SNHG7
partially reversed these effects. These findings suggest that
METTL3 plays a protective role in DR and highlight potential
therapeutic strategies targeting m6A modification and non-coding
RNA regulation [171].

The regulation of FTO plays a critical role in the progression of
diabetic retinopathy (DR). Studies have demonstrated that FTO
expression is upregulated in both diabetic patients and animal
models, leading to a reduction in m6A modification levels. FTO
decreases the stability of TNIP1T mRNA, thereby downregulating
its protein expression, activating the NFkB pathway, and
increasing inflammatory factor levels, such as IL-13 and IL-18.
These changes exacerbate diabetes-induced retinal vascular
leakage and acellular capillary formation. Endothelial cell-
specific FTO knockout mice exhibit protection against DR, and
sustained expression of TNIP1 through AAV-mediated gene
therapy significantly mitigates diabetes-induced endothelial
dysfunction [88]. In addition, FTO promotes angiogenesis by
regulating the stability of CDK2 mRNA, facilitating endothelial
cell cycle progression and tip cell formation. FTO also contributes
to microvascular leakage, retinal inflammation, and neurodegen-
erative changes in DR by disrupting the interactions between
endothelial cells, pericytes, and microglia. Mechanistically, the
upregulation of FTO is driven by lactate-mediated histone
lactylation (H3K18la), and its demethylase activity impacts
CDK2 mRNA stability in a YTHDF2-dependent manner. The FTO
inhibitor FB23-2 and its nanoplatform, NP-FB23-2, have been
developed and shown to possess effective targeting and
therapeutic effects in mouse models [90].

Inflammation plays a central role in the development and
progression of diabetic vasculopathy. Notably, the polarization of
macrophages into either the M1 pro-inflammatory phenotype or
the M2 anti-inflammatory phenotype significantly influences the
inflammatory response [172]. Downregulation of FTO expression
is strongly associated with macrophage polarization toward the
M1 phenotype under diabetic conditions. Recent studies have
shown that FTO regulates mRNA stability through an m6A-
YTHDF2-dependent pathway, which subsequently affects macro-
phage polarization. Knockdown of FTO accelerates the degrada-
tion of STAT1 and PPAR-y mRNA, promoting M1 polarization. In
contrast, silencing YTHDF2 increases the stability and expression
of these mRNAs, inhibits M1 polarization, and reduces the
inflammatory response.

Moreover, FTO modulates inflammation by stabilizing FGF2
mRNA and activating the PI3K/AKT signaling pathway. Since
fibroblast growth factor 2 (FGF2) promotes macrophage polar-
ization toward the M2 phenotype, the downregulation of FTO,
resulting in decreased FGF2 expression, exacerbates M1 polar-
ization and further intensifies inflammation [86].

In summary, the expression levels of FTO in DR studies show
significant variability across different cell types and pathological
conditions. In fibrovascular membranes (FVMs) from patients
with PDR, FTO expression is upregulated and closely associated
with elevated inflammatory factors, vascular leakage, and
acellular capillary formation. This suggests that the upregulation
of FTO in retinal endothelial cells and pericytes may exacerbate
diabetes-induced vasculopathy. Conversely, FTO expression is
significantly downregulated in THP-1 cells (mimetic macro-
phages) cultured under HG conditions, which correlates with
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macrophage polarization toward the pro-inflammatory M1
phenotype, thus intensifying the inflammatory response. This
contrast underscores the complex regulation of FTO across
various cell types and highlights its involvement in multiple
pathways within the pathogenesis of DR. Therefore, when
considering FTO as a potential therapeutic target, it is essential
to carefully assess its specific role in distinct cell types and
pathological contexts.

M2 macrophages are typically considered anti-inflammatory
and play key roles in tissue repair, immune regulation, and the
resolution of inflammation under normal physiological condi-
tions. However, under certain pathological states, the function of
M2 macrophages may shift, potentially exacerbating the
pathological process. For instance, Gao et al. demonstrated that
after corneal injury, a substantial release of cytokines and
chemokines induces macrophage polarization toward the M2
phenotype. Nevertheless, this polarization can alter M2 macro-
phage function, thereby enhancing their role in promoting
angiogenesis [173]. In contrast, under diabetic conditions,
macrophages tend to polarize toward the pro-inflammatory M1
phenotype, a shift closely associated with aggravated tissue
inflammation and vascular dysfunction [174, 175].

The rs9939609 polymorphism in the FTO gene is strongly
associated with an increased risk of diabetic retinopathy (DR) in
patients with type 1 diabetes (T1D). T1D patients carrying the
AA genotype exhibit a significantly higher risk of developing
DR (OR =2.203, p =0.008), whereas the AT genotype appears
to confer a protective effect (OR=0.433, p=0.003). This
association may stem from the regulation of inflammatory
status and lipid metabolism by the FTO gene. Specifically,
patients with the AA genotype show elevated levels of
inflammatory markers, such as CRP, IL-6, and ICAM-1, suggest-
ing that chronic low-grade inflammation may play a pivotal
role in the progression of DR. Additionally, the influence of FTO
gene polymorphisms on lipid profiles provides a metabolic
basis for the increased risk of DR. These findings highlight the
critical role of the FTO gene in T1D-related retinopathy and
suggest potential new targets for therapeutic intervention in
T1D complications [176].

Microglia are resident immune cells in the retina that play a
crucial role in retinal inflammation [177]. Under HG conditions,
retinal microglia exhibit reduced expression of tumor necrosis
factor alpha-induced protein 3 (TNFAIP3, A20), leading to a
shift toward increased pro-inflammatory polarization. More-
over, decreased levels of ALKBH5 enhance m6A modification,
which accelerates the degradation of A20 mRNA [178].
Additionally, a reduction in ALKBH5 promotes the expression
of WNT5A, thereby accelerating angiogenesis in ischemic
tissue. [79]. However, the specific mechanisms underlying
these processes in the retina remain poorly understood and
require further investigation.

DR is a secondary complication of DM, with DM serving as a
prerequisite for the development of DR, suggesting a potential
link between the two. Since 2015, studies have increasingly
shown that reduced levels of m6A modification are strongly
associated with the onset of T2D, positioning m6A modification
as a potential risk factor and biomarker for the disease [179].
Understanding the regulatory mechanisms of m6A modifica-
tion in the development of DM could lead to the identification
of novel therapeutic targets. Such insights could pave the way
for more precise treatments, reduce the incidence of DM and
its complications, improve patients’ quality of life, and alleviate
the societal medical burden.

Retinopathy of prematurity (ROP). ROP is a prevalent retinal
vascular disorder in premature infants, particularly affecting those
with very low birth weight and low gestational age. It is a leading
cause of visual impairment and blindness in children. The
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pathogenesis of ROP is complex, involving multiple factors such as
premature birth, oxygen exposure, infection, inflammation, and
genetic susceptibility [180]. The pathological progression of ROP
occurs in two stages: the initial abnormal proliferation of retinal
vessels, which can potentially lead to retinal detachment, followed
by abnormal vessel dilation and fibrosis, further impairing visual
acuity [181]. In recent years, the incidence and severity of ROP
have increased, largely due to the improved survival rates of
preterm infants, particularly in low- and middle-income countries.
Currently, laser photocoagulation and anti-VEGF drug injections
are the primary treatments; however, these approaches have
limitations, including visual field defects, myopia, and systemic
side effects. Thus, understanding the pathomechanisms of ROP
and developing new diagnostic markers and treatment strategies
are crucial for improving the visual outcomes of premature infants
[182]

Zhou et al. reported significant changes in the m6A modifica-
tion levels of 88 circRNAs in oxygen-induced retinopathy (OIR)
mouse models, with 56 circRNAs exhibiting hypermethylation and
32 showing hypomethylation. Gene ontology (GO) and Kyoto
Encyclopedia of Genes and Genomes (KEGG) analyses revealed
that the host genes of these circRNAs were primarily involved in
pathways related to cellular processes, protein binding, and lysine
degradation. Additionally, circRNA-miRNA-mRNA network analysis
further suggested that m6A-modified circRNAs may regulate
retinopathy of prematurity (ROP) through the competing endo-
genous RNA (ceRNA) mechanism [183].

In a similar OIR mouse model, Peng et al. observed significant
alterations in m6A modification levels in 1321 mRNAs and 192
IncRNAs in retinal tissue, the majority of which exhibited
hypomethylation. GO analysis revealed that hypermethylated
MRNAs were predominantly involved in multicellular biological
processes and organelle functions, whereas hypomethylated
mMRNAs were associated with cellular metabolism and binding
functions. KEGG analysis indicated that hypermethylated mRNAs
were linked to the PI3K-Akt signaling pathway, while hypomethy-
lated mRNAs were related to autophagy and ubiquitin-mediated
proteolysis. These findings underscore the pivotal role of m6A
modification in retinal neovascularization and provide a theore-
tical foundation for the development of novel therapeutic targets
for ROP [184].

Pathological angiogenesis, triggered by retinal hypoxia, is a key
component of ROP pathology [185]. In response to hypoxic
conditions, m6A modification levels were notably increased in
both HU-VEC cells and mouse retinas. This elevation was
predominantly mediated by METTL3, which regulated the Wnt
signaling pathway. The influence of METTL3 on this pathway led
to the altered expression of critical genes, such as LRP6 and DVL1,
ultimately driving the progression of pathological angiogenesis
[80].

Furthermore, oxidative stress, pyroptosis, and autophagy
dysfunction have been shown to interact in the pathophysiol-
ogy of retinal neovascularization in OIR mice, establishing a
vicious cycle. Therefore, targeting oxidative stress, inhibiting
pyroptosis, and restoring autophagic function could provide
novel strategies for preventing and treating retinal neovascular-
ization [186].

Notably, the physiological and pathological conditions of
preterm infants differ significantly from those of adult animals,
as the retinas of preterm infants are immature and more
vulnerable to hypoxia and oxygen exposure. While many current
studies rely on animal models, such as the OIR mouse model,
which replicate certain pathological features, these models fail
to fully capture the complexity and individual variability of ROP
in humans. As a result, the applicability of findings from animal
models to preterm infants may be limited. Future research is
crucial to further investigate the relevance of these findings to
preterm infants and to develop diagnostic markers and
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treatment strategies specifically tailored for this population,
ultimately providing new approaches for diagnosing and
treating ROP.

Retinitis pigmentosa (RP). RP is an inherited retinal degenerative
disorder affecting approximately 2.5 million people worldwide. It
is characterized by the progressive degeneration of rods and
cones, leading to night blindness, loss of peripheral vision, and
ultimately, total blindness [187]. The disorder can be inherited
through various patterns, including autosomal dominant, auto-
somal recessive, X-linked, and undefined modes of inheritance.
Mutations in genes such as RHO, USH2A, and RPGR have been
implicated in the disease. In recent years, emerging therapies,
including gene therapy, cell transplantation, and retinal pros-
theses, have made significant advances. Luxturna, a gene therapy
targeting RPE65 mutations, has shown considerable efficacy in
clinical trials. However, challenges persist in the treatment of RP,
including the genetic heterogeneity of mutations, limitations in
targeting specific mutations, and the invasiveness of current
therapeutic approaches. Future strategies should focus on
personalized treatments that address multiple mutations, which
are critical to improving patient outcomes [188].

Studies have shown that METTL14 expression is downregulated
in RP patients, and its silencing leads to a significant reduction in
m6A levels in RPE cells. This reduction, in turn, impairs cellular
phagocytosis and proliferation, while promoting apoptosis and
cell cycle arrest. RNA-seq and MeRIP-seq analyses have revealed
that METTL14 regulates the expression of microtubule-associated
protein 2 (MAP2) through m6A modification. Notably, MAP2
overexpression replicates the effects of METTL14 silencing, result-
ing in RPE cell dysfunction and upregulation of NEUROD1
expression, a pathogenic gene associated with RP [189].

Mutations in the RP switch gene lead to rod death, followed by
a gradual loss of cones. Cones are essential for color vision and
sharp visual acuity; their degeneration results in impaired color
vision and blurred sight [187]. The involvement of the mTOR
pathway in cone survival in RP is well-documented [190].
Moreover, m6A methylation has been closely associated with
the activity of the mTOR pathway [191].

These studies underscore the pivotal role of m6A methylation in
the pathogenesis of RP, supporting the development of novel
therapeutic strategies that target m6A regulation. Future research
is essential to further explore the specific relationship between
m6A modification and retinal cell function, as well as how
modulation of m6A levels can protect cones and slow disease
progression.

Since RP is a genetic disorder primarily caused by mutations,
fetuses carrying causative mutations could theoretically be
identified through genetic testing during pregnancy, such as
Non-Invasive Prenatal Testing (NIPT) or amniocentesis. However,
RP involves over 70 genes and more than 3000 mutation types,
and its genetic heterogeneity means that routine testing fails to
identify the causative locus in approximately 40% of patients
[188]. Even when mutations are detected, current clinical
interventions are limited to delaying disease progression (e.g.,
vitamin A supplementation, retinal prostheses), rather than
offering a cure [192]. RP typically begins gradually after birth,
and effective fetal interventions remain unavailable. Future
research is crucial to identify early diagnostic markers for RP and
to develop safe and effective fetal intervention strategies,
enabling the detection of high-risk fetuses and improving patient
outcomes.

Proliferative vitreoretinopathy (PVR). PVR is a major complication
following retinal detachment (RD) surgery, occurring in approxi-
mately 5%-10% of cases. It is characterized by the formation of
contractile fibrous membranes on the vitreous and retinal
surfaces, often leading to surgical failure and redetachment. The
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pathogenesis of PVR is complex, primarily involving the migration
and proliferation of RPE and glial cells, along with excessive
deposition and contraction of the extracellular matrix (ECM) [193].
The inflammatory response also plays a critical role in promoting
cell proliferation and fibrous membrane formation through the
release of various growth factors and mediators. Currently,
treatment for PVR largely relies on the surgical removal of fibrous
membranes to relieve traction, but the success rate remains
limited, and the recurrence rate is high. Although some drugs
have demonstrated efficacy in animal models, clinical trials have
largely been unsuccessful, and effective preventive and therapeu-
tic options are still lacking [194]. Therefore, a deeper under-
standing of the pathogenesis of PVR and the identification of new
therapeutic targets are crucial for improving patient outcomes.
Epithelial-mesenchymal transition (EMT) of RPE cells plays a
critical role in the development of PVR [195]. Recent studies have
highlighted the regulatory role of m6A modification in EMT in RPE
cells. TGF-B2 has been shown to influence the EMT process in RPE
cells by regulating m6A modification, with METTL3 and YTHDF1
playing key roles in cell migration and the expression of EMT
markers [196]. Furthermore, MeCP2 inhibits EMT in RPE cells by
regulating m6A modification and the expression of key genes,
such as EGR1 [197]. Overexpression of METTL3 has been found to
significantly delay PVR progression by inhibiting the Wnt/
B-catenin signaling pathway [198]. These findings suggest that
EMT in RPE cells during PVR may be complex, influenced by
multiple signaling pathways and epigenetic regulators. Further
studies are needed to explore these mechanisms in greater detail.

Age-related macular degeneration (AMD). AMD is the leading
cause of blindness in individuals over 60 in industrialized
countries, primarily affecting the macular region of the retina.
This area, rich in cones, is responsible for central vision and
plays a crucial role in tasks requiring fine visual acuity, such as
reading, driving, and recognizing faces [199]. In 2020, more than
190 million people worldwide were affected, and with the
global aging trend, this number is expected to rise to 288
million by 2040. The disease not only severely impacts vision
but also places a significant burden on global healthcare
systems [200].

The pathogenesis of AMD is complex, involving multiple
factors, including genetic susceptibility, environmental influ-
ences such as smoking, diet, and lifestyle, as well as age-related
physiological changes. Chronic inflammation, lipid deposition,
oxidative stress, and impaired ECM maintenance play pivotal
roles in the development of AMD. The disease affects
photoreceptors, retinal RPE, Bruch’s membrane (BrM), and the
choriocapillaris complex. Pathological features of AMD include
the formation of lipoprotein deposits (drusen) beneath the RPE
and degenerative changes in both the RPE and choriocapillaris
layer [201]. Advanced AMD is classified into atrophic AMD (dry
AMD), characterized by RPE and neurosensory retinal atrophy,
and neovascular AMD (wet AMD), characterized by choroidal
neovascularization, which may lead to subretinal or intraretinal
fluid accumulation and hemorrhage. Although wet AMD
accounts for only 10%-15% of cases, it remains the leading
cause of severe vision loss.

No effective treatment has been developed for dry AMD, and
its exact mechanism remains unclear [202]. Targeting the
complement pathway, particularly by inhibiting Complement
Factor D (CFD), has shown significant promise in slowing the
progression of dry AMD [203]. On the other hand, although
intravitreal anti-VEGF injections are the standard treatment for
wet AMD, frequent injections can result in adverse reactions
such as glaucoma, uveitis, and cataracts, as well as poor patient
compliance. As a result, researchers are actively exploring
alternative treatment strategies [84]. In the field of epigenetics,
m6A modification has emerged as a key area of interest.

SPRINGER NATURE

Associations between m6A modifications and specific patholo-
gical features in AMD have been identified, offering potential
novel therapeutic targets.

RPE is the primary site of AMD pathology, and its dysfunction
is closely associated with AMD progression [204]. Chen et al.
found that circRNA circSPECC1 was significantly downregulated
in RPE cells from AMD patients, leading to oxidative stress,
ferroptosis, mitochondrial dysfunction, lipid metabolism dis-
orders, and impaired phagocytic function. In mouse models, the
loss of circSPECC1 further resulted in decreased visual acuity,
RPE abnormalities, and disruption of retinal homeostasis.
Mechanistic studies revealed that m6A modification of cir-
c¢SPECC1 regulates its nuclear export through YTHDCI1. Cir-
cSPECC1 acts as a sponge for miR-145-5p, preventing its
interaction with Cyclin-dependent kinase inhibitor 1A (CDKN1A)
and regulating RPE cell function. Notably, overexpression of
miR-145-5p exacerbates oxidative damage and dysfunction in
RPE cells, whereas its inhibition reverses the negative effects
caused by circSPECC1 deletion [202].

AB induces degeneration of the RPE and retina. Li et al.
demonstrated the protective role of FTO in regulating AB1-40-
induced RPE degeneration. Their study showed that FTO
expression was significantly upregulated in AP1-40-treated
RPE cells. Inhibition of FTO was found to activate the PKA/
cAMP signaling pathway, thereby exacerbating RPE cell
degeneration [205].

Aberrant activation of the Wnt signaling pathway has been
observed in the macular tissue of AMD patients [206].
Additionally, METTL3 regulates pathological angiogenesis in
the retina through aberrant activation of the Wnt signaling
pathway, highlighting its critical role in the pathogenesis of
AMD [80]. Meanwhile, microtubule-associated protein 2 (MAP2)
is highly expressed in the retinas of AMD patients [207]. Further
studies demonstrated that silencing METTL14 promotes the
translation of MAP2 mRNA, leading to reduced phagocytosis,
disruption of tight junctions, increased apoptosis, and cell cycle
arrest. Additionally, YTHDF2, an m6A reading protein, weakens
its binding to and the degradation of MAP2 mRNA due to the
reduced m6A modification caused by METTL14 silencing,
resulting in increased MAP2 expression. YTHDF2 exhibited
similar effects to METTL14 in the development of AMD. This
effect may influence the pathological process of AMD by
regulating the stability and translational efficiency of MAP2
mRNA [189].

Currently, there are no curative treatments for AMD, and
existing therapies primarily focus on delaying disease progres-
sion and preserving vision. As such, preventive measures are
crucial, including smoking cessation, maintaining a balanced
diet, weight control, reducing UV exposure, and regular fundus
examinations for individuals over 50. Although studies have
emphasized the significant role of m6A modification in AMD, its
specificity, interaction with other epigenetic modifications, and
potential as a therapeutic target require further investigation.
Additionally, AMD affects the RPE, BrM, and choriocapillaris
complex. While the RPE has received substantial attention,
research into the BrM and choriocapillaris complex is equally
critical. Future treatments may not only involve RPE transplan-
tation but also the repair or replacement of Bruch’s membrane
and the choriocapillaris complex [3].

Traumatic optic neuropathy (TON). TON is an optic nerve injury
resulting from head or eye trauma, often leading to severe visual
impairment or blindness. It can be classified into direct injury (e.g.,
damage to the optic nerve anatomy) and indirect injury (e.g.
compression or traction from closed trauma). Due to its unique
anatomical location, the optic canal and intracranial segments are
particularly vulnerable to damage from external forces. The
pathophysiological mechanism involves both primary injury
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(axonal tear) and secondary injury (edema, ischemia, and
apoptosis in the optic canal) [208]. Clinical manifestations include
decreased visual acuity, relative afferent pupillary defects, visual
field defects, and changes in the optic disc [209].

Studies by Qu et al. were the first to reveal dynamic changes in
m6A modification in the rat retina following TON. The expression
of m6A-related genes, including METTL3, WTAP, FTO, and ALKBHS5,
was significantly upregulated in the retina 12 h after optic nerve
clamping in rats, suggesting that m6A modification plays a critical
role in the early pathophysiology of TON. MeRIP-seq analysis
identified 2810 upregulated m6A peaks and 689 downregulated
peaks following TON, with the majority concentrated in CDS
regions, indicating that m6A regulates gene expression by
influencing mRNA stability and translational efficiency. GO analysis
showed that upregulated m6A peaks were closely associated with
nervous system development, protein binding, and intracellular
components, while downregulated m6A peaks were linked to
cellular localization and the unfolded protein response. KEGG
pathway analysis further revealed that upregulated m6A peaks
were significantly enriched in MAPK, NF-kB, and TNF signaling
pathways, which are crucial in neuroinflammation and nerve
injury [210].

While clipping the optic nerve effectively mimics TON caused
by ocular trauma, it can also result from head trauma. Akhter et al.
developed a TON model of optic nerve injury caused by head
trauma (e.g., impact) by fixing mice with a stereotaxic instrument,
exposing the optic nerve via medial canthotomy, and simulating
head impact with an impactor [211]. Ryan et al. introduced a new
animal model of TON, Torsion-Induced Traumatic Optic Neuro-
pathy (TITON), which induced significant visual dysfunction by
rapidly rotating the rat eye to simulate the torsional shear forces
on the optic nerve during closed head trauma [212]. Future
studies should thoroughly investigate changes in m6A modifica-
tion levels and their regulatory mechanisms in these models to
clarify the pathological mechanisms of TON and provide a
theoretical foundation for targeted therapies.

Recent studies have shown that WTAP is significantly upregu-
lated in neurons during the early stages of traumatic brain injury
(TBI). This upregulation promotes the activation of the NLRP3
inflammasome by directly targeting the m6A modification site on
NLRP3 mRNA, thereby exacerbating neuroinflammation and
neurological dysfunction. Furthermore, as a “reader” of m6A,
YTHDF1 can recognize the m6A modification on NLRP3 mRNA and
enhance NLRP3 protein expression through translational regula-
tion. Downregulation of either WTAP or YTHDF1 significantly
reduced nerve injury and inflammatory responses following TBI
[213].

Recent studies have highlighted the critical role of the m6A
demethylase ALKBH5 in axonal regeneration, as demonstrated in
rat sciatic nerve compression and mouse optic nerve compression
models. In the peripheral nervous system (PNS), ALKBH5 regulates
the stability of Lpin2 mRNA through m6A modification. As a key
regulator of lipid metabolism, downregulation of Lpin2 expression
helps neurons acquire sufficient lipids during regeneration,
thereby promoting axonal regeneration. In the central nervous
system (CNS), knockdown of ALKBH5 similarly enhanced retinal
ganglion cell (RGC) survival and axonal regeneration, suggesting
that ALKBH5 exerts inhibitory effects in both the CNS and PNS.
Moreover, selective inhibitors of ALKBH5 have been shown to
promote axonal regeneration in neurons [214].

These findings provide a crucial rationale for functional recovery
following nerve injury. However, most of these studies are based
on animal models, which differ significantly from the human
nervous system, posing challenges for clinical translation.

Ocular tumors

Ocular tumors are serious diseases that threaten both sight and
life, primarily affecting the eyelid, conjunctiva, uveal tract, retina,
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and orbit. Common types include basal cell carcinoma of the
eyelid, conjunctival squamous cell carcinoma, uveal melanoma,
and retinoblastoma, which are associated with factors such as UV
exposure and genetic mutations. In recent years, advancements in
molecular mechanism research have led to the development of
new therapeutic strategies, offering renewed hope for patients
[215, 216].

Ocular melanoma. Ocular melanoma is a malignant tumor
originating from intraocular melanocytes, including conjunctival
melanoma (CM) and uveal melanoma (UM). It is the second most
common type of melanoma, following cutaneous melanoma
[217]. The incidence is approximately 1-2 cases per million people
annually worldwide. Unlike cutaneous melanoma, the develop-
ment of ocular melanoma is minimally associated with UV
exposure. The genetic mutations characteristic of ocular mela-
noma are primarily GNAQ and GNAT1 mutations, which activate
intracellular signaling pathways and promote tumorigenesis.
Ocular melanoma has a short median survival, particularly in
metastatic patients. Early diagnosis and treatment are critical for
improving prognosis [218, 219].

Conjunctival melanoma (CM): Jia et al. found that global m6A
levels were decreased in ocular melanoma, which correlated with
reduced translation efficiency of the tumor suppressor gene
histidine triad nucleotide-binding protein 2 (HINT2) mRNA. This
suggests that m6A modification plays a crucial role in the
suppression of ocular melanoma [220]. Furthermore, He et al.
revealed the cancer-promoting mechanism of m6A modification
in ocular melanoma, showing that increased m6A modification of
beta-secretase 2 (BACE2) mRNA enhanced its translational
efficiency. BACE2 regulated ER calcium release by influencing
the expression of transmembrane protein 38B (TMEM38B), which
in turn promoted the proliferation and migration of tumor cells
[221].

In recent years, the critical role of the tumor microenvironment
(TME) in CM progression has garnered increasing attention.
Among these, cancer-associated fibroblasts (CAFs), a key compo-
nent of the TME, significantly influence tumor angiogenesis and
malignant progression through complex cell-cell interactions and
extracellular matrix remodeling. Recently, Liao et al. demonstrated
that CAFs in the CM microenvironment upregulate FTO expres-
sion, which stabilizes and enhances VEGFA and EGR1 mRNA
expression by removing m6A modifications, thereby promoting
tumor angiogenesis. Furthermore, high FTO expression is strongly
associated with poor prognosis in CM patients, suggesting its
potential as both a prognostic marker and therapeutic target
[222].

High expression of RNA-binding motif single-stranded interact-
ing protein 1 (RBMST) is associated with increased immune cell
infiltration and elevated expression of Programmed Cell Death-
Ligand 1 (PD-L1) in the TME, suggesting its role in immunosup-
pression. Additionally, RBMS1 promotes tumor progression by
regulating cell proliferation, apoptosis, and ferroptosis in tumor
cells. Its silencing significantly inhibits ocular melanoma prolifera-
tion and migration while promoting apoptosis [223]. Encoura-
gingly, RBMS1 also enhances S100 calcium-binding protein P
(ST00P) mRNA translation and accelerates metastasis in non-small
cell lung cancer (NSCLC) cells by interacting with YTHDF1, which is
associated with poor prognosis in NSCLC [224].

Furthermore, enhancer of zeste homolog 2 (EZH2) is signifi-
cantly overexpressed in CM, particularly in primary tumors and
lymph node metastases. Its expression level is closely linked to
tumor thickness and poor prognosis. In vitro experiments have
shown that inhibiting EZH2 through drugs or gene knockdown
significantly reduces CM cell proliferation and colony formation,
while inducing cell cycle arrest and apoptosis [225]. Interestingly,
m6A modification-mediated upregulation of EZH2 has been found
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to be associated with various pathological processes, such as
Primary Sjogren’s Syndrome and osteolytic bone metastasis in
breast cancer [226, 227].

Future studies should further explore the interaction between
m6A modification, RBMS1, and EZH2, with a particular focus on
their potential link in ocular melanoma.

Uveal melanoma (UM): Uveal melanoma (UM) is the most
common type of ocular melanoma, accounting for about 85% of
cases. Half of the patients will eventually develop metastases, with
the liver being the primary site of metastasis [228]. Patients with
metastases have a very low 1-year survival rate, with only 15%
surviving [229]. Therefore, there is an urgent need to identify
effective biomarkers and therapeutic targets for UM.

In addition to YTHDF1 and METTL3, which affect ocular
melanoma by influencing their downstream target genes, FTO
has also been found to play a key role in ocular melanoma
[220, 230]. FTO expression was significantly upregulated in UM. In
vitro experiments showed that FTO knockdown significantly
increased proliferation, migration, and invasion of UM cells, while
inhibiting apoptosis. This suggests that FTO may act as a tumor
suppressor in UM. Further studies revealed that FTO inhibited
autophagy-related gene 5 (ATG5) expression by directly targeting
its m6A modification site, affecting autophagosome formation and
function. Moreover, ATG5 overexpression significantly reversed
the promoting effect of FTO knockdown on UM cell proliferation
and metastasis, further confirming the critical role of ATG5 in FTO
regulation of UM progression [231].

Tian et al. developed a novel FTO-targeted nanomedicine,
SNAMA (Self-loaded Nucleic Acid MA-assembled nanoparticle), to
target the key role of FTO in UM. The FTO inhibitor meclofenamic
acid (MA) regulates transcriptional processes dependent on m6A
modification and induces a unique form of cell death, disulfidp-
tosis, in UM cells. However, MA is limited in clinical applications
due to its low bioavailability and poor tumor targeting. To address
these limitations, the investigators designed MA-loaded nucleic
acid nanomedicine SNAMA, which releases MA through glu-
tathione (GSH) and activates m6A-mediated disulfidptosis, sig-
nificantly inhibiting UM cell growth. Further studies revealed that
SNAMA-apt, formed by binding the PD-L1 aptamer to the outer
layer of SNAMA, significantly enhanced its targeting ability and
immunomodulatory effect in UM. In orthotopic and liver
metastasis models of UM, both SNAMA and SNAMA-apt exhibited
significant antitumor effects, effectively reducing tumor burden
and prolonging survival [232].

METTL14, ALKBH5, and METTL3 are highly expressed in UM
and are strongly associated with poor patient prognosis.
METTL14 regulates the stability of Runt-Related Transcription
Factor 2 (RUNX2) mRNA through m6A modification, activating
the Wnt/B-catenin signaling pathway and promoting UM cell
migration and invasion [233]. ALKBH5 drives EMT in UM cells by
demethylating Forkhead box protein M1 (FOXM1) mRNA,
increasing its expression and stability, thereby promoting tumor
progression. In vitro and in vivo experiments showed that
ALKBH5 knockdown significantly inhibited UM cell proliferation,
migration, and invasion, while promoting apoptosis [234].
METTL3, the primary m6A regulatory enzyme, promotes UM cell
proliferation and invasion by regulating the translation of c-
Mesenchymal-Epithelial Transition Factor (c-Met) protein. Inhibi-
tion of m6A modification significantly reduces phosphorylated
Akt (p-Akt) levels, cell cycle-related proteins, and UM cell
function [235].

In addition, the regulatory mechanisms of circRNAs have
garnered increasing attention. circ0053943 enhances EGFR mRNA
stability regulation by IGF2BP3 through interaction with the KH1
and KH2 domains of the IGF2BP3 protein. This process depends on
m6A modification; IGF2BP3 stabilizes the transcript by recognizing
the m6A modification site on EGFR mRNA, thereby upregulating
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EGFR protein expression. This m6A modification-dependent
mechanism activates the MAPK/ERK signaling pathway, signifi-
cantly promoting the proliferation, migration, and invasion of UM
cells [236].

By integrating pan-cancer data from TCGA, TARGET, and GTEx, the
expression patterns of Atypical Chemokine Receptor 2 (ACKR2)
across 34 cancers and its correlation with Overall Survival (OS) and
Progression-Free Interval (PFl) were analyzed. High ACKR2 expres-
sion in UM was significantly associated with a favorable prognosis,
and its expression was regulated by gene copy number variation,
BAP1 gene mutation frequency, and DNA and RNA modifications
[237]. Furthermore, based on UM patient data from The Cancer
Genome Atlas (TCGA), RBM15B was identified as the only
independent prognostic factor in UM. Its high expression was
significantly associated with better OS, Disease-Specific Survival
(DSS), and PFl, and negatively correlated with multiple immune
checkpoints [238]. Further analysis revealed that m6A regulators and
their associated IncRNAs play a crucial role in tumor microenviron-
ment remodeling in UM. Risk signatures based on RBM15B, YTHDF3,
and IGF2BP2 effectively distinguish low-risk groups with good
prognosis from high-risk groups with poor prognosis [239].

A comprehensive analysis of UM samples from the TCGA and
GEO databases revealed that UM can be classified into two distinct
molecular subtypes, C1 and C2, based on the expression of m6A
regulators. The C2 subtype was associated with a more favorable
prognosis, characterized by a higher proportion of type 1 subtype
and a lower frequency of monosomy 3. Moreover, a prognostic
signature comprising three m6A regulators—ALKBH5, YTHDF1,
and KIAA1429—was developed through multivariate Cox regres-
sion analysis. This signature robustly predicted overall survival and
demonstrated a strong correlation with both chromosome 3 status
and the type 1 subtype of UM [240].

These findings suggest that the expression levels of ACKR2 and
RBM15B may serve as potential prognostic markers for UYM and
LIHC. Furthermore, m6A regulators and their associated IncRNAs
could influence UM prognosis by modulating immune responses
and the tumor microenvironment. However, experimental valida-
tion is required to substantiate these results. Future research
should aim to confirm these observations through in vitro cell
experiments and in vivo animal models, thereby providing a solid
scientific foundation for the diagnosis and treatment of UM.

Retinoblastoma (RB). Retinoblastoma (RB) is an aggressive
pediatric malignancy originating from immature retinal cells,
caused by bi-allelic inactivation of the Retinoblastoma 1 (RB1)
gene. It is the most common intraocular malignancy in children,
with approximately 9000 new cases diagnosed annually world-
wide, and an incidence rate of 1 in 15,000-20,000 live births.
Although the disease has a high cure rate in developed countries,
mortality remains as high as 70% in low- and middle-income
countries, primarily due to limited public awareness and
insufficient healthcare resources [241, 242]. The most common
early sign of RB is leucocoria, which presents as white reflections
in the pupillary area. Other symptoms include strabismus,
decreased visual acuity, and glaucoma. Treatment approaches
involve local therapies such as laser and cryotherapy, systemic
chemotherapy, radiation therapy, and enucleation when neces-
sary [243]. Recent advancements in genetic testing technologies
have significantly enhanced our understanding of the genetic and
molecular mechanisms underlying RB, opening new avenues for
precision treatment strategies.

Recent studies have demonstrated that METTL14 enhances the
stability of LINC00340, a long non-coding RNA, through m6A
modification. This process activates the Notch signaling pathway,
thereby promoting RB cell proliferation and inhibiting apoptosis
[244]. Furthermore, the deubiquitinating enzyme Ubiquitin-specific
peptidase 49 (USP49) is highly expressed in RB, where it enhances
autophagy by stabilizing Sirtuin 1 (SIRT1) protein. This stabilization
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promotes RB cell proliferation and contributes to resistance to
chemotherapeutic agents, such as carboplatin (CBP). Subsequent
investigations have revealed that IGF2BP3 upregulates USP49
expression through m6A modification, thereby enhancing
SIRT1 stability and underscoring the critical role of m6A modification
in RB resistance [245].

A recent study revealed that FTO is highly expressed in RB tissues,
as demonstrated by bioinformatics analysis, and is negatively
correlated with m6A levels. Further in vitro experiments showed
that FTO knockdown significantly inhibited RB cell proliferation,
migration, and invasion, while causing cell cycle arrest at the GO/G1
phase. Mechanistic investigations indicated that FTO influences RB
progression by regulating m6A modification and stabilizing E2F3.
E2F3, a crucial regulator of the cell cycle, exhibited a marked
increase in m6A modification levels following FTO knockdown,
which led to reduced mRNA stability. Additionally, animal studies
confirmed the inhibitory effect of FTO knockdown on RB tumor
growth. This effect was partially reversed by overexpressing E2F3,
further supporting the molecular mechanism by which FTO
modulates RB progression through E2F3 [246].

Chen and Zeng's team utilized the GSE97508 dataset to identify
genes with significant differential expression in RB samples. Their
analysis revealed notable enrichment of genes associated with the
p53 signaling pathway, including CDKN2A, CCNB2, and RRM2, as
determined through KEGG enrichment analysis. Of particular
interest, the expression of Cyclin-dependent kinase inhibitor 2A
(CDKN2A) was found to be especially prominent. Building on this
bioinformatics analysis, the team further validated their findings
through in vitro experiments. They discovered that silencing
CDKN2A markedly inhibited RB cell proliferation and induced
apoptosis, an effect closely linked to the activation of the p53
pathway. Additional studies demonstrated that METTL14 stabilizes
CDKN2A expression through m6A modification, thereby promoting
the malignant behavior of RB cells [247].

Recent research has unveiled a novel mechanism through which
the N-myc Proto-Oncogene Protein (MYCN) promotes RB cell
proliferation and tumor growth. This occurs via the upregulation of
YTHDF1. MYCN directly interacts with the promoter region of
YTHDF1, leading to a significant increase in its expression in RB cells
and subsequent transcriptional activation. The overexpression of
YTHDF1 enhances both RB cell proliferation and tumor growth by
stabilizing and facilitating the translation of key oncogene mRNAs,
including CDK5R1, RBM15, MAT2A, and CNST. Notably, the m6A-
binding ability of YTHDF1 is essential for its oncogenic function. A
mutant variant of YTHDF1, in which Lysine 395 is replaced by Alanine
(K395A), was unable to restore the proliferative capacity in YTHDF1
knockdown cells. This finding underscores the critical role of m6A
modification in mediating the oncogenic activity of YTHDF1 [248].

Additionally, METTL3 is significantly overexpressed in RB tissues
and cell lines, where it promotes RB cell proliferation, migration,
invasion, and colony formation through the regulation of key
components within the PI3K/AKT/mTOR signaling pathway. These
components include the phosphorylation of PI3K-p85, AKT, mTOR,
P70S6K, and 4EBP1. Animal model experiments further support the
notion that METTL3 expression is closely linked to the growth of RB
tumors [191].

Future studies should focus on elucidating the dynamic regulatory
mechanisms underlying m6A modification, thereby establishing a
foundation for the development of more targeted treatment
strategies. Additionally, investigating the clinical applications of
m6A modification in RB, particularly its potential role as an early
diagnostic marker or therapeutic target, will be a crucial direction for
future research (Fig. 4).

Disorders with pan-ocular involvement: pathologic

myopia (PM)

Myopia is one of the most prevalent eye problems worldwide, and
as early as 2015, Dolgin predicted an explosive increase in its
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global prevalence. By 2050, it is estimated that nearly half of the
world’s population will have myopia, with around 10% potentially
developing high myopia [249]. High myopia is defined as a
spherical equivalent (SE) worse than —5.0 or —6.0 diopters (D), or
an axial length =26 mm. Pathological myopia (PM) refers to high
myopia accompanied by pathological retinal changes, which can
lead to severe ocular complications such as retinal detachment,
macular degeneration, and cataracts. These complications can
significantly threaten patients’ visual health and may even result
in blindness [10, 250].

Apolipoprotein A1 (APOAT), a major component of high-density
lipoprotein, is involved in reverse cholesterol transport and plays a
crucial role in inhibiting axial overgrowth. It is also considered a
potential target for PM therapy [251, 252]. Xue et al. developed a
myopic cell model through hypoxic treatment and found that
APOA1 and Forkhead box M1 (FOXM1) expression were upregu-
lated, while METTL3 expression was downregulated in Human
Scleral Fibroblasts (HSFs) under hypoxic conditions. Further
studies revealed that FOXM1 inhibited its own transcription by
binding to the METTL3 promoter, thereby increasing the m6A
modification level of APOA1 and enhancing APOAT mRNA stability
and transcription. YTHDF2, an m6A “reader,” influences APOA1
expression by recognizing m6A-modified APOA1 mRNA and
regulating its degradation rate. Moreover, FOXM1 knockdown
reversed the inhibition of HSF proliferation and the promotion of
apoptosis caused by hypoxic treatment. In summary, FOXM1
enhances and stabilizes APOA1 expression by inhibiting METTL3
and YTHDF2, which in turn affects scleral remodeling [253]. The
sclera, as the primary load-bearing connective tissue of the eye,
undergoes remodeling that plays a crucial role in the develop-
ment and progression of myopia [254, 255].

Notably, APOA1 is recognized as a “STOP” signal that slows
myopia progression by inhibiting axial overgrowth and may also
play a role in the transport of retinoic acid (RA) from the choroid to
the sclera, which inhibits scleral proteoglycan synthesis and prevents
myopia development [251, 256]. In pathological myopia, the
upregulation of APOA1 expression may be limited by various
factors. On one hand, its upregulation may serve as a protective
response to increased intraocular oxidative stress, but it is
insufficient to fully prevent myopia progression. On the other hand,
its function may be regulated by factors such as m6A modification,
which weakens its protective effect. Future studies should further
investigate the role of APOA1 in pathological myopia and establish a
foundation for developing new treatment strategies.

The study by Wen et al. is the first to map the m6A modification
of the anterior lens capsule in patients with high myopia, revealing
its potential role in the pathomechanism. The m6A modification
site was significantly increased in the anterior lens capsule of
patients with high myopia compared to those with simple nuclear
cataract. These modifications were primarily concentrated in the
stop codon, coding sequence (CDS), and 3’ untranslated region (3’
UTR) of mRNA. The modified genes were enriched in pathways
related to ECM formation, suggesting that m6A modification may
influence fundus structure by regulating ECM components.
Additionally, the expression of m6A-related enzymes, particularly
the demethylases ALKBH5 and FTO, was downregulated, while
methyltransferase METTL14 was upregulated in patients with high
myopia. This imbalance may result in hypermethylation of
chitinase-like protein 1 (CHI3L1), affecting YKL-40 protein expres-
sion and regulating ECM composition, thereby promoting the
pathological state of high myopia [10].

Notably, the study by Li et al. found that ALKBH5 was significantly
upregulated in ARC patients [111]. Similarly, Lim and Chandra et al.
identified a strong association between FTO and an increased risk of
cataracts using different research methods [109, 110]. However, why
is ALKBH5 and FTO expression downregulated in nuclear cataract
patients with high myopia? Does high myopia lead to the
downregulation of ALKBH5 and FTO expression by activating other
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of diabetic retinopathy (DR) and diabetic cataract (DC) [3]. In inflammatory and immune eye diseases, m6A modification regulates the NLRP3
inflammasome, NF-xB pathway, and TNIP1, contributing to the pathogenesis of uveitis, fungal keratitis (FK), and thyroid-associated
ophthalmopathy (TED)/Graves’ ophthalmopathy (GD) [141]. In glaucoma and optic nerve injury, m6A affects oxidative stress and
FoxO1 signaling, participating in retinal ganglion cell (RGC) damage in primary open-angle glaucoma (PXG), ocular hypertension (TON), and
traumatic optic neuropathy (TON) [2]. Additionally, m6A plays a key role in pathologic myopia (PM) through the HIF pathway in a hypoxic
environment and in cataract formation by regulating ATF4 endoplasmic reticulum stress and SOD2 antioxidant defense mechanisms [299]. DC
diabetic cataract, DR diabetic retinopathy, GD Graves' disease, FK fungal keratitis, FTO fat mass and obesity associated protein, HIF hypoxia-
Inducible factor, LEC lens epithelium cell, PM pathologic myopia, RB retinoblastoma, RBC retinoblastoma cell, RGC retinal ganglion cell, RIR
retinal ischemia-reperfusion, ROS reactive oxygen species, TED thyroid eye disease, TON traumatic optic neuropathy.

signaling pathways? Answers to these questions are crucial for
gaining a deeper understanding of the molecular mechanisms
linking high myopia and cataracts and warrant further investigation.

tRNA-derived fragments (tRFs) are a novel class of small non-
coding RNAs that play crucial roles in various biological and
pathological processes [257, 258]. Liu et al. investigated the role of
tRF-228BWS72092 (tRF-22) in choroidal vasculopathy and PM
progression. tRF-22 expression was downregulated in the choroid
of myopic eyes, while its overexpression significantly inhibited
myopia progression, improving refraction and slowing axial elonga-
tion. Mechanistic studies revealed that tRF-22 enhances protein
expression by targeting METTL3 mRNA and inhibiting its expression,
which in turn reduces m6A modification of Axin1 and Arid1b mRNA.
Axin1 and Arid1b function as negative regulators of the Wnt
signaling pathway, and their increased expression suppresses
pathway activation, thereby alleviating choroidal vasculopathy [259].

TREATMENT AND FUTURE PROSPECTS

Due to the small size of the eye and its relatively autonomous
internal environment, therapeutic agents can be precisely delivered
to targeted areas through suprachoroidal, intravitreal, or subretinal
injections. This method ensures that effective concentrations are
maintained over time, minimizing the required quantities of reagents.

SPRINGER NATURE

The eye, being a non-regenerative organ, presents both ethical
and technical challenges in obtaining tissue samples for single-cell
analysis [260]. Recently, the development of liquid biopsy
techniques has provided promising solutions to these issues
[261]. Liquid biopsy offers a non invasive or minimally invasive
means of reflecting tissue pathological conditions by analyzing
biomarkers present in body fluids [262]. However, traditional
liquid biopsy methods are limited by their resolution at the cellular
level, which hampers the precise identification of the cellular
origins of disease-associated proteins [263].

To address this limitation, Wolf et al. introduced an innovative
multi-omics approach called TEMPO (Tracing Expression of Multi-
ple Protein Origins), which integrates liquid biopsy proteomics,
single-cell transcriptomics, and artificial intelligence techniques.
TEMPO successfully traced the cellular origins of over 5900
proteins by analyzing proteins in small volumes of body fluids,
alongside single-cell transcriptomic data. This integration allows
for precise in vivo assessment of disease mechanisms at the
cellular level. The technique has provided valuable insights into
disease-stage-specific cellular activities in ophthalmic conditions
such as RP and DR, and has identified disease-associated neural
cell proteins in the aqueous humor of Parkinson’s disease (PD)
patients. These findings underscore the potential of the eye as a
“window” for evaluating the status of brain diseases [260].

Cell Death Discovery (2026)12:22
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Fig. 5 MG6A is associated with various tissue and organ diseases. AKI acute kidney disease, CKD chronic kidney disease, COPD chronic
obstructive pulmonary disease, IBD inflammatory bowel disease, NAFLD non-alcoholic fatty liver disease.

In addition, the TEMPO method provides a novel perspective
on studying organ aging. The proteome of the eye exhibits a
complex, nonlinear trajectory of changes during normal aging,
primarily associated with specific cell types. Using artificial
intelligence models, the researchers predicted the “Molecular
Age” of the eye and discovered that specific cell types in
patients with non-age-related diseases, such as DR and RP,
exhibited signs of accelerated aging. This finding suggests a
potential link between aging and disease, opening new avenues
for developing therapeutic strategies targeting aging-related
mechanisms.

Mutations in the Crumbs Homolog 1 (CRB1) gene are strongly
associated with a range of inherited retinal degenerative diseases,
including Leber Congenital Amaurosis (LCA) and RP. These conditions
are characterized by the progressive degeneration of photoreceptor
cells and subsequent vision loss, with their pathogenesis being a
focal point of research. Recent studies have provided new insights,
revealing that CRB1 plays a crucial role in the retina and is also
involved in maintaining the barrier integrity of the colonic epithelium.
Mutations in the CRB1 gene disrupt epithelial barrier function in both
the retina and the colon, facilitating the translocation of intestinal
bacteria to the retina via the bloodstream, which triggers inflamma-
tion and retinal degeneration [264]. These findings offer a rationale
for developing antibiotic-based treatment strategies, providing new
hope for the treatment of these blinding diseases.

Cell Death Discovery (2026)12:22

As the most abundant RNA modification, m6A plays a critical
role in various pathological processes (Fig. 5). We summarize its
involvement in several ocular diseases (Table 3). Due to its
significant role, m6A has emerged as a potential therapeutic
target, with ongoing research focused on developing drugs to
regulate cellular function.

Despite the compelling evidence linking m6A modifications to
the pathogenesis of various ocular diseases, it is crucial to
interpret these findings, particularly their therapeutic implica-
tions, with caution. The current body of evidence is predomi-
nantly derived from in vitro and in vivo preclinical models. While
these studies provide invaluable mechanistic insights and
identify promising therapeutic targets, they cannot fully
recapitulate the complexity of human disease. Significant
challenges, including the development of targeted and safe
delivery systems for ocular tissues, potential off-target effects,
and long-term efficacy and safety profiles, must be thoroughly
addressed before clinical translation can be contemplated.
Therefore, while the modulation of m6A represents a frontier
of great scientific interest, its near-term clinical relevance for
treating eye diseases should not be overstated. Future research
must prioritize the transition from foundational discovery to
rigorous translational studies, which are essential for bridging
the gap between promising preclinical data and tangible clinical
applications.
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