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transcriptomics via Stamp-seq to reveal immunotherapy
response-enhancing functional modules in NSCLC
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Deciphering the spatial organization of cell states is fundamental for understanding development, tissue homeostasis and disease.
Emerging advances in spatial transcriptomic profiling techniques allow transcript localization but face limitations in unambiguous
cell state assignments due to cellular boundary inference, low gene detection and prohibitive cost. Here, a method, Stamp-seq, is
developed that leverages custom-fabricated high-density DNA sequencing chips to label single nuclei with restriction enzyme-
cleavable spatial barcodes. Stamp-seq spatial barcodes are distributed at a density of 1.6 pm on the chip, allowing for single
physical cell resolution with precise subtype classification and spatial mapping (with an average 4 um localization error) and
reduced cost. We utilize Stamp-seq to delineate chemoimmunotherapy-responsive cellular ecosystems in non-small cell lung
carcinoma, including a distinct IGHG1™ plasma cell-enriched community. Through a novel application of Stamp-seq to spatially
resolve BCR clonotypes, we elucidate the spatiotemporal trajectory of treatment-potentiating IGHG1" plasma cells, which originate
from tertiary lymphoid structures (TLSs) or the vasculature, migrate through antigen-presenting CAF (apCAF)-enriched survival
niches, and ultimately contact tumor cells. We highlight the power of spatial cellular subtyping and molecular tracking using
Stamp-seq and suggest that the IGHG1™ plasma cell niche is a better prognostic biomarker for the chemoimmunotherapy response.

Cell Discovery; https://doi.org/10.1038/s41421-025-00861-6

INTRODUCTION

Understanding the cellular organization and interactions within
native microenvironments is fundamental to unraveling the
complex biological processes involved in development, physiol-
ogy, and disease, with direct implications for advancing clinical
diagnostics and precision therapies. Spatial multiomics technolo-
gies have emerged as critical tools in this pursuit, enabling the
integration of molecular profiles with their spatial context in intact
tissues. An ideal spatial technology would have high performance,
which includes high-resolution molecular detection, precise
molecular localization and the ability to bin molecules at the true
single-cell level without contamination from neighboring cells, as
well as practical processing timelines and cost-effectiveness.
However, current approaches fail to simultaneously fulfill all these
criteria. The first category of methods is imaging-based meth-
ods'?, which achieve high-resolution in situ transcript detection
but are constrained by limited gene detection throughput under

practical experimental time spans and inferred cell boundary
segmentation. Next-generation sequencing (NGS)-based meth-
0ds®>, on the other hand, offer cost-effective, genome-wide
profiling at subcellular resolution but are confounded by
inevitable transcript mixing resulting from the horizontal diffusion
and vertical joining of transcripts from overlapping cellular layers
and inferred cellular segmentation, leading to ambiguous spatial
transcript and cell assignments. Both types of strategies struggle
to resolve heterogeneous and especially underrepresented cell
subtypes with high fidelity, resulting in an unsatisfactory analysis
of the cellular organization and interactions®’. Recent innovations,
such as XYZ-seq® and Slide-tags®, address these limitations by
employing spatial barcoding to achieve true single-cell resolution.
However, these methods are hampered by the low spatial
resolution of barcodes and the prohibitive costs associated with
the sequencing of hundreds of thousands of nuclei per tissue
section. Addressing these challenges is essential to unlock
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scalable, high-precision spatial transcriptomics for broad biome-
dical applications.

Here, we present Stamp-seq (single-nucleus tagging with
movable and spatially resolving barcodes for high-throughput
sequencing), a spatial transcriptomics method that repurposes
second-generation sequencing platforms to create a chip with
cleavable spatial barcodes (1.6 um density) for precise nuclear
labeling and a reduced chip fabrication cost. Spatially encoded
nuclei undergo multiplex barcoding during in-tube reverse
transcription, followed by high-throughput processing via
droplet microfluidics, significantly increasing efficiency and
reducing library construction costs. This integrated Stamp-seq
method enables cost-effective total RNA analysis with spatial
resolution, rapid processing, and broad tissue compatibility,
specifically enabling spatially resolved cell subtype
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identification with a localization fidelity of an approximately
half-cell radius.

Cancer immunotherapies provide significant clinical benefits for
some but not all patients. An unmet need lies in identifying
predictive biomarkers for stratification and potential therapy-
boosting strategies. Technologies such as single-cell transcrip-
tomics have been applied to study immune cell dynamics in
multiple types of cancers during immunotherapy treatments'®~"2,
However, treatment response-related spatial communities have
not been explored at the single-cell level, and current studies have
focused only on a panel of selected markers'>'5.

We applied Stamp-seq to samples from patlents treated with
chemoimmunotherapy and identified two spatial cell commu-
nities enriched in patients with a superb response, namely, tertiary
lymphoid structures (TLSs) and a plasma cell-concentrating niche
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Fig. 1 Schematic overview of the Stamp-seq workflow and chip generation. a Stamp-seq workflow. 1. Chip design: A Stamp-seq chip
featuring cleavable spatial barcodes is designed and fabricated to enable spatially resolved single-nucleus analysis. 2. Spatial barcode
sequencing: The nucleotide sequences and spatial positions of the cleavable barcodes are precisely sequenced and mapped. 3. In situ
barcode delivery: Fresh-frozen tissue sections are overlaid onto the chip, facilitating the entry of cleavable spatial barcodes into cells and their
subsequent binding to nuclei through perforated plasma membranes. 4. Nucleus isolation: Spatially barcoded nuclei are isolated. 5. Sample
multiplexing: Isolated nuclei are partitioned into eight tubes, each labeled with a unique multiplex barcode to enable multiplexed processing.
6. Multiomics library sequencing: Comprehensive multiomics libraries are generated, incorporating spatial barcodes, single-nucleus RNA
sequencing (snRNA-seq), and B-cell receptor (BCR) libraries. 7. Spatial coordinate mapping: The spatial coordinates of individual nuclei are
reconstructed by integrating spatial, multiplexing, and droplet barcode distributions. 8. Data analysis: High-resolution snRNA-seq data are
analyzed to derive spatially resolved transcriptomic and immune repertoire profiles. b Stamp-seq chip generation workflow. 1. Barcode
amplification and sequencing: Spatial barcodes on the chip are amplified and sequenced using the GenoLab M sequencing platform to
ensure accuracy and reproducibility. 2. Chip sectioning and assembly: The chip is laser cut into sections, and two sections are affixed to a glass
slide to create a functional assay-ready device. ¢ Schematic of snRNA-seq and spatial barcode library construction. The workflow involves the
following steps. 1. Crosslinking spatially tagged nuclei. The pie chart illustrates the spatial barcode adhesion efficiency, where blue represents
the proportion of reads with spatial barcodes (~46.5%) and gray represents the proportion of reads without spatial barcodes (~53.5%). 2.
Partitioning into eight tubes for multiplex RT labeling. The pie chart above shows the multiplex barcode adhesion efficiency using the reads
with spatial barcodes from step 3, where blue represents the proportion of reads with multiplex barcodes (~94.4%) and gray represents the
proportion of reads without multiplex barcodes (~5.6%). 3. Droplet-based barcode ligation in an oil emulsion. The pie chart above shows the
cell barcode adhesion efficiency using the reads with both spatial barcodes and multiplex barcodes from step 5, where blue represents the
proportion of reads with cell barcodes (~99.2%) and gray represents the proportion of reads without cell barcodes (~0.8%). 4. Demulsification
and decrosslinking. 5. Template switching replication. 6. Indexed PCR amplification and library preparation. Note that the cDNA library
includes sequences from mRNAs (~59.3%), IncRNAs (~3.1%), rRNAs (~28.4%), mitochondrial RNAs (~6.96%) and others (~2.31%) in WTH1092
because of the randomized primers used in the RT reaction in step II.

outside of TLSs. Further spatial profiling of BCR clonotypes
revealed the spatiotemporal recruitment of antitumor IGHGT™"
plasma cells from TLSs or the vasculature by antigen-presenting
CAFs (apCAFs), a CAF subtype capable of immune activation and
antigen presentation'®, prior to contact with tumor cells. We
developed the nucleus-tagging spatial technology Stamp-seq and
elucidated the spatial organization of the human antitumor
immune response.

RESULTS

Overview of Stamp-seq technology

Stamp-seq is performed in two sequential stages: array-seq and
nuclei-seq (Fig. 1a). During the array-seq stage, a physical chip is
generated, consisting of spatially barcoded RNA-capture mole-
cules, with each barcode sequence linked to a corresponding
spatial coordinate on the chip. The nuclei-seq is then applied to
tissue sections placed on top of the spatial chip and uses several
sequential steps, including enzymatic tagging, nuclear extraction,
split-labeling, library construction using a microfluidic device and
high-throughput sequencing.

The array-seq process is initiated through the solid-phase
amplification of a single-stranded synthetic oligonucleotide library
on the Genolab M sequencing platform (Fig. 1b, step 1). Each
“seed” oligonucleotide consists of PCR adapter sequences, out of
which P5 incorporates a uracil for USER enzyme cleavage at a later
step and a spatial barcode incorporating 32 randomized nucleo-
tides. Amplification on a lawn surface coated with PCR adapters
results in the generation of numerous clusters, each originating
from a single “seed” molecule (Supplementary Fig. S1a). These
clusters comprise oligonucleotides that are identical clones of the
original seed. The spatial barcode sequences and corresponding
spatial coordinates of each cluster are determined during the
sequencing-by-synthesis process (Supplementary Fig. S1a). Wash-
ing with NaOH facilitates the creation of a spatially barcoded array
(Supplementary Fig. S1a). Finally, laser segmentation cleaves the
array into 5.5 mm X 15.5mm regions, which are then adhered
onto a glass slide to complete the Stamp-seq chip assembly (Fig.
1b, steps 2 and 3). The Stamp-seq chip shows consistent cluster
morphology and density across various regions (Supplementary
Fig. S1b). The mean distance between fluorescence cluster
centroids is 1.64 um, and the mean diameter of the fluorescence
clusters is 1.35 um (Supplementary Fig. S1c). The duplication rate
of the cluster in each Stamp-seq region is approximately 0.03%,
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indicating sufficient variety for nucleus labeling (Supplementary
Fig. S1d).

In the nuclei-seq step, tissue sections measuring 14-20 um are
placed on the Stamp-seq chip (Supplementary Fig. 1a, c). The
spatial barcode fragments are then enzymatically cleaved and
released into cells to label the nuclei in situ (Fig. 1a). The labeled
nuclei are dissociated and transferred into eight individual tubes,
each containing unique multiplex barcodes for further labeling
(Methods; Fig. 1a). These nuclei, now labeled with both unique
spatial and variable multiplex barcodes, are pooled and subjected
to droplet-based encapsulation, where they undergo an additional
round of labeling within the droplets. The addition of multiplex
barcodes and pooling increases cell loading in the microfluidic
system, resulting in an increased number of captured nuclei per
run with very limited evidence of multiplet formation (Methods;
Supplementary Fig. S2a, b). Subsequent library construction and
sequencing reveal the spatial, sample and droplet barcodes, and
cDNA sequences are acquired to generate a single-nucleus spatial
gene expression matrix (Fig. 1a, c).

Stamp-seq reveals the cellular architecture in the mouse brain
We conducted Stamp-seq on 14 um coronal sections of the adult
mouse brain encompassing the hippocampus, a region character-
ized by its highly stereotyped architecture, rendering it an ideal
model for the validation of the effectiveness of our spatial
technique™.

From a coronal tissue section of 42 mm? we isolated and
sequenced 42,449 nuclei, of which 32,833 (77.3% of the profiled
nuclei, with a median of 738 Unique molecular identifiers (UMIs)
per nucleus) were localized. The resulting data were then
clustered using a standard single-cell pipeline'” (Fig. 2a) and
annotated using well-established cell type markers (Supplemen-
tary Fig. S3a and Table S1). Notably, the spatial distribution of
individual cell clusters followed the anticipated pattern: astrocytes
and endothelial cells exhibited a dispersed arrangement, whereas
neurons of diverse subtypes maintained the characteristic
laminated architecture, as evidenced by a comparison with on-
chip DAPI imaging (Fig. 2b and Supplementary Fig. S3b). We
further leveraged our spatially resolved Stamp-seq RNA profiles to
characterize the laminar distribution of gene expression in
excitatory neurons across cortical layers. This analysis revealed
distinct layer-specific expression patterns of evolutionarily con-
served markers, including Cux4, Rorb, and Foxp2 (Supplementary
Fig. S3c, d). Notably, the spatial expression profiles of individual
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Fig.2 Stamp-seq enables single-nucleus spatial transcriptomics in the mouse brain. a UMAP embedding of snRNA-seq profiles (WTH1092),
with cells color-coded by annotated cell types. CA1 Cornu Ammonis area 1, CA3 Cornu Ammonis area 3, OPCs oligodendrocyte precursor
cells. b Stamp-seq enables high-resolution spatial mapping of nuclei in the adult mouse brain, with cells color-coded according to the same
rule as in a. The lower image displays the “on-chip” DAPI-stained tissue section, providing a morphological reference for the sequenced
region. ¢ Spatial expression patterns of marker genes identified by Stamp-seq are compared against in situ hybridization (ISH) data from the
Allen Mouse Brain Atlas®®. Color scales represent normalized expression levels. d Spatial barcode distribution patterns that define nuclear
centers in the adult mouse brain sample WTH1092. Each bin represents a 100 x 100-pixel region. The enlarged plots (right panel) depict three
representative distribution patterns of nuclear centers, with the color intensity indicating the density of spatial barcode UMIs within each bin.
e Stamp-seq-captured cells are overlaid onto a DAPI image, showing the alignment of nuclear morphology (green arrows) with cell type
annotations (endothelial cells). The upper left panel highlights the nuclear shapes on the DAPI image, while the upper right panel depicts the
spatial distribution and cell types of all the captured cells. The lower left panel outlines the nearest nuclei on the DAPI image, color-coded by
cell type based on the Stamp-seq data. The lower right panel integrates Stamp-seq nuclear locations, cell type annotations, and the nearest
nuclear outlines from the DAPI image. The black dots denote the CellProfiler-extracted centroid positions of all the nuclei. f Spatial distances
between nuclear positions determined using Stamp-seq and their nearest counterparts identified by CellProfiler on the DAPI image are
quantified. As a control, distances from randomly generated nucleus positions to their nearest DAPI-identified nuclei are compared (right
panel). e illustrates part of the nuclei quantified in f. *** denotes P <0.001 (Wilcoxon test).

genes closely matched the corresponding in situ hybridization limited spatial tag diffusion (Methods; Supplementary Fig. S2c).
data from reference databases (Fig. 2c). We subsequently evaluated the spatial assignment accuracy of

Our spatially resolved single-nucleus localization framework both the cell type and location. We utilized CellProfiler to extract
comprises two sequential computational phases. Phase 1 is the the spatial positions of the nuclei from the on-chip DAPI image,
identification of nuclear spatial domains through a differential which were defined as the “true” locations. We then placed our
analysis of Unique molecular identifier (UMI) density distributions. Stamp-seq-captured nuclei onto the on-chip DAPI image to
We computationally distinguished nuclei with unique primary and determine the location assigned by Stamp-seq and extracted
secondary spatial domains by evaluating the ratio of central versus the distance between the two locations (Methods). The discre-
subcentral binned spatial barcode UMI densities (Methods; pancy in spatial alignment between the ground-truth positions
Supplementary Fig. S2c). Phase 2 is coordinating optimization and Stamp-seg-assigned locations demonstrated remarkable
through minimal-distance spatial mapping. Nuclei were assigned precision, with a mean offset of 4 um (Fig. 2e, f and Supplemen-
to their most likely spatial coordinates by minimizing the tary Fig. S2d, e; Table S2). This result stands in stark contrast to

combined Euclidean distance between all spatial barcode UMI simulated nuclei with randomized localizations, which exhibited a

distributions within their primary spatial domain and candidate significantly larger positioning error (mean offset: 12 um) inde-

pixel positions. pendent of cell type considerations (Fig. 2e, f and Supplementary
We employed two approaches to quantify the accuracy of Table S2).

spatial positioning. Initially, we calculated the spatial tag diffusion Beyond positional deviation metrics, we prioritized evaluating

distance, defined as the distance between the assigned position cell-type localization accuracy. We focused on endothelial cells, a
and the location of all detected spatial tags for each nucleus, and cell class whose nuclei exhibit distinct elongated morphologies that
discovered that the diffusion distances predominantly fell within align linearly to form vascular structures, to validate the subtype-
17 um (50%: < 10 pm; 75%: < 17 pm; 95%: < 36 um), confirming specific spatial mapping. Stamp-seg-identified endothelial cells
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exhibited strong concordance with anatomical expectations: all
mapped endothelial cell nuclei resided on top of or adjacent to
morphologically elongated nuclei, with a subset (3/6) displaying
characteristic linear alignment patterns consistent with the vascular
organization (Fig. 2e).

Stamp-seq benchmarks with other spatial transcriptomics
methods in the mouse brain

We performed a systematic quality assessment comparing Stamp-
seq with conventional snRNA-seq workflows to evaluate potential
technical artifacts introduced by spatial barcoding. Using a rostral
coronal section (42 mm?) from an adult mouse brain (Methods;
Supplementary Fig. S4a, b), which is a well-characterized bench-
mark tissue for spatial omics technologies®', we generated
Stamp-seq profiles of 17,900 nuclei with median sequencing
depths of 913 UMIs and 539 detected genes per nucleus. Through
reference-based integration with matched standard snRNA-seq
data'® and our spatial datasets, we stratified cells into eight
transcriptionally distinct types using canonical marker genes
(Supplementary Table S3 and Fig. S4a). We found that the cell
type proportions (Spearman’s r = 0.787; P = 0.02), gene expression
per cell (Spearman’s r=0.961; P<0.001), and UMIs (Spearman’s
r=0.961; P<0.001) were unaffected by the spatial tagging
procedure (Supplementary Fig. S4b).

We conducted a systematic comparison with other state-of-the-
art spatial technologies (including HDST?°, Slide-seqV2'8, Seg-
Scope®, Pixel-Seq?’, Visium-HD, Slide-tags®, Stereo-seq”, and DBiT-
seq’) to rigorously evaluate the performance of Stamp-seq.
Stamp-seq achieved high UMI and gene detection sensitivity
compared with most other techniques and lower sensitivity than
Slide-tags (Supplementary Fig. S4c). We further compared Stamp-
seq with representative methods, such as Slide-tags, Stereo-seq
and DBiT-seq, as well as public snRNA-seq data'® from the adult
mouse brain. Uniform manifold approximation and projection
(UMAP) plots and marker gene expression in cell clusters
segregated using Stamp-seq revealed the clear segregation of
cell clusters (Supplementary Fig. S4d-h) and specific expression of
marker genes (Supplementary Fig. S4i-m). Our analysis indicates
that current high-resolution platforms face critical limitations in
cross-subtype transcriptome aggregation from bead/pixel-based
systems, which impair clustering accuracy and marker specificity,
challenges that have been effectively addressed by nuclear
tagging-based spatial transcriptomic approaches such as Stamp-
seq and Slide-tags.

The pairwise differential cell-type-specific marker coexpression
analysis was used to compare the levels of marker coexpression in
all detected or segmented cells (Methods, Supplementary Fig.
S4n-r). Our results demonstrated that Stamp-seq achieved
significantly higher concordance in marker coexpression patterns
with public snRNA-seq data (P < 0.001, Wilcoxon signed-rank test)
than the other spatial methods (Supplementary Fig. S4s). This
quantitative alignment with gold-standard snRNA-seq profiles
validates the technical superiority of our spatially resolved
transcriptomic mapping, particularly in achieving reduced cross-
contamination during cellular transcript capture and enabling the
refined discrimination of cellular subpopulations.

Stamp-seq identifies chemoimmunotherapy response-related
cells and cellular communities

Although immunotherapy has revolutionized cancer treatment, a
substantial number of patients exhibit persistent nonresponsive-
ness to immunotherapy?’. Immune cell neighborhoods critically
regulate immune cell recruitment/activation/exhaustion dynamics
that dictate therapeutic outcomes. Single-cell sequencing deline-
ates only changes in cell subtypes, and traditional spatial
transcriptomics (imaging/NGS-based) fail to precisely define tumor
immune microenvironments because of indistinct cellular seg-
mentation  boundaries. This  methodological  constraint
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underscores the discovery of therapy-relevant immune niches.
We therefore performed Stamp-seq analysis of human non-small
cell lung cancer (NSCLC) tumor sections obtained from patients
who had undergone neoadjuvant treatment.

We obtained 12 surgically resected specimens from patients
who received 2-3 cycles of neoadjuvant PD-1 blockade plus
chemotherapy, which were stratified by therapeutic response as
follows: 3 patients who achieved a pathological complete
response (pCR), 4 patients who achieved a major pathological
response (MPR), and 5 nonresponder (non-MPR) patients (Fig. 3a
and Supplementary Table S4). We performed Stamp-seq to
simultaneously profile transcriptomes and spatial information
across approximately 120,000 nuclei (median of 551 UMIs and 438
genes per nucleus; Supplementary Fig. S5a, b). The clustering
analysis of nuclei across all samples revealed distinct cell
populations, including mesenchymal, myeloid, lymphoid,
endothelial, and epithelial cells (Fig. 3b and Supplementary Fig.
S5¢). Epithelial subgroups were further classified into putative
malignant tumor clusters and normal epithelial clusters based on
copy number variation (CNV) scoring and the expression of KRT9
(Supplementary Fig. S5c-e). Interestingly, we identified two
transcriptionally similar AT2 subpopulations (c14 and c19;
Supplementary Fig. S5¢). The pseudotime analysis placed c19
earlier and c14 later in differentiation, with AT1 cells (c16)
terminally differentiated (Supplementary Fig. S5f, g), which aligns
with the previous finding that AT2 cells can transdifferentiate into
AT1 cells®*. A comparative analysis of cellular abundance
between patients who achieved a pCR and non-pCR groups
(NpCR, combining the MPR and non-MPR groups) revealed the
significant enrichment of lymphoid cells (T cells, B cells, and
plasma cells) and lymphatic endothelial cells in the pCR group,
whereas myeloid cells and epithelial cells were predominantly
enriched in the NpCR groups (Fig. 3¢, d and Supplementary Figs.
S5h and S6a, b). Notably, the c17 tumor cell subpopulation was
specifically enriched in the pCR samples (Fig. 3c and Supplemen-
tary Figs. S6 and S7a). The Hallmark pathway analysis indicated
that compared with NpCR tumors, residual tumor cells in pCR
samples exhibited reduced activity in proliferation-related path-
ways (e.g, MTORC1 signaling, the G2M checkpoint, and MYC
targets) but elevated TNFa and interferon a signaling (Supple-
mentary Fig. S7b, c). Although potential sampling bias due to
regional heterogeneity cannot be excluded, these findings
suggest that post-treatment residual tumor cells in pCR samples
(e.g., the c17 subpopulation) may activate antitumor programs to
suppress proliferation. This observation is consistent with previous
scRNA-seq studies reporting residual tumor cells in patients who
achieved a pCR and their association with tumor recurrence'*?>.

We implemented GraphSAGE for neighborhood-based sam-
pling and feature aggregation of gene expression profiles from
cells within a 30 um radius, followed by unsupervised clustering of
these spatial features to delineate distinct cellular niches and
characterize treatment response-associated cellular communities
(Methods; Fig. 3e). We identified five spatially segregated
communities (D1-D5; Fig. 3f and Supplementary Fig. S8a): D1 as
a myeloid-enriched niche, D2 as an epithelial cell zone, D3 as a
vascular endothelial compartment, D4 as a plasma cell and
lymphoid endothelial cell hub, and D5 as a T/B-cell-rich region
displaying TLS features on hematoxylin and eosin (H&E)-stained
sections (T24 in Fig. 3d), which we classified as an immune-TLS
(Fig. 3f and Supplementary Fig. S8a). This spatial partitioning was
further supported by the cellular proximity analysis, in which
epithelial subgroups exhibited cohesive clustering patterns, T cells
colocalized with B cells, and plasma cells were neighbors to
(apCAFs; Supplementary Fig. S8b). The quantification of the spatial
distribution confirmed that D3 and D4 exhibited overlapping,
dispersed patterns, whereas the TLS-associated D5 niche showed
maximal spatial segregation from the other compartments (Fig. 3g
and Supplementary Fig. S8c). The comparative analysis revealed
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Fig. 3 Stamp-seq enables a physical single-cell spatial analysis in non-small cell lung cancer (NSCLC) patients. a Schematic representation
of the sample collection workflow and sequencing methodology used in this study. b UMAP visualization of the identified cell subsets across
all analyzed cells (n = 125,558). ¢ Heatmap displaying the tissue preference of major and minor cell subsets, which was quantified using the
Ro/e score. d Spatial map of myeloid and lymphoid cell distribution patterns in representative samples with distinct treatment responses.
e Graphical representation of cell communities detected using GraphSAGE. The central cell is defined based on the proportions of
neighboring cell types within a 30 um radius and clustered into five distinct cellular communities, termed “districts” Cells without neighbors
within the 30 pm radius were excluded from the analysis. f Heatmap showing the relative proportions of each cell type across different
districts, with row normalization applied. g Spatial distribution of cell types (bottom panel) within each district (top panel) in the T24 pCR

sample. h Heatmap depicting the sample preference of each district, quantified by the Ro/e score.

the pronounced enrichment of lymphoid-infiltrated niches (D4/
D5) in the pCR group, whereas myeloid-dominated D1 niches
predominated in the NpCR groups (Fig. 3h). These findings
corroborate prior evidence linking robust T-cell infiltration and TLS
formation to favorable immunotherapy outcomes, whereas
myeloid cell accumulation is associated with therapeutic
resistance'%1%26,

Stamp-seq identifies a chemoimmunotherapy response-
related fibroblastic environment

Fibroblasts, which are highly plastic and phenotypically hetero-
geneous stromal cells, serve as pivotal microenvironmental
components that regulate immunological responses through
direct cell-cell interactions. Current spatial transcriptomic meth-
ods face dual technical constraints in fibroblast characterization:

SPRINGER NATURE

suboptimal dissociation efficiency in scRNA-seq and segmentation
challenges for elongated morphologies in both NGS and imaging
platforms. Leveraging nuclear compartmentalization advantages,
Stamp-seq achieved comprehensive fibroblast profiling (32,968
nuclei, 26.2% cellular prevalence) with unprecedented subtype
classification at single-nucleus resolution.

A comparative analysis of fibroblasts across the five spatial
districts (D1-D5) between the pCR and NpCR groups revealed
heterogeneous UMAP distribution patterns, with pronounced
disparities observed in the epithelial cell-enriched D2 and TLS-
associated D5 districts (Fig. 4a). We performed a subclustering
analysis to resolve fibroblast heterogeneity and identified seven
functionally distinct fibroblast subtypes (Supplementary Fig. S9a, b
and Table S5) and mapped their spatial enrichment patterns
across treatment response groups (Fig. 4b). Notably, compared

Cell Discovery
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Fig. 4 Stamp-seq revealed a chemoimmunotherapy response-related fibroblastic environment. a UMAP visualization of the fibroblast
distribution across all samples, stratified by NpCR and pCR groups. b Heatmap depicting the district distribution preference of reclustered
fibroblast subsets across all samples, quantified by the Ro/e score. The relative abundance of each cancer-associated fibroblast (CAF) subset
within districts is shown for patients with distinct therapeutic responses (pCR and NpCR), with column normalization applied. ¢ Spatial
mapping of snRNA-seq profiles in sample D5, annotated by cell type, alongside the corresponding H&E-stained section of the profiled region.
d Radar plot displaying the average distance of each cell type from the tertiary lymphoid structure (TLS) core in sample D5 of the T24 cohort.
Three highly clustered TLS regions within the T24 sample were analyzed (Supplementary Fig. S8b). Embedded violin plots illustrate the radial

distribution of all cells within each cell subtype.

with the control samples, the pCR samples exhibited the
preferential accumulation of ROBO2" CAFs within the epithelial
D2 niche, whereas ACTA2*/COLTAT* myofibroblasts (myCAFs)
were predominantly enriched in NpCR samples. This reciprocal
distribution aligns with the reported tumor-suppressive roles of
ROBO2* CAFs, which non-cell-autonomously inhibit myCAF
activation and correlate with an improved pancreatic cancer
prognosis?’. Conversely, myCAFs have been implicated in the
establishment of immunosuppressive tumor microenvironments
(TMEs) in early-stage NSCLC through the physical exclusion of
CD8* T cells and the suppression of immune cell infiltration'.

We further dissected the compartmentalized architecture of
CAFs within TLS-containing D5 districts by quantifying the radial
positioning relative to the TLS centroid in the pCR samples (Fig. 4c,
d). Spatial mapping revealed that apCAFs localized to TLS cores,
whereas RMRP* and ALDH1A3" CAFs occupied paracortical zones
adjacent to T/B-cell clusters. ROBO2* CAFs predominantly resided
at TLS peripheries and colocalized with plasma cells, whereas
ACTA2*/COL1AT* myCAFs were absent. This stratified organization
suggests functional specialization: apCAFs may initiate TLS
formation via lymphoid chemokine secretion, RMRP*/ALDH1A3*
CAFs likely support lymphocyte differentiation, and ROBO2* CAFs
facilitate plasma cell migration out of TLSs. The exclusion of
myCAFs from TLS structures further underscores their role in
immune evasion, which is consistent with their enrichment in
NpCR microenvironments.

Cell Discovery

Stamp-seq identifies treatment-promoted spatiotemporal
changes in the plasma cell trajectory and plasma cell niche
We analyzed the cellular origin of genes that were differentially
expressed in non-epithelial cells within the D2 tumor region to
determine the immediate tumor microenvironment dynamics
related to the treatment response. Notably, genes that were
upregulated in pCR samples were predominantly expressed by
plasma cells, whereas NpCR samples were enriched in CAFs and
endothelial cells (Fig. 5a, b). This spatial association suggested
that plasma cells are immediate neighbors of tumor cells in
favorable responders. Subgrouping plasma cells by IGHC
expression revealed two distinct populations: 3431 IGHGT™ cells
and 1304 IGHAT* cells (Supplementary Fig. S10a). Interestingly,
compared with their IGHAT" counterparts, IGHG1* plasma cells
resided closer to tumor cells (Fig. 5c), consistent with prior
reports that the infiltration of IgG*™ plasma cells positively
correlates with that of CD8" T cells and improves immunother-
apy outcomes in patients with NSCLC?®, ovarian®®, renal®®, and
bladder cancers®*®?', whereas IgA* plasma cells play immuno-
suppressive roles in prostate cancer®2. Spatial profiling of the
plasma cell distribution indicated higher IGHG1/IGHAT ratios in
pCR samples across all districts, peaking in D5 (Fig. 5d and
Supplementary Fig. S10b). We thus hypothesized that the
mechanisms underlying IGHG1* plasma cell generation and
their tumor-targeted recruitment may drive antitumor immunity
in patients who achieve a pCR.
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We performed a comparative pathway analysis of pCR and
NpCR samples to investigate the pathways that drive plasma cell
generation and detected elevated hypoxia signaling in D5
regions of pCR tumors (Supplementary Fig. S10c). The expanded
analysis revealed increased hypoxia activity across all lymphoid
cells (T, B, and plasma cells) in the pCR samples district-wide
(Fig. 5e and Supplementary Fig. S10d). Compared with IGHA1™
cells, IGHG1* plasma cells exhibited stronger hypoxic responses
(Supplementary Fig. S10e), with elevated glycolytic activity but
no significant difference in oxidative phosphorylation activity
(Supplementary Fig. S10f, g). Given the established role of
hypoxia in plasma cell generation®® and that elevated glycolysis
in the TME facilitates B-cell metabolism and promotes B-cell
differentiation into IgG-producing plasma cells**3°, these
findings imply that TLS-associated hypoxia may drive excessive
plasma cell production, potentially increasing immunotherapy
efficacy.

SPRINGER NATURE

We developed a BCR spatial profiling technique to determine
plasma cell clonotypes and their spatiotemporal trajectory
(Methods; Supplementary Fig. S11a and Table S6). Utilizing probes
targeting the CDR3 region, we captured and sequenced CDR3-
containing cDNA molecules from the Stamp-seq ¢cDNA library to
assign clonotypes to plasma cells in the pCR sample. Next, we
identified pairs of plasma cells that presented with the same
clonotype but were located in different districts. In these plasma
cell pairs, we determined the order of cellular movements
between different districts using the cell state sequence inferred
using the slingshot trajectory analysis and summed all the data
(Supplementary Fig. S11b-d; Methods). BCR spatial profiling
analysis revealed two migration routes: D5—D4—D2 and
D3—D4—-D2 (Fig. 5f, g and Supplementary Fig. S11). The x2 test
demonstrated that this migration pattern was not randomly
distributed (P =0.0452), indicating a directed and coordinated
plasma cell migration process within the tissue architecture

Cell Discovery
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Fig. 5 Multiomics Stamp-seq captures the treatment response-promoting spatiotemporal trajectory of plasma cells in NSCLC. a Volcano
plot highlighting genes that are differentially expressed in nonepithelial cells within epithelial district D2 between pCR and NpCR samples.
b Dot plot displaying representative differentially expressed genes (from a) across nonepithelial cells. The dot size represents the fraction of
cells expressing specific genes, while the color intensity indicates relative expression levels. ¢ Heatmap illustrating the sample preference of
cell subsets within a 100 ym radius of neoplastic cells, quantified by the Ro/e score. d Line chart showing the ratio of IGHGT* to IGHAT* plasma
cells across districts in total, pCR, and NpCR samples. e Line chart depicting hypoxia pathway activity, calculated using PROGENYy, across
districts in plasma cells in pCR and NpCR samples. f Clonal plasma cell transfer frequencies across districts, with summed values displayed on
the right. “In” denotes movement into a district, and “out” indicates movement out of a district. The arrow thickness and accompanying
numbers represent transfer frequencies (related to Supplementary Table S6). g Inferred plasma cell migration model based on panel f. The
black arrows indicate the movement orientation, the gray arrow indicates the origin of D3 plasma cells from outside the tumor (gray dotted
circle), and the arrow thickness reflects the transfer frequency between districts. Line charts displaying the ratio of IGHGT™ to IGHAT" plasma
cells in pCR and NpCR samples along the D5-D4-D2 (h) and D3-D4-D2 (i) routes. Dotted lines represent ratios at distances of 0, 0-50, 50-100,
and 100-150 pm from district boundaries. j Line chart showing the relative abundance of IGHGT™ and IGHAT" plasma cells across districts in
pCR and NpCR samples. k Volcano plot of the spatial colocalization scores for various cell types with plasma cells in D4 of pCR and NpCR
samples. | Dot plot of spatially co-occurring receptor-ligand interactions between sender-receiver pairs within a 100 pm radius, with a
normalized P value < 0.005 (related to Supplementary Table S7). m Dot plot showing the expression of HMGBT in the CAF subclusters and that
of CXCR4 in the plasma cell subclusters. n Representative spatial map of Stamp-seq profiles of apCAFs and plasma cells onto the
corresponding H&E-stained section of the profiled region. o ROC curve analysis of the GSE31245 dataset in which the relative GSVA scores of
apCAFs, the IGHG1/IGHAT ratio, or their combination were used to predict responders. p Schematic model of the tumor fibroblastic
microenvironment promoting spatiotemporal plasma cell movement across districts in NSCLC samples from patients who achieved a pCR

or NpCR.
<

(Methods). Along the D5-D4-D2 axis, the pCR samples maintained
high IGHG1/IGHAT ratios during transit, whereas NpCR samples
showed an attenuation of this ratio starting in D4 and persisting in
D2 (Fig. 5h). Conversely, the D3-D4-D2 route resulted in elevated
baseline IGHG1/IGHAT ratios in D3 of pCR samples (Fig. 5i),
indicating that external niches may pre-enrich IGHGT" cells before
tumor entry. Thus, D4 emerged as the primary site for the
enrichment of IGHG1* cells along both migration routes (Fig. 5j),
suggesting its role as a “transit hub” prior to tumor infiltration
in D2.

The treatment-response-related cellular neighborhood of
plasma cells was calculated to investigate how D4 becomes
enriched in IGHGI" plasma cells. The cellular neighborhood
analysis revealed that apCAFs were proximal neighbors to D4
plasma cells in pCR samples, in contrast to ACTA2" CAFs in NpCR
samples (Fig. 5k). Spatial interaction screening (within a 100 um
radius) revealed the CXCR4 (IGHG1* plasma cell)-HMGB1 (apCAF)
pairing (Fig. 51 and Supplementary Table S7). Considering that
HMGB1 often acts as a co-factor to enhance
CXCL12-CXCR4 signaling®®, we further investigated the expression
of CXCL12 and found that CXCL12 was expressed at significantly
higher levels in cells proximal to IGHGT™ plasma cells than in those
located farther away (P=0.002, fold change =1.15). Within
fibroblast populations, CXCL12 is a marker of inflammatory CAFs.
We found that high CXCL12-expressing CAFs c02_2_CAF_ALDH1A3
(Supplementary Fig. S12a) exhibited the highest spatial colocaliza-
tion score with apCAFs within spatial domain D4 (Supplementary
Fig. S12b). We further validated our findings using CellChat v2 to
analyze cell-cell communication within 100 um and discovered
that the HMGBT1-CXCR4 signaling pathway is significantly activated
between mesenchymal cells and plasma cells (Supplementary
Table S10). Combined with the high expression of HMGBT in
apCAFs across all mesenchymal cells and CXCR4 in IGHGT™ plasma
cells (Fig. 5m), we confirmed that CXCR4-HMGBI-mediated
crosstalk occurred between apCAFs and IGHGT* plasma cells.
Colocalization of these subsets was pronounced in pCR tissues
(Fig. 5n), mirroring known CXCR4-mediated plasma cell retention
mechanisms in bone marrow niches®’.

Public NSCLC datasets corroborated that apCAF signatures and
high IGHG1/IGHAT ratios correlate with an improved therapeutic
response (Supplementary Fig. S13a) and progression-free survival
(PFS; Supplementary Fig. S13b, c). The combination of both the
apCAF signature and the IGHG1/IGHAT ratio resulted in prolonged
PFS, with an area under the curve (AUC) of 0.831 (Fig. 50).
Together, these results position D4 as a critical niche where
apCAFs recruit IGHGT™ plasma cells, originating from TLSs (D5) or
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peripheral sources (D3), via HMGB1-CXCR4 interactions, facilitat-
ing their antitumor migration toward tumor cells (D2) in
chemoimmunotherapy-responsive patients (Fig. 5p).

DISCUSSION

Here, we present the use of Stamp-seq, a spatial-snRNA profiling
technique, to characterize treatment-response-related cell com-
munities. Compared with the snRNA-seq data, the application of
our technique to the adult mouse brain revealed precise
transcriptomic capture, which assigned nuclear identity with high
similarity and accurate spatial localization by mapping nuclei to
different cortical layers and to microdomains such as endothelial
cell-rich regions. We also applied Stamp-seq to samples from
patients with NSCLC treated with neoadjuvant chemoimmu-
notherapy and identified treatment response-related spatial cell
communities, including a TLS district and a plasma cell niche.
Combined with spatial BCR profiling, we revealed the spatiotem-
poral recruitment of CXCR4" IGHG1™" plasma cells from TLSs and
blood circulation by HMGB1-expressing apCAFs in the plasma cell
niche, ultimately leading to the enrichment of IGHG1™ plasma cells
in the tumor cell region in good responders.

Stamp-seq represents a cost-effective platform for spatially
resolved single-nucleus transcriptomics, with distinct advantages
across critical parameters when benchmarked against existing
technologies. In terms of resolution and performance, Stamp-seq
achieves a 1.6 um barcode density with < 3.2% duplication across
an 85mm? capture area, enabling nuclear localization within a
half-cell diameter of true positions, surpassing multicellular-
resolution methods such as DBiT-seq> (10-50 um) and 10x Visium
(55 um) while outperforming subcellular-resolution techniques
such as Stereo-seq (0.5 um), Seg-scope (0.5-0.8 um) and Visium-
HD (2 um) that rely on computational boundary inference rather
than direct mapping. In contrast to the nuclear-labeling approach,
Slide-tags Stamp-seq uniquely provides on-chip gold-standard
staining validation that is absent from the Slide-tags methodology.
With > 99% spatial barcode recovery and ~79% location assign-
ment efficiency, Stamp-seq achieves robust precision in nuclear
mapping that is unattainable by conventional alternatives.

Regarding data quality, Stamp-seq detects 400-2500 genes per
nucleus, exceeding most spatial methods, although it is still below
Slide-tags, potentially due to its cross-linking step. Crucially,
despite 60%-90% nuclear loss during extraction and microfluidics,
captured nuclei exhibit transcriptional profiles that are more
congruent with snRNA-seq references than Slide-tags, Stereo-seq,
or DBiT-seq, confirming biological fidelity.
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Regarding sample compatibility and turnaround time, nuclear
extraction from frozen sections in Stamp-seq bypasses the
perfusion requirements of Visium and Stereo-seq, supporting
any tissue amenable to nuclear isolation. Library preparation
requires approximately one day plus standard NGS sequencing
time, which is faster than imaging-based workflows and is
competitive with other sequencing-driven platforms. Its
sequencing-by-synthesis fabrication further accelerates processing
compared with bead-based (Slide-seq, and Slide-tags) or DNA
nanoball-based (Stereo-seq) array generation, establishing a
practical throughput advantage for large-scale studies.

With respect to economic efficiency, Stamp-seq achieves
a>10x reduction in library preparation costs by processing
100,000+ cells per reaction compared with conventional methods
(10,000-20,000 cells), while replacing expensive prefabricated
microarrays with sequencing-by-synthesis-fabricated spatial chips,
slashing per-chip costs to near-standard NGS flow cell levels.

Regarding modality extensibility, Stamp-seq demonstrates
seamless compatibility with diverse nuclear profiling methods,
including B-cell clonotype mapping (as exemplified here), and
supports applications ranging from sn-ATAC-seq to sn-
methylation profiling, among others. This flexible integration of
multiomics workflows constitutes a unique advantage of nuclear-
labeling approaches represented by Stamp-seq and Slide-tags.

The main caveat of Stamp-seq is the general loss of direct-
contact cell partners due to unavoidable nuclear loss. The overall
nuclear recovery rate, calculated as the ratio of localized and
sequenced nuclei to DAPI-stained nuclei outlined on-chip, ranged
from approximately 10% in necrotic or fibrotic tumor samples to
37% in adult mouse brain sections (see “Methods”). This variation
in efficiency stems from cumulative losses at two critical stages:
nuclear extraction techniques routinely incur 15%-40% nuclear
loss because of mechanical and enzymatic dissociation con-
straints, whereas microfluidic handling contributes to an addi-
tional 33%-68% loss (Supplementary Table S9). Enhancing nuclear
extraction techniques and minimizing microfluidic loss can reduce
loss to a certain degree. Moreover, combining in situ cytoplasmic
RNA capture and nuclear labeling on the same chip could serve as
a method development direction. Another caveat is the generally
lower gene detection depth compared with that of snRNA-seq.
This limitation stems primarily from the pre-extraction fixation
protocol; while this step increases spatial barcode retention
efficiency and facilitates extended on-chip nuclear imaging, it
concurrently induces RNA fragmentation, thereby compromising
transcriptome integrity and reducing the number of detectable
genes. Further improvements could be achieved by performing
reversible fixation with reagents such as DSP*%. Additionally, we
are developing an improved protocol incorporating a probe-based
hybridization strategy, similar to snPATHO-seq>°, where oligonu-
cleotide probes directly hybridize to target RNA sequences
independent of reverse transcription, to overcome this technical
limitation, thereby increasing detection sensitivity in crosslinked
single-cell samples.

Spatially resolved information at true single-cell resolution
could be instrumental for segregating cellular communities.
Immunotherapy represents a paradigm shift for the treatment of
malignancies across a broad range of indications, but not all
patients benefit from such therapy. A powerful predictive
biomarker can optimize treatment choices and identify likely
beneficiaries. In addition to single-module biomarkers such as PD-
1/PD-L1 expression, spatial cell communities can be prognostic
markers. For instance, the presence of TLSs is a better prognostic
biomarker in nearly all cancers®. An increased density of plasma
cells is associated with more favorable outcomes in several
cancers, including NSCLC®*® and soft-tissue sarcomas®', at least
partly through the secretion of IgG that binds to tumor cells*® and
is associated with CD8" T-cell infiltration?®. Although the majority
of plasma cells are observed to intratumorally localize to regions
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that are not TLSs?®, the cellular composition of such regions
remains unknown. Previous studies have shown that plasma cells
lodging in the bone marrow are long-lived and secrete IgG and
that the bone marrow survival niche contains stromal cells that
express CXCL12, which anchors CXCR4" plasma cells to promote
survival***3. Our findings suggest that a comparable specialized
niche for the survival of IgG-secreting plasma cells may exist
locally within tumors, and this niche likely has a connection to a
preferred immunotherapy response. In this niche, apCAFs are key
mesenchymal cells that specifically recruit CXCR4" IGHG1™" plasma
cells by expressing HMGB1, a known cofactor of CXCL12, to
promote its binding to CXCR43®. Consequently, based on our cell
community analysis, the apCAF signature alone or together with
the IGHG1/IGHAT ratio is a good prognostic marker for the efficacy
of chemoimmunotherapy against NSCLC.

In addition to forming a niche for the survival of plasma cells,
fibroblasts also closely contact other cells. We found that ROBO2
CAFs localized to the periphery of tumor cells and TLSs in samples
from patients who achieved a pCR, and that ACTA2" and
COL1ATY myCAFs were enriched in the periphery of tumor cells
in samples from patients who achieved an NpCR. A recent study
indicated that COL771A1" CAFs can deposit collagen, obstruct
T-cell infiltration, and lead to a poor prognosis for NSCLC*. Our
data revealed that COLT1AT7 is highly expressed in both ACTA2"
and COLTA1" myCAFs (Supplementary Fig. S9b), suggesting that
the spatial proximity between myCAFs and tumor cells in NpCR
samples could lead to the exclusion of T cells and a lack of a
chemoimmunotherapy response. Together, our findings indicate
that spatial communities containing fibroblasts have a pleiotropic
effect on multiple elements of the TME to modulate the
treatment response. Our findings also indicate that methods
designed to delineate spatially resolved cellular states promote
the development of diagnostic and prognostic modules for
human diseases.

METHODS

Mouse and human sample information and processing

Mouse brain. Wild-type C57BL6/J mice, aged 6 to 8 weeks, were procured
from Beijing Vital River Laboratory. Their brains were carefully dissected
and immediately embedded in Tissue-Tek OCT (Sakura, 4583), followed by
transfer to a —80 °C freezer for long-term storage. All procedures involving
animal experiments described in this study adhere to ethical regulations
governing animal research.

Human non-small cell lung cancer samples. Specimens were acquired
from patients who underwent lung tumor resection surgeries for non-small
cell lung carcinoma after combined neoadjuvant chemotherapy and anti-
PD-1 antibody (JS001) treatment at Hunan Provincial Tumor Hospital in
China as part of a stage Il investigator-initiated clinical trial, which was
approved by the ethics committee under identification number JS001-ISS-
CO147. The treatment response was evaluated by two pathologists based
on tumor section histology. Tumors were categorized as pCR, MPR and
non-MPR. pCR represents a failure to detect viable tumor cells, MPR
represents less than or equal to 10% viable tumor cells, and non-MPR
represents greater than 10% viable tumor cells. The specimen was snap
frozen following surgery and stored at —-80 °C until embedding in tissue-
Tek OCT (Sakura, 4583) and sectioning using cryostats. The use of tissue at
the Beijing Institute of Genomics at the Chinese Academy of Sciences was
approved by the Institutional Review Board under project number
2023H039.

Coculture of human and mouse cells. The K562 cell line (ATCC, CCL-243)
and the YAC-1 cell line (ATCC, TIB-160) were obtained from ATCC and
cultured in accordance with ATCC guidelines. Freshly harvested cells were
washed with 1x PBS and resuspended at a concentration of 1 x 10° cells/
ml for the species mixture experiment.

Overview of Stamp-seq technology
1 Stamp-seq chip (SeekSpace® chip) synthesis and manufacture
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Generation of the Seed Oligo Library (Supplementary Fig. S1a, S1b.1).
Stamp-seq was initiated with the generation of a single-stranded DNA
oligo seed library with 32 random nucleotides that served as spatial
barcodes.

Library structure:

5" P5 (Uracil containing)-Rd2P binding site-Spatial barcode-Spatial
barcode seq primer binding site-P7 3’

Stamp-seq ssDNA sequence:

5’AATGATACGGCGACCACCGAGATCTACACGTGACTGGAGTTCAGACGTGT
GCTCTTCCGATCTNNVNBVNNVNNVNNVNNVNNVNNVNNVNNNNNTCTTGTG
ACGACAGCACCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAATTTGACTTTCAC
CAGTCCATGATATCTCGTATGCCGTCTTCTGCTTG3!

Oligo cluster generation and sequencing (Fig. 1a, steps 1 and 2;
Supplementary Figs. Sla, S1b.2, 3, 4). Using GenolLab M protocols,
Stamp-seq oligo clusters were generated by 28 cycles of amplification of
the oligo seed library at a concentration of 2.8 pM. The oligo clusters were
subsequently sequenced on the GenolLab M sequencing platform using
Seqprimer-4 as the custom primer. The Segprimer-4 sequence is provided
below. Sequencing reactions were performed for 34 rounds. In the first 32
rounds, the spatial barcode region was sequenced, and rounds 33 and 34
were used for quality control and cluster density evaluation. Images of the
clusters were generated using the GenolLab Control System (GLCS;
Supplementary Fig. S1b). The oligo clusters were then washed three times
with water, three times with 0.1 N NaOH, three times with 0.1 M Tris (pH
7.5), and three times with water.

The spatial barcode region contains 32 random nucleotides, which can
produce 1 quintillion different sequences. We observed a duplication rate
of less than 0.1% at a concentration of 2.8 pM (Supplementary Fig. S1d).
The duplicated reads were confidently removed in the data analysis step
(see below).

Seqprimer-4:

5'ATCATGGACTGGTGAAAGTCAAATTTTTTTTTITTTTITTTITTITTTITITTTTTTITGG
TGCTGTAGTCACAAGA3'/

Processing flow cells into the Stamp-seq array (Fig. 1b). A laser segmenta-
tion machine (Inte Laser, MLC-10ZW) was used to cleave the flow cell
coated with oligo clusters into 5.5 mm X 15.5 mm regions. We adhered two
capture regions onto a glass slide to complete the Stamp-seq chip
(SeekSpace® chip) assembly. Each Stamp-seq chip library contains
information for both the spatial barcode sequencing results and the x
and y locations for each spatial barcode cluster.

2. Stamp-seq sample processing

Cryosections were cut at a thickness of 10 um or 20 um using a Leica
CM1950 cryostat to be mounted onto the Stamp-seq chip for further
processing. Mouse brains were sectioned coronally, and human lung
tumors were sectioned to their largest area. Neighboring 10 pm sections
were also mounted onto new glass slides, stained with H&E, and imaged
under brightfield using a Leica DMi8 microscope.

3. Cell nucleus tagged with spatial barcode preparation

Single-cell nuclear suspensions with spatial barcodes were prepared
from fresh frozen tissues using the SeekSpace® Single-Cell Spatial
Transcriptome-seq Kit (K02501-08; Fig. 1a, steps 3 and 4; Fig. 1¢, step i).
Briefly, tissue regions of interest were placed on the Stamp-seq chip,
ensuring that no folds were present. A finger was placed on the back of the
Stamp-seq chip to melt the tissue. The Stamp-seq chip was then placed in
a chip holder and incubated on a thermocycler adapter at 37 °C for 90s.
After 90s, a chamber was placed on the chip, and 150 uL of labeling
reagent (10 mM Tris-HCl (pH 7.4), 10 mM NaCl, 3 mM MgCl,, 1 U/uL RNase
inhibitor, 0.1% IGEPAL CA-630, and 20 U/mL USER® enzymes) was added
without introducing bubbles. Next, the tissue sections were fixed with
150 pL of 4% formaldehyde containing 1 pL of ssDNA dye for 12 min and
simultaneously imaged using a Leica DMi8 fluorescence microscope. The
samples were subsequently homogenized in prechilled lysis buffer (10 mM
Tris-HCl (pH 7.4), 10 mM NaCl, 3 mM MgCl2, 1 U/uL RNase inhibitor, and
0.1% IGEPAL CA-630) using a Dounce homogenizer (KIMBLE #D8938). After
the cells were washed with PBS containing 1 U/uL RNase inhibitor and
filtered through a 70 pL cell strainer, the number of nuclei was estimated
using a fluorescence cell analyzer (SeekGene Tinitan® Fluorescence Cell
Counter or Countstar® Rigel S2) with AO/PI before being placed on ice for
further analysis. Spatial chip nuclear dissociation yields 100,000-200,000
nuclei across diverse human and murine tissue types, a throughput
range ideally suited for multiplex barcoding workflows (Supplementary
Table S9).

4. Sequencing library preparation
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snRNA-seq library preparation. A single-cell RNA-seq library and spatial
barcode library were prepared using the SeekSpace® Single-Cell Spatial
Transcriptome-seq Kit (K02501-08) according to the manufacturer's
instructions. Briefly, the nuclei were evenly divided into 8-16 PCR tubes,
and reverse transcription was performed on 600-30,000 nuclei in each PCR
tube, with a differentially labeled reverse transcription primer (termed
multiplex barcode; Supplementary Table S8) added to each tube (Fig. 1c
step ii). Fifteen cycles of annealing (ramping from 8°C to 42°C) were
performed to increase primer hybridization and intracellular reverse
transcription efficiency. After reverse transcription, the nuclei were washed
twice to remove residual primers and pooled together. Subsequently, up to
320 thousand nuclei were combined with T4 ligase in 1x ligation buffer
(NEB M0202L) and bridge-oligo (AGCAACGACGGACGACAGCAA) and then
added to the sample wells of the SeekOne® DD Chip S3 (Chip S3).
Barcoded hydrogel beads (for detailed information, refer to BHBs in
scFAST-seq* with the sequence CTACACGACGCTCTTCCGATCT(j)17(N)
12TTGCTGT, where (j)17 represents the 17 bp cell barcode sequences
and (N)12 represents the random 12 bp sequences) and partitioning oil
were then dispensed into the corresponding wells separately in Chip S3.
The cell-containing ligation reagents and BHBs were encapsulated into
emulsion droplets using the SeekOne® Digital Droplet System. Immediately
after the emulsion droplets were transferred into PCR tubes, a 60-min
incubation at 20 °C followed by a 10-min heat inactivation at 65 °C was
performed to obtain barcoded cDNA and spatial barcodes (Fig. 1¢, step iii).
The barcoded cDNA and spatial barcodes were then decrosslinked with 2x
lysis buffer (20 mM Tris (pH 8.0), 400 mM NaCl, 100 mM EDTA (pH 8.0), and
4.4% SDS) and 10 pL of proteinase K solution (20 mg/mL) and recovered
from the cells in the droplets (Fig. 1c, step iv). A second round of reverse
transcription was performed, followed by PCR pre-amplification to obtain
more template-switched cDNA (Fig. 1¢, step v). The pre-amplified product
was used as input for both spatial barcode library construction and cDNA
construction. Finally, sample indices were added to the pre-amplified
product during spatial barcode library construction via PCR (Fig. 1c, step
vi). After cDNA purification, 20 ng of cDNA was amplified by index PCR. The
indexed sequencing libraries were subsequently purified using AMPure
beads and quantified by quantitative PCR (KAPA Biosystems KK4824).

CDR3 enrichment and sequencing. For the enrichment of single-cell CDR3
regions, the cDNA libraries from sample T24, which were amplified from
the pre-amplification product, were hybridized with 5’ biotin-labeled
probes targeting the C regions of BCR and TCR genes (see the
hybridization capture probes in Engblum et al.*), captured using
M270  streptavidin  beads and amplified using TSO and
Read1 sequencing primers in accordance with the manuscript (Customized
from Boke Bioscience). The target products were fragmented, end-
repaired, “A” was added, and ligated to the lllumina TruSeq adapter using
T4 DNA fast ligase. The ligation products were purified using 0.6 x DNA
clean beads and amplified in a 50 yL assay with 25 uL of 2x KAPA HiFi
HotStart Ready mix and 2 pL of 10 uM index primers. After an incubation at
98 °C for 3 min, 8 PCR cycles were performed (98 °C for 20s, 54 °C for 30s,
and 72°C for 20s). The final CDR3 library was purified by 0.9x DNA
clean beads.

Sequencing. The single-cell RNA-seq library, spatial barcode library and
CDR3 library were subsequently sequenced on the Illlumina NovaSeq 6000
platform with a PE150 read length or the DNBSEQ-T7 platform with a
PE150 read length.

Stamp-seq data preprocessing

snRNA-seq data. We utilized SeekSpace® Tools bcf2fastq to generate
demultiplexed FASTQ files from the raw sequencing reads and aligned
these FASTQ files to either the human GRCh38 or mouse mm10 genome to
create a filtered feature-barcode matrix for each sample. Barcodes include
multiplex barcodes and droplet barcodes. The “forceCell” method was
employed with the default settings during the cell calling process. UMI
counts for the top 80,000 cells were extracted, with a default threshold set
at a minimum of 200 UMIs. Only those cells with UMI counts exceeding this
threshold were selected as the final determined cells, which were
subsequently used to generate the expression matrix.

Spatial barcode library preprocessing. Some of the spatial barcodes
extracted from the spatial barcode library may be invalid. These invalid
barcodes may arise from the inclusion of shorter mRNA fragments from the
RNA library. In addition to this factor, sequencing errors can also result in
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invalid barcodes. We filtered out the invalid spatial barcodes that were
absent from the Stamp-seq chip library to ensure the accuracy of the data.

Furthermore, a small percentage of spatial barcodes may have appeared
multiple times with different coordinates, resulting from rare oligo
synthesis duplication events. Since we could not determine the exact
spatial location of these barcodes, they were also filtered out.

Additionally, certain spatial barcodes exhibited anomalously high UMI
support. We hypothesized that they may have detached from the chip
during experimental procedures and been encapsulated by many droplets,
rendering these spatial barcodes inaccurate and prevalent. Moreover, cells
carrying these exceptionally high spatial barcode UMIs could be
mislocalized and should be removed from further analysis. We imple-
mented the following steps to address this issue:

(i) The 5.5%15.5mm chip was divided into bins of size 30 pixels x 30
pixels. (i) The total number of UMI supports was counted for all spatial
barcodes in each bin. (i) Bins were sorted in descending order of UMI
support. (iv) The threshold (20 times the average UMI count of all spatial
barcodes within each bin) was calculated based on the distribution of the
sorted bins. (v) If the UMI support of a bin exceeded the threshold, we
removed the cell with the highest spatial barcode UMI support in that bin,
as well as all other spatial barcodes associated with that cell. This approach
resulted in the clearance of the most affected cell and freed other cells
from the influence of the mislocalized prevalent spatial barcode in this bin.
Finally, we filtered out all cell barcodes not associated with biologically
meaningful cells and their corresponding spatial barcodes, focusing solely
on locating cells of biological significance.

Retrieval of spatial barcodes and associated coordinates. The first step in
acquiring the spatial x, y coordinates for Stamp-seq nuclei is to retrieve all
spatial barcodes related to each nucleus and their coordinates. This
analysis required two distinct libraries, namely, the spatial barcode library
and the Stamp-seq chip library. The UMIs of the spatial barcode library
represent the expression level of each spatial barcode. The Stamp-seq chip
library contains single-end sequences with a read length of 32 bases linked
to specific spatial coordinates (Fig. 1b; Supplementary Fig. S1a).
Corresponding spatial barcodes were extracted from the Stamp-seq chip
library to establish the correspondence between cell barcodes (defined as
a combination of spatial barcodes and cell barcodes) and spatial barcodes.

When a spatial barcode extracted from the spatial barcode library
matched a barcode extracted from the Stamp-seq chip library (i.e,, the
whitelist), it was considered valid, and its associated reads were counted.
Otherwise, it was classified as invalid. Notably, sequencing errors may
occasionally occur. SeekSoul® Tools supports barcode correction by
comparing invalid barcodes to the spatial barcode whitelist. An invalid
barcode with a single-base mismatch (hamming distance of 1) was
corrected to the corresponding barcode in the whitelist when a single
match was identified. In cases where multiple matches were found, the
correction was made to the barcode with the highest read counts. A similar
correction was performed for the multiplex barcodes and droplet
barcodes. Cells with corrected barcodes were then retrieved again, along
with their coordinates.

Determination of the cell position. The centroid position of the cell was
equal to the centroid position of the nucleus in this study. When
determining the centroid position of a nucleus, the presence of noisy
spatial barcodes must be considered. These barcodes may persist as
background signals within droplets during experiments or be marked on
nuclear fragments, leading to multiple centroid positions on the chip
associated with the same cell barcode. Consequently, nuclei with multiple
centers must be filtered out to ensure that only those with clearly defined
centroids are retained.

As shown in Fig. 2d, the spatial barcode distribution of a nucleus (for
which at least 2 spatial barcodes UMIs are detected) includes three
scenarios: a unique center and multiple centers with and without a major
center.

In the panels on the right side of Fig. 2d, each grid represents a bin,
measuring approximately 100 pixels (26.5 um) per side, with an area of
approximately 0.02mm? The color intensity of each bin indicates the
number of UMIs for all the spatial barcodes located within that bin, with
deeper hues signifying higher UMI counts. The darkest blue bin indicates
the bin with the highest UMI support for this cell, which is identified as the
core center. This center bin, along with the 24 immediately adjacent bins,
is collectively referred to as the core of the cell.

We introduced the concept of a secondary center, which is defined as
the bin exhibiting the highest UMI support outside of the core, to
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determine whether a cell possesses multiple centers. We calculated the
ratio of the total UMI count within the core to that within the secondary
center and its surrounding 24 bins. A ratio equal to or exceeding 10
characterized the cell as having a unique center; a ratio equal to or
exceeding 2 characterized the cell as having a major center; and a ratio
smaller than 2 classified the cell as having multiple centers.

Afterward, we identified the spatial coordinates of cells with either a
unique center or a major center. We calculated the spatial coordinates of
each cell by determining the nearest spatial point to all identified spatial
barcodes within the unique cell core or the major cell core (25 bins in total,
including the 24 surrounding bins and 1 center bin), measured using
Euclidean distances.

Moreover, we computed the distribution of Euclidean distances
between each detected spatial barcode and the final spatial coordinates
established for each cell in the core region. We then assessed the
distribution of distances for the closest 50%, 75%, and 95% of spatial
barcodes to evaluate the dispersion of spatial barcodes (Supplementary
Fig. S2¢).

Mouse brain analysis

Quality control and cell type assignment.  For sample WTH1092, the filtered
feature-barcode matrix was generated using SeekSpace® Tools and
subsequently imported into R (v.4.1.1) using Seurat (v.4.0.6). For sample
WTH1092, after the quality control step, we identified a total of 42,499 cells
with more than 300 UMIs and less than 5% mitochondrial gene content,
42,317 of which were combined with spatial barcodes, using SeekSpace®
Tools. After removing cells classified as “scratched/contaminated” from
those with spatial barcodes, we retained 41,947 cells. A total of 41,641 of
these cells, each with a spatial barcode count of > 2, were analyzed to
determine the presence of a unique spatial center. During this analysis,
17,259 cells exhibited the highest spatial barcode centrality-to-secondary
centrality ratio of = 10, while 15,778 cells had a ratio between > 2 and < 10,
and 8604 cells had a ratio of < 2. Ultimately, we identified 33,037 cells as
having a discernible unique center based on their spatial barcodes, with
32,833 of these overlapping with the tissue area on the DAPI image. This
process resulted in a matrix comprising 32,833 nuclei, with a median of 738
UMIs per cell and 421 median genes per cell. Cell cycle scoring was
performed using the “CellCycleScoring” function. We utilized the “SCTrans-
form”¥” function for normalization and variance stabilization, which
concurrently normalizes the data and identifies highly variable genes.
This method involves the regression of confounding sources of variation,
including mitochondrial percentage and cell cycle scores. We selected
2000 variable features for subsequent analyses. Following normalization,
dimensional reduction was executed using principal component analysis
on the top 2000 variable genes. The first 30 principal components were
employed for UMAP to visualize the cells in two-dimensional space. Graph-
based clustering was subsequently conducted at a resolution of 0.4 to
identify distinct cell populations, with each cell cluster being validated
using known marker genes. Note that the cDNA library includes sequences
from mRNAs (~59.3%), INcRNAs (~3.1%), rRNAs (~28.4%), mtRNAs (~6.96%)
and others (~2.31%) in WTH1092 because of the randomized primers used
in the RT reaction in step ii.

Assessment of the nucleus capture efficiency using multiplex barcodes.
Considering that a substantial number of cells were filtered out during
spatial cell localization because of the inability to assign a unique or major
spatial center when multiple centers were detected, we proposed a novel
principle aimed at “recovering” these discarded cells and increasing cell
capture. In this method, nuclei were uniformly divided into multiple
subgroups prior to the formation of water-in-oil emulsions, with distinct
multiplex barcodes applied to each subgroup (Fig. 1a).

Without the application of multiplex barcodes, a cell that exhibited
multiple centers, which could be due to multiple cells being together or a
cell and debris coexisting in the same droplet, would be discarded. The
addition of multiplex barcodes reduced signal interference among cells
and debris.

We determined the optimal number of multiplex barcodes required to
maximize the recovery of discarded cells due to multiple centers by
conducting simulations on the WTH1092 sample using 1, 2, 4, and 8
multiplex barcodes. When only one multiplex barcode (equivalent to not
applying any multiplex barcode) was employed, 27,561 cells were defined.
With two multiplex barcodes, the number of cells with a definitive spatial
center increased to 30,177. With four multiplex barcodes, this number
increased further to 31,808, and with eight multiplex barcodes, the number

Cell Discovery



of cells mapped to a clear spatial center reached 32,828 (Supplementary
Fig. S2a). Notably, this pattern suggests that the use of multiplex barcodes
effectively increases the recovery of discarded cells. However, upon the use
of eight multiplex barcodes, the cell rescue rate began to plateau,
indicating a saturation point in recovery efficiency; hence, eight multiplex
barcodes were selected for the Stamp-seq pipeline.

Determining the density and cluster width of spatial barcodes. We
calculated the average interstitial distance between the centroids of
spatial fluorescence signal clusters based on the number of clusters per
unit area (a median value of 1.64 um) to quantify the spatial barcode
density. We subsequently used ImageJ (v1.52k) to measure the area of
each cluster on the fluorescence image from cycle 33 of spatial barcode
sequencing. Assuming that each spatial signal cluster was circular, we
inferred the diameter of the clusters from their average area (a median
diameter of 1.35 um) on 100 equal segments, with each having an area of
0.1 mm? (Supplementary Fig. S1c).

Qualification of the RNA composition. Sequencing reads were aligned to a
mm 10 reference annotation file using STAR (v2.7.10a) with the default
parameters and stringent mapping filters (--outFilterScoreMinOverLread
0.66). Gene-level quantification was performed using featureCounts
(v2.0.3) with the default parameters, thereby enabling the proportional
classification of RNA types (e.g., rRNAs, mRNAs, and IncRNAs) based on the
annotated GTF features.

Comparison of the distance between Stamp-seq spatial localization assign-
ment and actual nuclear coordinates on the DAPI image. We employed
CellProfiler (v4.2.6) software to analyze the spatial coordinates of DAPI-
stained nuclei within a specified region in the cortex (252 nuclei based on
DAPI staining; 92 nuclei detected by Stamp-seq) of the mouse brain and
determine the precision of Stamp-seq in determining the spatial
localization of nuclei, resulting in a 37% nuclear capture rate. We
performed coordinate axis transformation to compare the localization of
nuclei from Stamp-seq spatial localization assignment and DAPI images by
leveraging 14 manually selected pairs of spatial coordinate points as true
references, and then utilized the MASS (v7.3.58.3) package in R to
transform the coordinates. This calibration was necessary to ensure
congruence between the axes of Stamp-seq and those rendered by
CellProfiler. We calculated the number of nearest neighboring nuclei
within the DAPI dataset for each nucleus identified by Stamp-seq. By
defining these proximities as one cell-to-one cell correspondences, we
ensured a unique DAPI nucleus pairing for each nucleus observed in
Stamp-seq.

We subsequently simulated a scenario of randomness in spatial
coordinates by generating spatial coordinates for 252 nuclei randomly.
Based on the aforementioned methodology, we computed their nearest
DAPI-stained nuclei. This method allowed us to compare the spatial
localization accuracy of Stamp-seq with that of the randomly generated
coordinates, gauging their respective distances to the actual DAPI-stained
nuclei.

Identification of layers and layer-dependent gene expression. The laminar
assignment of each excitatory neuron (encompassing layers L2-3, L4, L5,
L5-6, and L6) was achieved using a two-step procedure. Initially,
subpopulations of excitatory neurons were discerned through the
expression of the pan-excitatory neuronal marker Tbr1. The laminar
identity of each neuron was subsequently defined by the use of layer-
specific markers (Supplementary Fig. S3d). Numerical laminar coordinates
were calculated for each cell to quantify the spatial arrangement of
excitatory neurons within each cortical layer. These coordinates were
derived from the Euclidean distance between each cell and its nearest
neighbor cell at the layer boundary.

Comparison of Stamp-seq snRNA-seq data and conventional snRNA-
seq data. For the WTH1059 sample (Supplementary Fig. S4a), the
SeekSpace® Tools were executed as previously described. This process
yielded a comprehensive matrix consisting of 17,900 nuclei, with a median
count of 913 UMIs and 539 genes per cell. The filtered feature-barcode
matrix produced using SeekSpace® Tools was then imported into R (v.4.1.1)
using the Seurat package (v.4.0.6). We investigated the correspondence
between cell type distributions in Stamp-seq snRNA-seq data and
conventional snRNA-seq data by integrating a reference dataset of the
adult mouse brain*® alongside Stamp-seq snRNA-seq data using the
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“IntegrateData” function. Normalization and variance stabilization were
conducted using the “SCTransform™’ function with the default para-
meters, enabling the concurrent normalization and identification of highly
variable genes. Following the correction for variance-stabilizing transfor-
mation, we identified the top 2000 highly variable genes. Gene expression
levels were subsequently scaled and centered. For two-dimensional
visualization, nuclei were subjected to UMAP using the top 30 principal
components, which were also employed to determine shared nearest
neighbors. Through a comparative analysis of cell type proportions within
the integrated snRNA-seq subpopulations, we identified eight distinct cell
types: oligodendrocytes (Oligo), inhibitory neurons (Inh), astrocytes (Astro),
excitatory neurons (Ext), oligodendrocyte precursor cells (OPCs), endothe-
lial cells (Endo), microglia (Micro), and neuroblasts (Nbs). Finally, we utilized
Spearman’s correlation analysis to assess the similarities between Stamp-
seq snRNA-seq data and public snRNA-seq in terms of the cellular
composition, mean number of features (nFeatures), and mean UMIs within
each cell type (Supplementary Fig. S4b).

Comparison of Stamp-seq and snRNA-seq with Slide-tags, Stereo-seq, DBIT-
seq, and snRNA. The performance of Stamp-seq in adult mouse brains
was benchmarked against publicly available datasets produced using
Slide-tags®, Stereo-seq”, DBiT-Seq® (GEO: GSM4096261 in GSE137986), and
snRNA-seq'®. Stamp-seq, Slide-tags snRNA-seq, and snRNA data were
processed, and nuclei were embedded in the UMAP space, as described
above. Total UMIs from Stereo-seq (33 x 33, 10 um) and DBiT-seq (10 um
resolution) spatial spots were normalized to 10,000 and log-transformed to
report gene expression. The top 2000 highly variable genes were identified
using variance-stabilizing transformation correction*’. Gene expression
levels were then scaled and centered. We identified shared nearest
neighbors using the top 30 principal components. For two-dimensional
visualization, we embedded spatial spots in the UMAP space utilizing the
top 30 principal components, with a neighbor count of 30. Dot plots were
constructed to display the normalized expression levels of the cell markers
in each cluster.

We investigated the extent of potential contamination among
transcripts from different types of cells by comprehensively analyzing
the overlap of gene expression using cell type-specific markers, including
Rofox3, Csf1r, Slc1a3, Plp1, Fit1, Cspg4, and Ttr. We evaluated the degree of
overlap between any two markers by calculating the overlap ratio, defined
as the ratio of the number of cells coexpressing both genes to the greater
number of cells expressing either of the two genes individually.
Mathematically, it can be formulated as follows:

NumberofcellsexpressingbothgeneAandgeneB

Overlapratio =
veriapratio max(NumberofcellsexpressinggeneA, cellsexpressinggeneB)

Additionally, we reasoned that some of these cell type markers are
coexpressed in the same cell; thus, we calculated the similarity of the
marker overlap ratio between snRNA-seq (representing the gold standard)
and each platform (Stamp-seq, Slide-tags, Stereo-seq, and DBiT-seq) using
the Pearson correlation coefficient (Supplementary Fig. S4r).

Non-small cell lung cancer analysis

Quality control and cell type assignment. SeekSpace® Tools was employed
to produce the filtered feature-barcode matrix for each slide. Matrices
from all patients were subsequently analyzed utilizing the Seurat
package'” (v4.0.6) within the R programming environment (v4.1.1). Cells
with fewer than 300 UMIs or with more than 5% of the reads mapping to
mitochondrial genes were excluded from further analysis. For normal-
ization, the total UMIs per nucleus were scaled to 10,000, followed by log-
transformation to report gene expression levels. We identified the top
2000 highly variable genes after applying variance-stabilizing transforma-
tion correction. Cell cycle scores, comprising those for the G1, G2/M, and S
phases, were calculated using the “CellCycleScoring” function. All gene
expression levels were scaled and centered, with the parameters set to
regress “percent.mt”, “S.Score”, and “G2M.Score”. Batch correction was
conducted within each cell compartment using the RunHarmony()
function from the Harmony package®, with the key batch parameter
“group.by.vars” assigned to “Sample”. For two-dimensional visualization,
nuclei were embedded in a UMAP using the top 30 principal components.
DoubletFinder®' (v2.0.3) was employed to detect doublet cells based on
the matrices filtered by Seurat. Clustering of similar cells was performed
using the FindClusters() function with a resolution set at 0.8. Differentially
expressed genes (DEGs) across various clusters were identified using the
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FindAllMarkers() function. Annotation of the de novo clusters was aided by
traditional marker genes.

Spatial receptor-ligand prediction. We employed a receptor-ligand score
calculated using a spatial correlation index (SCI) to identify receptor-ligand
interactions between pairs of cell types®>. The expression data were
processed with SCTransform counts®. We constructed a spatial weight
matrix with dimensions N x M, where N denotes the number of sender
cells, and M represents the number of receiver cells. This adjacency matrix
is assigned a value of 1 if sender cell i is within 100 um of receiver cell j and
0 otherwise. Initially, we utilized LIANA®® (v0.1.12) to generate a
hypothetical list of receptor-ligand interactions between cell types,
independent of the spatial context. This list was refined to include
interactions present in at least 10 sender cells or in 10% of both sender and
receiver cells. We subsequently calculated a spatial correlation index for
each interaction to evaluate the spatial coexpression of receptors and
ligands within these cell type pairs.

An adaptive spatial permutation test, involving 1000 permutations per
interaction, was employed to assess the spatial significance of each
receptor-ligand score by randomizing cell positions within the same cell
type. We implemented the Benjamini-Hochberg correction to address
multiple hypothesis testing. Additionally, we computed the log-
transformed fold change (FC) between the observed SCl statistic and the
median SCl statistic of the empirical null distribution, allowing comparisons
of log-transformed FC values for the SCI across various receptor-ligand
interactions without explicit correction for cell type frequencies. Ultimately,
spatial cell communication pairs exhibiting a normalized P value of less
than 0.005 were identified as genuine spatial interactions between the two
cell types.

Inferring the CNV. Copy number variant profiles were estimated for each
epithelial cell using the inferCNV R package (https://github.com/
broadinstitute/inferCNV). Nonepithelial cell types, specifically, lymphatic
endothelial cells (LECs) and vascular endothelial cells (VECs), were selected
as references. The “infercnvirun” function from infercnv (v1.16.0) was
employed with the following parameters: cutoff = 0.1, cluster_by_groups
= FALSE, HMM =TRUE, analysis_mode = subclusters, denoise=T,
HMM_type=i6, and tumor_subcluster_partition_method = random_trees.

Quantitative assessment of the cellular subtype distribution across tissues.
We utilized the epitools R package (v0.5.10.1) to compare the observed
versus expected cell counts for all cell types and subtypes and to
investigate the potential enrichment of cellular subtypes across different
regions or sample types. The ratio of observation to expectation (RO/E) was
calculated as follows: Ro/e = observed/expected, where the expected
number of cells was derived using the chi-square test. A specific cluster
was deemed enriched within a particular tissue if Ro/e > 1.

PCCF statistic. We conducted a quantitative assessment of cell contacts
and colocalization among various cell types using pairwise cross-
correlation function (PCCF) statistics, as previously described for analyzing
cellular colocalization®*. In this analysis, the PCCF is defined as the ratio of
observed colocalization events to the expected occurrences of random
colocalization. We estimated the average number of random colocalization
events by randomizing the original positions of cells and counting the
occurrences of touching and overlapping between cells over 100 simula-
tions. Two cells were considered genuinely colocalized if they were within
a spatial distance of 30 um. By tallying the number of colocalization events
between different cell types, we calculated the PCC value for each pair of
cell types using the following formula:

PCCF — Observed(colocalizatedpairnumber)
" Expected(meancolocalizatedpairnumber)

Unsupervised cellular districting using GraphSAGE. We proposed a novel
methodology for spatial community detection designed to identify clusters
of cell types that are frequently colocated. Initially, we defined the cells
located within a 30 um radius of each target cell as its neighbors. We
subsequently calculated a proportional vector that represented the cell
type composition of these neighboring cells. These vectors served as node
representations within a Delaunay triangulation graph. Utilizing a graph
neural network model called GraphSAGE>®, we encoded each cell as a
feature vector that captured the local microenvironment as defined by the
proportion of its neighboring cells. The model was optimized in an
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unsupervised manner following the original GraphSAGE training objec-
tive®® until convergence. Afterward, we applied Leiden clustering to the
GraphSAGE-derived features to obtain the spatial “districts” of the cells.
The model was implemented using PyTorch (v1.10), leveraging the
PyTorch-geometric implementation of the “SAGEConv” layer (v2.0.3). The
SAGEConv layers were used in their default configuration to manage the
hidden and output layers, automatically employing root_weight = True,
which integrates each cell's intrinsic feature vector with the aggregated
embeddings from its neighbors. Model training was conducted using the
Adam optimization algorithm with a learning rate of 0.001 for 150 epochs. The
model included a contrastive loss component, configured with a contrastive
temperature (tau) of 0.3 and a lambda (lam) of 0.3, further focusing on
enhancing the embeddings. The dropout layer, specified with P = 0.25.

Chi-square test for identifying the migration patterns of plasma cells. We
performed a chi-square test to evaluate whether the two migration
patterns of plasma cells occurred randomly. Specifically, we counted the
number of plasma cells migrating along different axes and calculated the
significance of the migration in various directions. Our null hypothesis (H)
states that plasma cell migration is random, whereas the alternative
hypothesis (H;) posits that plasma cell migration is nonrandom.

Next, we calculated the chi-square value (x?) for the migration of plasma
cells from location Di to D; using the following formula:

where O; represents the observed frequency of plasma cells migrating
from D; to D; and E; represents the expected frequency of plasma cells
migrating from D; to D;. With 19 degrees of freedom (df = 19), we obtained
x> = 30.69 and P = 0.0436.

Analysis of differentially expressed genes. Differentially expressed genes
within each cluster were analyzed using the FindAllIMarkers function of the
Seurat package (v4.0.6), and the differential expression of genes between
the two groups was detected using the FindMarkers function. The
parameters were set to min.pct=0.25 and logfc.threshold=0.5.

Spatiotemporal analysis of plasma cell movement analysis. The extraction
and alignment of the BCR repertoire from enriched CDR3 library
sequencing data were conducted using the TRUST4 tool°® with the default
parameters. Additionally, the IGH clonotype was retrieved from the Stamp-
seq snRNA FASTQ file using MiXCR®’ (v3.0.13), employing the default
parameters. The clonotypes of plasma cells from the two sources were
combined (Supplementary Table S6). The pseudotime analysis of plasma
cells in different districts was performed using Slingshot58 (v2.6.0) with the
default parameters. Three pseudotime routes were identified (Supplemen-
tary Fig. S11b~d). The identified cells with IGH clonotypes were overlapped
with IGHGT" and IGHAT" plasma cells (507 of 4735), after which plasma
cell pairs with the same clonotype and belonging to different districts were
isolated. The pair numbers for pseudotime routes 1, 2 and 3 were 44, 4 and
5, respectively. We focused on route 1 because of the apparent abundance
of clonal pairs compared with the other two routes. Using the pseudotime
for each cell (or the average pseudotime for all cells from the same
clonotype in the given district) in each pair, the spatiotemporal
movements between these pairs were determined and summed (Fig. 5f).

Trajectory analysis. The pseudotime trajectory of epithelial cells was
determined with Monocle2®® (v2.22.0). The Seurat-derived count matrix
was transformed into a CellDataSet format using the importCDS() function.
For cell ordering, we identified significantly DEGs (g <0.001) using
differentialGeneTest(), which were then specified as ordering genes in
setOrderingFilter(). Dimensionality reduction and trajectory modeling were
performed using the DDRTree algorithm with reduceDimension(). Tem-
poral gene expression patterns were visualized with plot_genes_in_pseu-
dotime() to monitor transcriptional dynamics over pseudotime.

PROGENy analysis. We evaluated the pathway activity of cells from the
Stamp-seq snRNA dataset using the PROGENy R package®. The “progeny”
function from PROGENy (v1.20.0) was executed with the following
parameters: scale = FALSE, top = 500, and organism = Human.

Scoring gene signatures. HALLMARK gene sets were downloaded from the
Molecular Signature Database (MSigDB; https://data.broadinstitute.org/
gsea-msigdb/msigdb/release/2024.1.Hs/h.all.v2024.1.Hs.symbols.gmt). Sig-
nature scores for malignant cells were calculated using the AddModule-
Score function in Seurat. GSEA of HALLMARK pathways between malignant
cells in PCR and MPR/nonMPR samples in this study was performed using
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the GSEA function of the clusterProfiler (v4.6.2) package®'. Additionally, the
GAVA score of apCAFs in the validation dataset (GSE135222 and
GSE207422) was calculated using the GSVA (v1.46.0) package®?.

Visualization, quantification, and statistical analysis. The visualization of
the spatial distribution of cells was achieved using ggplot2 (v3.4.4).
Statistical analyses were conducted using R (version 4.1.1). The survival
package (v3.2.13) was used to perform the survival analysis, along with the
log-rank test. The pROC (v1.18.0) package®® was utilized to calculate the
AUC for the apCAF signature, the ratio of IGHG1 to IGHAT, and the
combined apCAF signature, along with the ratio of IGHGT to IGHAT to
predict immunotherapy responses in the validation datasets (GSE135222
and GSE207422). Unless stated otherwise, all tests were two-tailed. A P
value of less than 0.05 was considered to indicate statistical significance. In
all the box plots, the median is indicated by the centerline, while the boxes
outline the first and third quartiles.
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