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Dear Editor,
Patients diagnosed with tumor-nodes-metastasis (TNM) stage II

and III colon cancer (CC) account for over two-thirds of all CC
cases. Clinicopathological patterns such as pT4 lesions (patholo-
gically the tumor has grown into the surface of the visceral
peritoneum or has attached to other organs or structures) and
lymph node sampling < 12 nodes, as well as status of biomarkers
CDX2, SMAD4, BRAF, and KRAS, are important factors that influence
physicians’ choices regarding adjuvant treatment1. Patients with
high-risk clinical features in stage II and those with stage III CC are
typically advised to undergo adjuvant chemotherapy2. However,
the universal applicability of adjuvant therapy for all stage III
patients and the recurrence risk for other stage II patients is
subject to ongoing debate3. Furthermore, existing risk factors does
not accurately predict overall survival (OS)4, and other prognosis
outcomes5, which calls for reliable prognostic markers or models
to predict the prognosis of individual stage II–III CC patients. Such
tools could enable more targeted treatment approaches for high-
risk patients and prevent overtreatment of patients with an
expected better prognosis. The aim of this study was to develop a
comprehensible classification model to predict the long-term
survival of stage II–III CC patients based on proteomics data and
verify its generalizability in an external validation dataset. Here, we
recruited patients with CC (stage II–III), all of whom underwent
radical surgery and were followed up. Prior to the administration
of any adjunctive treatments, we performed the proteomic
analysis of formalin-fixed paraffin-embedded tissue (FFPE) surgical
specimens using pressure cycling technology (PCT) and data-
independent acquisition (DIA) mass spectrometry (MS)6. Lever-
aging machine learning algorithms, we established a novel and
practical classification model for forecasting the prognosis in CC
patients combining proteomic and clinical features, which was
further verified in an independent validation cohort (Fig. 1a).
A total of 230 patients were recruited from the Second Affiliated

Hospital of Zhejiang University (SAHZU) as the training cohort, and
58 patients were recruited from the Xijing Hospital (XJH) for
external validation (Supplementary Table S1). All patients were
followed up for over 5 years. We collected information on patients’
age, gender, lesion location, pathological type, stage, microsatel-
lite instability (MSI) status (Supplementary Table S2) and built a
clinical prognostic model using stepwise feature selection
approach with the clinical features. Using PCT-DIA MS, a total of
8187 protein groups and 6256 proteins were identified and
quantified in proteomic analysis with a high reproductivity
(Supplementary Fig. S1a–f and Table S3). After 1000 replications
of LASSO regression with resampled training set (Supplementary
Fig. S2a), nine proteins were selected which were chosen in more
than 50% times for proteomic model constructing, including
PDP1, ALR, ENOG, NPC2, FYCO1, STXB1, ARH40, RIMC1, MTMR5

(Supplementary Fig. S2b, c and Table S4). We assessed the
performances of this proteomic model, and the model combining
the nine proteins with clinical features (lesion location, patholo-
gical type, stage, MSI status) to predict 5-year survival (yes or no)
of stage II–III CC patients (Supplementary Table S5). In the training
cohort, we improved the area under the receiver operating
characteristic curve (AUC) value from 0.707 (clinical model) and
0.872 (proteomic model) to 0.926 (proteomic + clinical model). In
the validation cohort, the AUC value was raised to 0.872 in the
model incorporating clinical and proteomic data, from 0.786 in the
clinical model and 0.789 in the proteomic model, respectively
(Fig. 1b–d). Moreover, the sensitivity, specificity, positive predictive
value (PPV), negative predictive value (NPV), overall accuracy and
F1-score of the model combined with clinical and proteomic data
were all elevated (Supplementary Table S6). Our model integrating
clinical and proteomic data demonstrated a promising prognostic
potential (Supplementary Fig. S2d), as evidenced by its ability to
robustly stratify patients into low- and high-risk groups, with
5-year OS rates of 95% vs 39% in the training set (P < 0.0001), and
93% vs 53% in the validation set (P= 0.0013), respectively
(Fig. 1e). The risk stratification was balanced (P > 0.05) regarding
the use of adjuvant chemotherapy (Supplementary Table S7),
which does not efficiently predict OS in the 5-year follow-up
(Supplementary Fig. S3a).
Among the nine proteins, eight were downregulated in the

patients surviving over 5 years and unfavorable for survival in CC,
while only MTMR5 was upregulated and favorable for survival in
CC (Supplementary Figs. S3b, 4a). The mRNA expression of ENOG
from The Cancer Genome Atlas (TCGA) exhibited the similar result,
and NPC2 was further found to be unfavorable in MSI-high CC
patients (Supplementary Fig. S4b). PDP1, ALR, ENOG and NPC2
have been implicated in CC progression (Fig. 1f). PDP1 activation
may induce radioresistance in rectal cancer due to mitochondrial
dysfunction7. ALR, as an anti-apoptotic and anti-metastatic factor,
promotes cell survival and is involved in precancerous intestinal
lesions8. ENOG promotes CC metastasis by epithelial-
mesenchymal transition9 and was suggested to play a crucial role
in the progression of BRAFV600E-mutated CC10. NPC2 functions as
an intracellular cholesterol transporter and was found to
contribute to prognosis and metastasis of CC11. FYCO1, STXB1,
and ARH40 are involved in other tumors, but have not been
reported in CC. Previous studies did not link MTMR5 and RIMC1 to
tumors, which indicates the potential of our proteomics approach
to unearth hidden essential proteins that are related to tumors.
The function pathways related to MTMR5 and RIMC1 were
discussed in the Supplementary Fig. S5a–c.
Several studies have developed novel approaches to improve

the prognostication of TNM stage system, such as a six-
microRNAs-based classifier for predicting CC recurrence in
patients with stage II CC12 and a consensus immunoscore
classification for stage I–III CC13. Combing MSI status, BRAFV600E,
and KRAS mutation status with TNM staging improved the ability
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to precisely prognosticate in individual patients with stage II and
III CC14. Additionally, deep learning allied to digital scanning of
haematoxylin and eosin-stained sections have been reported to
be employed in prognostic grouping for stage II–III CC15. However,
the results of these methods were still not satisfactory enough to

be widely adopted in clinical practice. In summary, we developed
a novel clinical and nine proteins-based model to predict
prognosis in stage II and III CC patients and validated it in an
external cohort. Our model would assist in clinical decision-
making by stratifying stage II and III CC patients. Patients at high-
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risk could be selected to receive more proactive treatment and
follow-up, while those at low-risk could receive relatively low-level
adjuvant therapy. Considering the limitations of this study, such as
small sample size of the validation cohort, this model needs more
validation and calibration in other independent cohorts. We are
embarking on a clinical trial to prospectively test this model, with
an aim to improve prognostication and aid in rational follow-up,
schedule-making and risk-adaptive individualized therapies.
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Fig. 1 Schematic view of the study and performance of models. a Workflow for patient recruitment and cohort construction, PCT/MS
analysis, and survival prediction of stage II–III CC. All the CC patients were followed up for over 5 years from SAHZU (n= 230) and XJH (n= 58)
cohorts with strict criteria, and the FFPE samples were collected and designed into batches with dynamic randomization. Peptides extracted
from the FFPE samples were quantified by MS analysis and determined with DIA-NN software. The SAHZU cohort was employed for model
training with the LASSO regression; the model was then applied in the XJH cohort (validation cohort). b Receiver operating characteristic
(ROC) curves of the clinical feature prediction model. c ROC curves of the proteomics prediction model. d ROC curves of the proteomics +
clinical feature prediction model. AUC value with 95% confidence intervals (CI) and F1 score were listed for b–d. The F1 score is calculated as
the harmonic mean of precision and recall. e Kaplan–Meier survival curve for the training set and the validation set. The 5-year OS rates were
marked for the training set and the validation set, respectively. Log-rank test was used to calculate P-values. Dotted lines represent 95% CIs.
f Known functions of the nine proteins selected by the LASSO algorithm.

Correspondence

3

Cell Discovery

http://orcid.org/0000-0002-8458-3551
http://orcid.org/0000-0002-8458-3551
http://orcid.org/0000-0002-8458-3551
http://orcid.org/0000-0002-8458-3551
http://orcid.org/0000-0002-8458-3551
http://orcid.org/0000-0003-2866-7811
http://orcid.org/0000-0003-2866-7811
http://orcid.org/0000-0003-2866-7811
http://orcid.org/0000-0003-2866-7811
http://orcid.org/0000-0003-2866-7811
http://orcid.org/0000-0002-2521-190X
http://orcid.org/0000-0002-2521-190X
http://orcid.org/0000-0002-2521-190X
http://orcid.org/0000-0002-2521-190X
http://orcid.org/0000-0002-2521-190X
http://orcid.org/0000-0003-3869-7651
http://orcid.org/0000-0003-3869-7651
http://orcid.org/0000-0003-3869-7651
http://orcid.org/0000-0003-3869-7651
http://orcid.org/0000-0003-3869-7651
http://orcid.org/0000-0001-9683-5691
http://orcid.org/0000-0001-9683-5691
http://orcid.org/0000-0001-9683-5691
http://orcid.org/0000-0001-9683-5691
http://orcid.org/0000-0001-9683-5691
mailto:chy478@zju.edu.cn
mailto:nieyongzhan@qq.com
https://doi.org/10.1038/s41421-024-00707-7
https://doi.org/10.1038/s41421-024-00707-7
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	Prediction of overall survival in stage II and III colon cancer through machine learning of rapidly-acquired proteomics
	Acknowledgements
	Author contributions
	Conflict of interest
	ADDITIONAL INFORMATION




