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Population-wide DNA methylation polymorphisms at single-
nucleotide resolution in 207 cotton accessions reveal
epigenomic contributions to complex traits
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DNA methylation plays multiple regulatory roles in crop development. However, the relationships of methylation polymorphisms
with genetic polymorphisms, gene expression, and phenotypic variation in natural crop populations remain largely unknown. Here,
we surveyed high-quality methylomes, transcriptomes, and genomes obtained from the 20-days-post-anthesis (DPA) cotton fibers
of 207 accessions and extended the classical framework of population genetics to epigenetics. Over 287 million single methylation
polymorphisms (SMPs) were identified, 100 times more than the number of single nucleotide polymorphisms (SNPs). These SMPs
were significantly enriched in intragenic regions while depleted in transposable elements. Association analysis further identified a
total of 5,426,782 cis-methylation quantitative trait loci (cis-meQTLs), 5078 cis-expression quantitative trait methylation (cis-eQTMs),
and 9157 expression quantitative trait loci (eQTLs). Notably, 36.39% of cis-eQTM genes were not associated with genetic variation,
indicating that a large number of SMPs associated with gene expression variation are independent of SNPs. In addition, out of the
1715 epigenetic loci associated with yield and fiber quality traits, only 36 (2.10%) were shared with genome-wide association study
(GWAS) loci. The construction of multi-omics regulatory networks revealed 43 cis-eQTM genes potentially involved in fiber
development, which cannot be identified by GWAS alone. Among these genes, the role of one encoding CBL-interacting protein
kinase 10 in fiber length regulation was successfully validated through gene editing. Taken together, our findings prove that DNA
methylation data can serve as an additional resource for breeding purposes and can offer opportunities to enhance and expedite
the crop improvement process.
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INTRODUCTION
Phenotypic variation arises from the integrative impacts of genetic
and epigenetic variations, along with environmental dynamics.
While significant progress has been made in understanding the
genome and genetic variations through genome-wide association
studies (GWAS) in recent decades,1,2 the role of epigenomic
modifications in shaping phenotypic diversity in crops remains
largely unexplored.
DNA methylation is one of the most well-studied epigenetic

marks since the 1950s.3 The addition of a methyl group at the C-5
position of cytosine residues plays a key role in many biological
processes across a wide range of organisms, from bacteria to
humans, including suppressing the activity of transposable
elements (TEs),4 maintaining genome stability,5 regulating gene
expression,6 and affecting the binding of proteins.7 In plants, DNA
methylation of cytosine bases occurs in all cytosine sequence

contexts: the symmetric CG and CHG contexts (in which H= A, T,
or C) and the asymmetric CHH context.8,9 CG methylation is
propagated by the DNA methylation maintenance system during
DNA replication, whereas non-CG (CHG and CHH) methylation is
sustained by a self-reinforcing loop mechanism.10–13 DNA
methylation is known to regulate several important agronomic
traits such as flowering time,14,15 seed dormancy,14 yield,16,17 fruit
ripening,18 and crop resilience.19,20 Also, the semi-dwarf trait in
wheat and rice, which plays a significant role in the success of the
Green Revolution, is controlled by epigenomic mechanisms.21

However, it is still unclear which type of DNA methylation
contributes more significantly to regulating complex traits in
plants.
High-throughput profiling of the epigenome at the cellular level

has the potential to uncover a hidden layer of gene expression
regulation. Pioneering population-level epigenetic studies have
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been conducted in animal22 and plant genomes, such as in
Arabidopsis thaliana,23,24 maize,25,26 rice,27 and soybean.24 These
studies have demonstrated that epi-mutations accumulate over
evolutionary timescales and are associated with adaptation to
ecologically diverse environments.23,28 The formation of agro-
nomic traits is coordinated by a complex interplay of genetic,
epigenetic, and environmental factors. Investigating whether
population-wide variation in DNA modifications contributes to
improving crop traits is a promising avenue for further research.29

Cotton is a crucial natural fiber crop, serving as a sustainable
resource for the global textile industry. The fibers are developed
through a highly synchronized differentiation process of cells
originating from the seed coat. The quality of fiber is determined
during the secondary cell wall thickening stage, which usually
begins around 20 days post anthesis (DPA).30 Throughout the
development and maturation of the fibers, dynamic DNA
methylation patterns have been observed,31,32 creating an
opportunity to investigate inter‐accession epigenomic variation
and its association with fiber traits. Here, we report a compre-
hensive population-wide analysis that integrates methylome,
transcriptome, and genome data collected from 20-DPA fibers of
207 cotton accessions. Through this analysis, we aim to identify
key genes and epigenetic regulatory loci that play a role in
shaping fiber traits. Our findings provide a genome-wide
repository of DNA methylation modifications associated with lint
yield and fiber quality traits. This resource will aid in advancing the
breeding efforts of upland cotton by enabling genomic and
epigenomic selection strategies for trait enhancement.

RESULTS
Construction and characterization of DNA methylation
variation map
A core germplasm upland cotton population (CUCP1)1,33 with 207
accessions was employed for this multi-omics integrative study
(Fig. 1a). All plants were grown in Hangzhou, China in 2021, and
20-DPA fibers at the secondary cell wall (SCW) thickening stage
were harvested for whole-genome bisulfite sequencing (WGBS),
and transcriptome sequencing (RNA-seq) in parallel. Samples for
high-quality genome, methylome, and transcriptome analyses
were obtained for all accessions. WGBS and RNA-seq generated 54
billion and 4.42 billion clean reads, respectively, for a total of 17.76
trillion base pairs (Supplementary information, Fig. S1a, b and
Tables S1, S2). Methylome reads were mapped against the upland
cotton reference genome TM-1 version2.1 (v2.1),34 achieving an
average mapping rate of 74.90% ± 3.55%. All sequenced methy-
lomes had an average coverage depth exceeding 15 folds
(Supplementary information, Table S1). After strict data processing
and quality control, 62.32 million (M), 66.06 M, and 433.01 M
methylated cytosines were quantified in CG, CHG, and CHH
contexts, respectively (Supplementary information, Fig. S1c‒e and
Table S1). The RNA-seq profiling was conducted using two
biological replications for each accession. The Pearson correlation
coefficients (PCCs) of paired biological replicate transcriptomes
were significantly higher than those of randomly selected samples
(Wilcox test, P < 2.2 × 10‒16), confirming the high quality of our
data (Supplementary information, Fig. S1f). In parallel, 3.05 trillion-
base pair whole-genome sequencing (WGS) of the accessions
generated 1,282,390 biallelic high-quality SNPs (minor allele
frequency (MAF) > 0.05 and missing ratio < 20%), which were
used for expression quantitative trait loci (eQTL) and expression
quantitative trait methylation (eQTM) mapping (Fig. 1a). The
collected datasets provide a comprehensive study of accession-
specific gene expression and DNA methylation status in upland
cotton, enabling an investigation into the influence of DNA
methylation on agronomic traits.
Methylome data generated from the 207 accessions showed

that the cotton genome is highly methylated, especially in

heterochromatin regions (Supplementary information, Fig. S2).
The genome-wide DNA methylation was about 72%, 55%, and
11% in contexts of CG, CHG, and CHH sites, respectively
(Supplementary information, Table S1). The CG methylation ratio
in our study is consistent with previous estimates in cotton,14

higher than that in orange fruit (CG: 41%),18 while lower than that
in barley (CG: 94.7%).35 The 207 accessions also exhibited
genome-wide variation in cytosine methylation (CG-interquartile
range (IQR) = 8.08%; CHG-IQR= 6.75%, and CHH-IQR= 1.37%)
(Fig. 1b, c). Genome-wide CG DNA methylation exhibited a strong
correlation with CHG DNA methylation levels (PCC= 0.95, P < 2.2
× 10‒16), while a low correlation with CHH DNA methylation levels
(PCC= 0.22, P= 0.0012) (Fig. 1d). Within each accession, the
genome-wide distribution of DNA methylation followed a
binomial distribution (Supplementary information, Fig. S3), reflect-
ing that each site is either completely methylated or unmethy-
lated. This characteristic justifies the conversion of methylation
levels (%) at each cytosine to binary values to represent
methylation variation, the feasibility of which has been validated
in a previous human study.36 Therefore, the definition of a single
methylation polymorphism (SMP) was adopted as the DNA
methylation variation on each allele of homologous chromosomes
at a specific cytosine location. Three epi-alleles can be identified
for an SMP: both methylated (MM allele, 70% < mC% ≤ 100%),
both unmethylated (UU allele, 0 ≤mC% ≤ 30%), and heterozygosis
(MU allele, 30% < mC% ≤ 70%) (Fig. 1a).
Phylogenetic analysis based on SMPs grouped the 207

accessions into four clades (Supplementary information, Fig. S4).
Clade II included American landraces Stoneville 2B (STV2B) and 86-
1, and modern cultivars developed from STV2B collected from the
Chinese Yellow River cotton-growing area. Clade III contained
American landrace Deltapine 15 (DPL15), and cultivars developed
primarily from DPL15 planted in all three cotton-growing areas of
China (Supplementary information, Fig. S4).
The number of common SMPs (MAF ≥ 0.05, 16.15 M for CG,

33.41 M for CHG, and 237.74 M for CHH) in the cotton genome is
much larger than the number of SNPs (1.28 M) (Fig. 1e). The MAF
of CHH-SMPs is 0.22, larger than the values obtained for CHG-
SMPs (MAF= 0.11), CG-SMPs (MAF= 0.05) and SNPs (MAF= 0.14)
(Fig. 1f).
MAF values of SMPs vary across different genomic features

(Fig. 1g; Supplementary information, Fig. S5a and Table S3). The
CG-SMP MAF value of TEs is half of that of protein-coding genes
(PCGs) that include exons and promoters (Fig. 1g), while the MAF
value of SNPs was similar among TEs and PCGs (Fig. 1h). In the
cotton genome, many repetitive sequences are located in exon
regions. CG-SMPs located within exons can be classified as either
TEs or non-TEs. The MAF of CG-SMPs located within TEs was
significantly lower than those not in repetitive sequences
(Wilcox test, P= 6.8 × 10‒4) (Supplementary information, Fig. S5b).
It was interesting to note that the CG-SMP MAF was significantly
lower in TEs, although TEs are usually highly methylated. Notably,
common CG-SMPs (MAF ≥ 0.05) were three times more enriched
in intragenic regions compared to other SMP types (CG-SMP:
27.53%, CHG-SMP: 9.78%, and CHH-SMP: 10.49%) (Supplementary
information, Fig. S5c). This result is consistent with a previous
report in Arabidopsis, demonstrating that varied genic methylation
tends to occur in the CG context within the transcribed region.37

To characterize the relationships between adjacent DNA
methylation loci,38 the concept of linkage disequilibrium (LD)
was applied to DNA methylation, henceforth termed methylation
disequilibrium (MD). The average distance at which MD decayed
to half of its maximum value was about 50 bp (Fig. 1i), consistent
with previous estimations in humans and Arabidopsis.22,36 Notably,
the decay of MD was significantly faster than LD (Supplementary
information, Fig. S5d), which was reported to span over 300 kb in
the same population.1 In addition, the MD of CHH was lower than
those of CHG and CG (Fig. 1i), suggesting that methylation at the
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Fig. 1 Extensive variation pattern of DNA methylation in a natural population. a Workflow of the multiple-omics association. The bottom
panel refers to the definition of SMP. b An example of genomic regions exhibiting DNA methylation diversity among different accessions. Each
track represents a distinct accession. c 3D plot illustrating the diversity of DNA methylation among different accessions. d The correlation
among three different DNA methylation contexts. e Bar plot demonstrating the number and portion of SMP with MAF greater than 0.5.
f Density plot showing MAF distributions for CG, CHG, CHH-SMPs and SNPs. g, h Box plots showing the distribution of MAFs of SMP (g) and
SNP (h) for CG sites across different genomic features. i Comparison of LD decay among different DNA methylation contexts (vertical axis: LD
level; horizontal axis: pairwise distance).
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symmetrical CG and CHG sequences might be preferentially
maintained across mitotic and meiotic cell divisions.39 Thus, DNA
methylation is an important source of variation in intragenic
regions.

Genetic variations in gene-enriched regions have major
impacts on the methylome
To characterize the genetic impacts on DNA methylation, we
mapped the genetic variants that affect DNA methylation. First, a
genome-wide random sampling of 50,000 CG-SMPs, CHG-SMPs,
and CHH-SMPs, accounting for 0.31%, 0.15%, and 0.021% of each
SMP type, respectively, was selected to reassess meQTL in both
cis- and trans-effects, in parallel. We define meQTL as cis-meQTL if
the distance between the SNP and the associated SMP is within
1 Mb. 119,685, 37,831, and 24,683 meQTLs were identified in CG,
CHG, and CHH contexts, respectively. Although a large number of
trans-meQTLs were identified through the meQTL analysis (Fig. 2a),
cis-meQTLs exhibited greater levels of significance compared to
trans-meQTLs (Fig. 2b).
To minimize false positives and reduce the computational

burden, only cis-meQTLs were chosen for further analysis. In
parallel, all SMPs (n= 287.30 M) were subjected to cis-meQTL
analysis via the software fastQTL.40 In total, 5,426,782 cis-meQTLs
were identified including 940,794 CG-cis-meQTLs, 883,280 CHG-
cis-meQTLs, and 3,602,708 CHH-cis-meQTLs. Only a small propor-
tion of DNA methylation loci (5.82%, 2.64%, and 1.52% of CG, CHG,
and CHH sites, respectively) were found to be involved in cis-
meQTLs. A proportion of cis-meQTLs of three DNA methylation
contexts (CG, CHG, and CHH) showed co-localization (Fig. 2c).
Additionally, the distance between the SNP and its associated SMP
of CG-cis-meQTLs exhibited shorter spans in comparison to those
observed in the CHG and CHH contexts (Fig. 2d).
The distribution of cis-meQTL is uneven across the genome,

showing a higher density near the chromosome ends (Fig. 2e;
Supplementary information, Fig. S6). To assess the pattern of cis-
meQTL enrichment in different genomic features, we explored
distribution bias using Fisher’s exact test, comparing the observed
frequency with the expected frequency. The results showed
that cis-meQTLs were significantly enriched in intragenic regions
(Fisher’s exact test, P < 2.2 × 10‒16), but significantly depleted in
TEs (Fisher’s exact test, P < 2.2 × 10‒16) (Fig. 2f).

The involvement of SMPs in expression regulation
Given that cis-meQTLs are enriched in PCGs across natural
populations (Fig. 2e, f), exploring the relationship between DNA
methylation and gene expression holds significance. Thus, we
investigated the impact of DNA methylation on local gene
expression through eQTM analysis using transcriptomes from
the same harvested tissues (Fig. 3a; Supplementary information,
Table S2). The population-wide transcriptome analysis was
performed against the reference genome of TM-1 v2.0 annotated
with 71,994 PCGs.34 In total, 21,181 long noncoding RNAs
(lncRNAs) were annotated in this study. 41,632 PCGs and 5469
lncRNAs expressed in more than 5% of the population were
retrieved for determining eQTL and eQTM. A total of 5078 cis-
eQTMs were identified via fastQTL software,40 consisting of 3505
PCG-eQTMs and 1573 lncRNA-eQTMs (Fig. 3b). They were mapped
to 2619 genes, representing 5.69% of the PCGs and 29% of the
lncRNAs expressed in 20-DPA fiber (Fig. 3c; Supplementary
information, Table S4). The cis-eQTMs genes showed enrichment
in processes including long-chain fatty acid metabolism, trichome
branching, and glucose homeostasis, likely related to fiber
development by Gene Ontology (GO) analysis (Supplementary
information, Table S5). In addition, it is common to observe
simultaneous association of cis-eQTMs genes among different
methylation contexts (Fig. 3d). For example, cis-eQTMs genes
associated with all three methylation contexts account for a large
portion of all cis-eQTMs genes (30.85% for PCGs and 60.24% for

lncRNAs) (Fig. 3d). The analysis revealed that the majority of eQTM
genes were associated with CG methylation, comprising 91% and
96% of eQTM PCGs and lncRNAs, respectively (Fig. 3d). This
indicates that CG methylation plays a more crucial role in gene
regulation compared to the other two types of methylation. At the
population level, 90% of cis-eQTMs were biased to positions
upstream of PCGs and lncRNAs (Fig. 3e). Furthermore, we
observed that methylation levels of CG-eQTMs and CHG-eQTM
located in the proximal promoter were negatively correlated with
gene expression compared to eQTMs located in distal gene
regions and gene bodies (Supplementary information, Fig. S7).
eQTL mapping was subsequently performed by Efficient Mixed

Model Analysis Expedited (EMMAX) using the obtained SNPs and
expression profiles. A total of 9157 eQTLs were detected, involving
5921 eSNPs and 7398 eGenes (PCG, n= 5197; lncRNA, n= 1014)
(Fig. 3f; Supplementary information, Table S6). They were further
subdivided into 926 cis-eQTLs and 8231 trans-eQTLs according to
relative eGene (genes regulated by eQTL) location using an
empirical distance threshold (1 Mb) (Fig. 3g).41,42 A set of 67 genes
encoding critical proteins in DNA methylation establishment were
further investigated, from which we identified cis-eQTL and cis-
eQTM for De Novo 2 (IDN2), a gene involved in RNA-directed DNA
methylation (Supplementary information, Fig. S8a and Table S7).
We adopted a strategy similar to that of Meng et al.,43 to cluster

the patterns of genomic regulation for eQTM genes into three
categories (Fig. 3h), genetic/cis-epigenetic regulated (type I),
genetic/trans-epigenetic regulated (type II), and epigenetic
regulated only (type III). Regarding the SMP of eQTM, we carried
out meQTL analysis. The eQTM genes from type II constituted a
small portion (less than 20%) of the total eQTM genes (Fig. 3h).
The eQTM genes characterized as type III account for 33.63%‒
38.14% of the share (Fig. 3h), indicating an active role of DNA
methylation involved in gene expression regulation. The co-
regulated genes showed enrichment in organonitrogen com-
pound biosynthetic process (Fisher’s exact test, P= 3.6 × 10‒8),
sulfur compound biosynthetic process (Fisher’s exact test, P= 5.29
× 10‒7), and acetyl-CoA biosynthetic process (Fisher’s exact test,
P= 1.62 × 10‒4) (Supplementary information, Fig. S8a‒c).

Epigenome-wide association studies for agronomic traits
revealed a large number of elite epi-alleles
Our cis-meQTL analysis revealed that the majority of SMPs were
not associated with genetic variations, consistent with a previous
study reporting that DNA methylation variation in Arabidopsis
occurs independently of genetic variation.22 This suggests that
epigenetic associations may not be captured by SNP-based
markers. Using common SMPs (MAF ≥ 0.05) across the genome,
instead of SNPs, we performed an epigenome-wide association
study (EWAS) for nine traits using EMMAX software,44 which
yielded 848 CG-EWAS loci (P= 6.52 × 10‒8), 467 CHG-EWAS loci
(P= 3.09 × 10‒8), and 400 CHH-EWAS loci (P= 4.42 × 10‒9) (1715
in total) (Fig. 4a; Supplementary information, Table S8). Of these
loci, 1010 were associated with yield-related traits, and 705 with
fiber qualities (Supplementary information, Fig. S9a, b). When
considering different contexts, the majority of EWAS loci were
independent of each other, except for the 22 loci shared by at
least two sequence contexts (Fig. 4b).
Approximately 27.67% of CG-EWAS loci, 19.92% of CHG-EWAS

loci, and 16.19% of CHH-EWAS loci were located within a 2-kb
flanking region of a protein-coding or lncRNA gene (Fig. 4c).
Figure 4d and e present an example of an EWAS signal associated
with the yield trait (lint percentage, LP) that occurred in the
promoter of a gene encoding a nucleoporin interacting component
(Nup93). Further, different epi-alleles corresponded to varying LP
values (Two-tail unpaired Student’s t-test, P < 2.2 × 10‒16) (Fig. 4f).
To analyze the relationship between the genetic and epigenetic

variance in trait variation, we constructed a map that combines
EWAS loci with GWAS loci across all 207 accessions (Fig. 4g). GWAS
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Fig. 2 The genetic basis of three contexts of DNA methylation. a The genomic distribution of SMP and their associated SNPs. The x-axis
indicates the genomic positions of the significant SNPs, while the y-axis shows the genomic positions of the corresponding SMPs. 50,000 SMPs
of CG, CHG and CHH were chosen for genome-wide meQTL analysis. b Box plot showing the distribution of ‒log10(P) of cis- and trans-meQTL.
Boxes show the medians and IQRs. c UpsetR plots illustrating the proportions of shared cis-meQTLs among different DNA methylation
contexts (Fisher’s exact test, ***P < 0.001). d The distance between DMR and the significant SNP. e The genomic distribution of cis-meQTL
across the genome. f Enrichment and depletion of cis-meQTLs across different genomic features.
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Fig. 3 Gene expression variations influenced by DNA methylation. a Workflow of the eQTL analysis. b Number of cis-eQTMs identified in
PCGs and lncRNAs. c Percentage of PCGs and lncRNAs influenced by DNA methylation. d UpsetR plots of overlapping and specific cis-eQTM
genes. Right: PCGs; left: lncRNAs. Cis-eQTMs related to CG are labeled in red; others are painted in blue. e Distance of lead SMPs to the
associated transcription start site. Left: PCGs; right: lncRNAs. f Scatter plot of high-confidence eSNP-expression associations. Each dot
represents a detected eQTL. Expression of eGenes is plotted on the y-axis and eSNPs on the x-axis. g Pie plot showing the number of cis- and
trans-eQTLs. h Characterization of eQTM genes identified in both eQTM and meQTL analyses. These loci were categorized into three groups.
Genetic & cis-epigenetic regulated (type I), genetic & trans-epigenetic regulated (type II) and epigenetic regulated only (type III).
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identified 187 loci associated with nine traits related to fiber
quality and yield.1 EWAS further identified a total of 1715 trait-
associated epigenetic loci, of which only 16 (0.93%) were located
near GWAS loci (< 20 kb) (Supplementary information, Table S8).
For example, the epi-allele of the EWAS locus on chromosome A11
was significantly associated with LP, but no GWAS signal was
detected at that locus (Supplementary information, Fig. S9c).
Representative examples of EWAS loci that overlap with GWAS loci
are shown in Supplementary information, Fig. S9d, e. In sum, these
results illustrate that DNA methylation provides an additional layer
of regulation to agronomic traits. Further, in our analysis of the
EWAS loci that did not coincide with GWAS loci, we identified 992
loci with trans-meQTL effects, out of which 20 were associated
with GWAS loci (Fig. 4h; Supplementary information, Table S8).
To assess the pyramiding effects of elite epi-alleles of EWAS loci

for each trait of interest in the Gossypium hirsutum (G. hirsu-
tum) germplasm, we compared traits among accessions carrying
multiple elite epi-allelic combinations. The result revealed
that accessions with more elite alleles consistently exhibit better
trait performance (Supplementary information, Fig. S10). Since
SNPs and SMPs represent different types of molecular information
potentially associated with the phenotypes, utilizing a combina-
tion of SNPs and SMPs, we can improve the predictive
performance for agronomic traits related to fiber yield and quality
(Supplementary information, Fig. S11).

Identification of fiber-related genes through multi-omics
association analysis
Our multi-omics association analyses yielded 187 GWAS loci, 9157
eQTLs, 1715 EWAS loci, 5078 cis-eQTMs, and 5,426,782 cis-meQTLs.
To examine the gene regulatory network (GRN) that complements
the GWAS/EWAS loci, we constructed the GRN of gene expression
by integrating the GWAS loci and eQTLs based on LD blocks
(Fig. 5a).
51 GWAS loci were found to co-localize with 376 eQTLs within

the same LD block (r2 > 0.1). The corresponding GRN for six fiber
traits comprised 634 connections among 397 genes. Within this
GRN, 77 (19.40%) eQTL genes were also eQTM genes, indicating
co-regulation of gene expression by DNA methylation and
genetic variation. Networks associated with four fiber traits (fiber
yield (LP), strength (FS), length (FL), and micronaire (FM)) were
depicted in Fig. 5b, including multiple genes known to be
involved in fiber elongation, such as genes encoding Expansion
A4,45 cellulose-synthase-like (CSL),46 ACTIN1,47 TCP transcription
factors,48 bHLH transcription factors, and uridine diphosphate
(UDP)-glucose.
An epigenetic regulation network, referred to as the epigenetic

GRN, was established by integrating EWAS loci and eQTMs
(Fig. 5a). In addition, an alternative epigenetic GRN was
constructed using 47 eQTMs that co-localized with EWAS loci
(Fig. 5b; Supplementary information, Table S9). A comparison
between these two networks revealed only four genes in
common, encoding trypsin protein and RIBOSOMAL PROTEIN
EL8Y, GH_A06G1022, and aldehyde dehydrogenase (Fig. 5c;
Supplementary information, Table S9). The minimal overlap
between the two networks demonstrated the complex regulatory
mechanisms governing fiber traits.
An EWAS locus (A03:4217197) associated with LP was located in

the promotor of CIPK10 that encodes a CBL-interacting protein
kinase (Supplementary information, Table S8), which is a
candidate fiber development gene in a Gossypium barbadense
population.2 We also identified it as an eQTM gene, with DNA
methylation status at a CG-SMP (A03:4217260) associated with
both CIPK10 expression (Student’s t-test, P= 2.5 × 10‒4) and LP
(Student’s t-test, P= 2.5 × 10‒4) (Fig. 5d). Knocking out CIPK10
through CRISPR/Cas9 gene editing system49 (Supplementary
information, Fig. S12) resulted in shorter FL (CIPK10 CRKO-1,
25.0 ± 0.8 mm; CIPK10 CRKO-2, 24.22 ± 0.5 mm) compared to wild

type (31.00 ± 0.4 mm) (Student’s t-test, CIPK10 CRKO-1, P= 3.72 ×
10‒4; CIPK10 CRKO-2, P= 5.06 × 10‒5) (Fig. 5e, f).

Prediction of functional CG methylation based on DNA
sequence using DeepFDML
Deciphering the functional impacts of regulatory elements poses a
crucial challenge in functional genomic studies for advancing next-
generation crop breeding strategies. Deep learning models have
been applied to uncover functional patterns in genetic elements by
integrating genomic sequences with molecular features such as non-
coding region transcription50 and cis-elements within promoters.51

However, such an approach for predicting functional epi-
modification loci has not yet been developed.
Here, we developed a deep learning model named Deep

Functional DNA Methylation Loci (DeepFDML) to predict func-
tional SMPs, which are SMPs associated with variations in gene
expression. The DeepFDML model was trained on genomic
sequences corresponding to functional CG sites, namely the
2336 non-redundant CG loci associated with 2423 CG-eQTMs (i.e.,
positive samples). To ensure the balance of training data, another
set of 2336 CG-SMPs was randomly selected as the negative
group. The flanking sequences of each CG-SMP locus were
transformed via one-hot encoding (Fig. 6a).
To evaluate the impact of DNA methylation on gene expression,

we first built a convolutional model consisting of a convolutional
layer (kernel size of 11 and channel of 128) and a fully connected
layer (Fig. 6a). The models were evaluated using a five-fold cross-
validation approach, and the accuracy of our model reached 0.65 in
both receiver operating characteristic curve (ROC) and the precision-
recall curve (PRC) (Fig. 6b). Subsequently, a more complex DeepFDML
model was constructed to improve the accuracy, adopting an
architecture similar to the pre-trained Enformer model as its
backbone.52 This advanced DeepFDML model contains a convolution
part of seven convolution-pool blocks and a transformer part with 11
transformer encoding layers (Fig. 6a). The model achieved an ROC of
0.82 and an PRC of 0.78, significantly surpassing the performance of
the convolutional model (Fig. 6b, c). Based on these results, we
conclude that functional SMPs can be identified based on DNA
sequence patterns through predictive models using deep learning
approaches.

DISCUSSION
The investigation of DNA methylation’s impact on traits at a
population level has been a hot topic for over a decade.22,25,26,53

Epigenetic recombinant inbred lines (epi-RILs) have been devel-
oped to analyze the effect of the epigenome on the pheno-
type,15,54,55 illustrating the relationship between phenotypic
variation and phenotypic plasticity, independent of genetic
factors. Population-wide DNA methylation studies in plants have
been conducted in A. thaliana,22,23 maize,25,26,53 and soybean.24

Studies were also conducted in A. thaliana mutation accumulation
(MA) lines to determine the rate at which single cytosines in the
CG context acquire methylation, estimated at 2.56 × 10−4 per
generation per haploid methylome.56,57 The intra-specific methy-
lation variation seems to be broadly conserved.39 Short-term
changes in DNA methylation are predominantly driven by
spontaneous epi-permutational events.28 Thus, the phylogenetic
tree based on cotton SMPs was consistent with accession
pedigrees, in line with previous studies.22,58–60

We found that in the same cotton natural population, the
number of DNA methylation polymorphisms is 100 times higher
than that of genetic variation represented by SNPs (Fig. 1e). This
finding is consistent with the rapid evolutionary pace of DNA
methylation.56,57 Interestingly, the LD length is over 1000 times
greater than MD (Fig. 1i). The complexity of DNA methylation
haplotype in a given chromosomal region far exceeds that of
SNPs. In our study, the average size of the MD block is 50 bp, a
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measurement consistent with previous reports on Arabidopsis22

and human genomes.36

One interesting discovery is that purifying selection of DNA
methylation was observed in TE, which contrasts with the genetic
variations featured by SNPs (Fig. 1g, h). The new pattern that CG DNA
methylation variation biased to PCGs in the cotton population
provides strong evidence that this epigenetic modification could
regulate gene expression as an alternative source of DNA variation.

Population variation in DNA methylation is usually studied at
the level of differentially methylated regions (DMRs) or average
methylation levels of units.23,25 In mammals, the majority of
research in this area has been conducted using SMP.39 One
possible explanation is the cost associated with association
analysis. The use of DMRs can significantly reduce the computa-
tional burden, but the definition and length of DMRs depend on
the sample size and relevant parameters. To the best of our

Fig. 5 Genetic and epigenetic regulation networks associated with fiber development. a Analytical workflow for the construction of a
functional GRN. Both eQTM and eQTL analyses were conducted to obtain causal sites in EWAS and GWAS loci, respectively. Loci within the
same LD block (r2 > 0.1) were merged into one lead SNP, and eGenes within an LD block were clustered into a GRN. The same steps were also
conducted for EWAS loci. b Gene networks regulating cotton fiber traits. Right: genetic variation-dependent network constructed by
integrating GWAS and eQTL; left: epigenetic regulation network constructed by integrating EWAS and eQTM. c Heatmap showing candidate
genes identified by colocation analysis. d Expression levels and LP of CIPK10 across different epi-alleles. e Image illustrating the performance of
gene editing (CRISPR knockout, CR-KO) on the eQTM gene GhCIPK10, which regulates fiber traits. f Fiber length in two CIPK10CR-KO lines
(Student’s t-test, **P < 0.01, n= 6).
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knowledge, the study presented here represents the first single
nucleotide-level EWAS in the crop genome, performing associa-
tion analysis at the individual base level.
In contrast to animals, plants exhibit three distinct contexts for

DNA methylation (CG, CHG, and CHH). However, it remains unclear
which type of DNA methylation plays a more significant role in
regulating gene expression in plants. In this study, we selected 20-
DPA fiber as the main focus of analysis in our study to examine the
gene expression changes associated with genetic and epigenetic
variations during the fiber-quality determining stage. The
genome-wide catalogs of cis-regulatory eQTL, meQTL, and eQTM
were well characterized. Because of the population-wide workload
in this study, only one developmental stage of 20-DPA fiber was
selected. QTLs that are specifically present in other tissues were
not examined.
We found that DNA methylation regulated approximately 5.69% of

PCGs and 29% of lncRNA (Fig. 3c). The majority of eQTM genes was
associated with CG methylation (Fig. 3d), indicating that CG
methylation plays a more important role in gene regulation. Similar
results were previously observed in DNA methylation transferase null
mutants in Arabidopsis.61 Further, an interesting discovery is that 36%
of 2619 eQTM genes were not identified as eGenes of cis-eQTLs
(Fig. 3h), indicating the existence of new types of sites with potential

regulatory roles beyond genetic variation. Variations in CG methyla-
tion may contribute to missing heritability.
Epi-alleles contribute to agronomic traits. Studies using epi-RILs

strongly indicate that epigenetics is involved in heritable phenotypic
changes.15,54 Despite these studies, the EWAS focusing on an
agronomic trait is rare. Our research identified 1715 epi-alleles that
contribute to phenotypic variations. We observed the cumulative
effects of elite EWAS alleles for each trait (Supplementary information,
Fig. S10). The functional loci identified could serve as a valuable
resource for understanding the regulatory mechanisms of complex
traits. Interestingly, given that most of the EWAS and GWAS loci are
independent of each other (Fig. 4h), we speculated that the EWAS loci
may contribute to phenotypic variance in addition to genetic
variations.
Identifying functional DNA methylation sites in the genome is

challenging. Our results suggest that systematic population
sequencing is an effective strategy, albeit costly. Therefore,
predictivemodels based on DNA sequences are crucial for functional
locus characterization and will benefit studies of other closely related
species that lack population-scale DNA methylation data. Through
population-scale multi-omics association analysis, our study gener-
ated an essential training dataset and demonstrated the predict-
ability of functional DNA methylation loci (Fig. 6). While our current

Fig. 6 A convolutional neural network for functional CG site prediction. a Schematic diagram showing the pipeline of the proposed deep
learning method. It mainly contains four components: input sequence, backbone, feature selection, and output layer. Each input was a one-
hot-encoded DNA sequence of 8192 bp centered at the CG site. The backbone was from the pre-trained Enformer model. In feature selection,
features of the middle eight positions were utilized. The output layer, a fully connected layer, was a binary classifier. b Receiver operating
characteristic (ROC), curve measured on the whole dataset. c Precision-recall curve, measured on the whole dataset.
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findings are rudimentary, it is crucial to emphasize the importance of
developing models capable of generalization in the future.

METHODS
Plant materials and DNA sequencing
A set of core germplasms (n= 207) from different regions of China were
obtained. Plants were grown in Hangzhou, Zhejiang province. Fiber (20-DPA)
of each genotype was harvested with two biological replications for WGBS
and RNA-seq. For WGBS, genomic DNA was extracted using the DNeasy Plant
Kit (Qiagen, Valencia, CA, USA) from frozen and ground 10-rosette leaves, and
harvested just before bolting. Genomic DNA (2 μg) was fragmented with a
Covaris S2 (Covaris, Woburn, MA, USA) to 200 bp, followed by end repair (End-
It, Epicenter) and the addition of a 3′-tailing buffer (NEB). Cytosine-methylated
adapters provided by Bio Scientific (NEXTflexTM Bisulfite-Seq Barcodes-12)
(Bio Scientific Corp, Austin, TX, USA) were ligated to the sonicated DNA at
16 °C for 16 h using T4 DNA ligase (New England Biolabs, Ipswich, MA, USA).
The adapter-ligated DNA was then subjected to two rounds of purification
with AMPure XP beads (Beckman Coulter Genomics, Danvers, MA, USA),
followed by sodium bisulfite conversion of an aliquot (≤ 450 ng) using the
MethylCode kit (Life Technologies, Carlsbad, CA, USA) following the
manufacturer’s instructions. The bisulfite-converted, adapter-ligated DNA
molecules were enriched by four cycles of PCR with the following reaction
mixture: 20 μL of bisulfite-converted sample, 25 μL of Kapa HiFi Hotstart
Uracil+ Ready mix (Kapa Biosystems, Woburn, MA, USA), and 5 μL TruSeq PCR
Primer Mix (Illumina, San Diego, CA) (50 μL final volume). The thermocycling
parameters were: 95 °C for 2min, 98 °C for 30 s, then four cycles of 98 °C for
15 s, 60 °C for 30 s, and 72 °C for 4min, ending with one 72 °C hold for 10min.
The reaction products were purified using AMPure XP beads according to the
manufacturer’s directions. WGBS libraries were sequenced paired-end 150 bp
using the Illumina HiSeq 2500 (Illumina, San Diego, CA, USA) instrument as per
the manufacturer’s instructions. Each library was sequenced to obtain a
volume of 254.43 ± 5.38 million reads.

DNA methylation data normalization and quality control
The raw WGBS data were processed using fastp (v0.12.2) to control the
quality of reads and to remove adapter contamination, low-quality bases,
and bases artificially introduced during library construction.62 WGBS reads
were mapped to the G. hirsutum (TM-1) genome34 using Bowtie2 (v1.2.2),
and implemented in Bismark with parameters (--score_min L,0, -0.2 -X 1000
--no-mixed --no-discordant).63,64 The resultant average mapping rate was
74.90% ± 3.55% (Supplementary information, Table S1); thus, it was not
necessary to construct a pseudo-reference to improve the mapping rate
for this cultivated cotton population. The non-conversion rate (the rate at
which unmethylated cytosines failed to be converted to uracil) was
calculated based on reads mapping to the lambda genome; the average
conversion rate so obtained was 99.70 ± 0.03, suggesting highly efficient
bisulfite conversion (Supplementary information, Table S1).
Only reads mapped to unique genomic locations were retained and used

for further analysis. After filtering duplicated reads, we extracted methylated
cytosines using the Bismark methylation extractor (v0.19.0) and retained
those having more than five mapped reads.64 The methylation level at each
cytosine site was then determined as the number of reads supporting
cytosine methylation divided by the total number of reads.65 Hence, the
methylation level ranged from 0 (unmethylated) to 1 (methylated).
Two quality-control steps were performed to screen cytosine sites: (1)

removal of sites with < 5 coverage and high missing rate (missing in > 30%
of the samples), and (2) removal of methylation loci that failed methylation
detection at which an SNP was present. We then annotated SMPs
according to their overlap with the following genomic regions: Refseq
gene bodies, promoter regions (2 kb upstream of a transcription start site),
poly (A) regions (2 kb downstream of a transcription end site), and TEs.

DNA methylation across the population
DNA methylation at each mC locus was measured as mC% = 100 ×
methylated reads/(methylated reads + unmethylated reads). DNA
methylation levels were translated into epi-alleles as follows:

Individual epi-alleles ¼
MM; if 0:7<mC � 1

MU; 0:3<mC � 0:7

UU; if 0 � mC � 0:3

8
><

>:

For two SMP loci SMP1 and SMP2, we propose that SMP1 has two alleles
M1 and U1, and SMP2 likewise has two alleles M2 and U2. The frequencies
of the four SMP alleles are denoted as pM1, pU1, pM2, pU2. Methylation
equilibrium (ME) is defined as the case where SMP1 and SMP2 are
independent; that is, no association exists between SMP alleles at the two
loci. Based on the principle of independence, MD and Mr2 can be
described using the formula:

MD ¼ pM1M2 � pM1pM2

MD coefficientMr2

Mr2 ¼ MDð Þ2
PM1PU1PM2PU2

The range of Mr2 is also between 0 and 1.
The MAFs of SMPs were estimated by analyzing the variant sites

(MAF ≥ 0.05) using vcftools (v 0.1.16).66

Measurement of the methylation level of a region
The methylation level of a region was calculated based on the weighted
DNA methylation:

Xn

i¼1

Ci

�
Xn

i¼1

Ci þ Ti

where C is the number of reads supporting methylated cytosine, T is the
reads supporting unmethylated cytosine, i is the position of the cytosine,
and n is the total number of cytosine positions.

DNA genotyping
Genotype data were obtained in our previously published study.1 WGS data
were quality controlled using fastp (v0.12.2) with default parameters. Genome
and annotation files of TM-1 v2.134 were indexed using a BWA (v0.7.17-r1188)
index with the flag (-a bwtsw), and reads were mapped to that reference
genome using STAR aligner (v2.7.0d).67 The resulting SAM files were sorted,
indexed, and converted to BAM files using SAMtools (v1.16). Only uniquely
mapped non-duplicated reads were used for SNP calling according to the
best practices pipeline of GATK (v3.7).68 Duplicated reads in alignment BAM
files were marked using Picard Tools (http://picard.sourceforge.net). SNPs
were called based on a minimum phred-scaled confidence threshold of 20
(-stand_call_conf > 20) using the GATK tool HaplotypeCaller and then filtered
using the GATK tool VariantFiltration with the following requirements: Fisher
strand value (FS) < 30.0 and quality by depth value (QD) > 2.0.68 For GWAS
and eQTL analysis, SNPs having a high missingness rate (> 20%) or low
MAF (< 0.05) were removed using VCFtools (v0.1.16) with the parameters
(--remove-indels, --maf 0.05, --max-maf 0.95, --max-missing 0.8).66 Missing
genotypes were imputed using Beagle (v3.1.1) with the following parameters
(window = 50000, overlap = 5000, ibd = True).69 This process identified 1.19
million autosomal SNPs, output in a variant call format (VCF) file.

RNA-seq library construction and transcriptome sequencing
For RNA profiling, 20-DPA fibers were harvested from 12:00 to 13:00. The
aim was to collect samples in the shortest amount of time possible to
minimize the effects of physiological changes. Harvested ovules were
frozen with liquid nitrogen for RNA extraction. Total RNA was extracted by
the Trizol (Invitrogen) method according to the manufacturer’s instruc-
tions, and RNA quality was verified with an Agilent 2100 Bioanalyzer
(Agilent). Transcriptome libraries were constructed according to the
standard Illumina RNA-seq protocol (Illumina, Inc., San Diego, CA, USA, Cat#
RS-100-0801). RNA and DNA sequences were generated as 150 bp paired-
end reads from libraries having inserts of 350 bp.

RNA-seq mapping and analysis
For each genotype, mRNA-seq libraries were constructed with two
biological replications and were paired-end sequenced for 126 cycles.
RNA-seq reads were aligned to the reference genome (TM-1) using Hisat2
(v2.1.0).70 Transcript abundance was quantified with StringTie (v1.3.3b)70

and normalized to fragments per kilobase of transcript per million reads
(FPKM). Only genes having an FPKM ≥ 1 in ≥ 5% sample were included.
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LncRNA analysis and prediction
To examine the expression of non-coding sequences, we performed
population-level transcript assembly of lncRNAs. An average of 24.34
million reads was obtained from each library. Clean reads (150 bp paired-
end) were aligned to the TM-1 v2.1 reference genome using Hisat2 (v2.1.0)
with parameter (--dta).71 Mapped reads in each library were subsequently
passed to StringTie (v1.3.3b) for transcript assembly71 using annotated TM-
1 transcripts34 as the reference transcriptome; the assembled transcripts
were combined into a unified set using cuffmerge with parameter (-c 3).70

Transcripts of less than 200 nt were discarded. Using Cuffcompare (v2.2.1),
transcripts were given a class code of “u”, respectively, representing
intergenic sequences, antisense sequences of known genes, and intronic
sequences. The Coding Potential Calculator2 (CPC2) (v0.1)72 was used to
calculate the coding potential of transcripts of each given class (“u”) with
default parameters. All transcripts with CPC scores > 0 were discarded. The
remaining transcripts were subjected to pfam_scan to exclude those
containing known protein domains (cutoff < 0.001).73 The transcripts left
after that step were considered candidate lncRNAs. To reduce isoform
complexity, only the longest transcript of each locus was used for further
analysis.

eQTM analysis
To study the relationship of DNA methylation variation with gene
expression, we examined SMPs located within 1 Mb of the midpoint of
each gene. We treated methylation levels as marked and the expression
of individual genes as the phenotype and assumed that each
phenotype can be modeled as y= 1 using a linear mixed model
approach by fastQTL (v7, https://github.com/francois-a/fastqtl).40 Gene
expression was quantile-normalized to the standard normal distribution
N (0,1) as phenotype.

cis-meQTLs analysis
To study the relationship of genetic variants with DNA methylation, we
extracted SNPs located within 1Mb of the midpoint of each SMP
(MAF> 0.05). We treated the methylation levels at individual DNA methyla-
tion sites as phenotypes and assumed that each phenotype could be
modeled as y= 1 using a linear mixed model approach by fastQTL (v7).40 To
control bias across samples, PCA was performed. The analysis incorporated
three PCs for population stratification and two additional PCs as unknown
confounders. The methylation level of each locus was quantile-normalized to
the standard normal distribution N (0,1) as the phenotype. The fastQTL (v7)
was used to perform a permutation-based meQTL search for each DNA
methylation site, calculating the empirical P value for the SNP with the
strongest genetic effect.40

trans-meQTLs analysis
meQTL was performed over a total of 1.19 million SNPs (MAF > 5% and
missing rate < 20%). Population structure was calculated using GCTA
(v1.92.1) with the parameters (--make-grm --pca).74 The first three
genotyping principal components (PCs) and kinship matrix were employed
as covariates to control false-positive associations. Genotype files were
transposed using plink (v1.9) with the parameters (--bfile –recode12
–output-missing-genotype0 –transpose --out).75 Kinship matrices were
obtained using the emmax-kin function of EMMAX (v07Mar2010) with
parameters (-v -d 10).44 The DNA methylation levels of each site was used
to be molecular phenotype. meQTL mapping was carried out using
EMMAX with a mixed linear model and parameters (-v -d 10 -t -o -k -c).44

The effective number of independent SNPs was calculated using the
Genetic Type I Error Calculator (GEC, v1.0),76 and significant SNPs were
identified using the threshold of P < 2.18 × 10‒6 .76 To reduce meQTL
redundancy, we conducted LD analysis for the associated SNPs. Lead SNPs
within a given LD block (R2 > 0.1) associated with a trait were merged into
one meQTL using plink (v1.90) with parameters (-r2 -l -window 99999).75

The meQTLs were then further classified as cis-meQTLs or trans-meQTLs
based on the distance between the marker SNP and the associated SMP
(threshold: 1 Mb).

eQTLs
The analysis included 207 accessions for which genotype and gene
expression data were available. GWAS was performed over a total of
1.19 million SNPs (MAF > 5% and missing rate < 20%). Population
structure was calculated using GCTA (v1.92.1) with the parameters
(--make-grm --pca).74 Only genes having FPKM > 1 in more than 5% of

accessions were defined as expressed for eQTL mapping. The
expression of each gene was normalized using QQ-normal in R as is
commonly done in QTL studies.77 Ultimately, a dataset comprising
42,858 PCGs and 6779 lncRNAs was obtained and used to conduct
downstream analyses. The first three genotyping PCs and kinship matrix
were employed as covariates to control false-positive associations.
Genotype files were transposed using plink (v1.9) with the parameters
(--bfile –recode12 –output-missing-genotype0 –transpose --out).75 Kin-
ship matrices were obtained using the emmax-kin function of EMMAX
(v07Mar2010) with parameters (-v -d 10).44 eQTL mapping was carried
out using EMMAX (v 07Mar2010) with a mixed linear model and
parameters (-v -d 10 -t -o -k -c).44 The effective number of independent
SNPs was calculated using the Genetic Type I Error Calculator (GEC,
v1.0),76 and significant SNPs were identified using the threshold of
P < 2.18 × 10‒6 suggested by GEC (v1.0).76 To reduce eQTL redundancy,
we conducted LD analysis for the associated SNPs. Lead SNPs within a
given LD block (R2 > 0.1) associated with a trait were merged into one
eQTL using plink (v1.90) with parameters (-r2 -l -window 99999).75 The
eQTLs were then further classified as cis-eQTLs or trans-eQTLs based on
the distance between the marker SNP and the transcription start or end
sites of associated genes (threshold: 1 Mb).

EWAS
A large-scale EWAS was carried out using SMP with MAF > 0.05. Mapping
was carried out using EMMAX with a mixed linear model and parameters
(-v -d 10 -t -o -k -c).44 The effective number of independent SMPs was
calculated using the Genetic Type I Error Calculator (GEC, v1.0),76 and
significant SMPs were identified using the threshold suggested by
GEC (v1.0).76

Plant materials, vector construction, and genetic
transformation
The cotton used in this study was G. hirsutum cv 668. Transgenic lines were
planted in a greenhouse at Zhejiang University, Hangzhou, China. The
greenhouse was kept at 28 °C with a 14-h light/10-h dark photoperiod. The
CRISPR-Cas9-mediated gene editing vector was constructed as described
previously.78 Transgenic plants were created by Agrobacterium-mediated
transformation. Mutation analysis of CIPK10 (GH_A03G0334) CRISPR-Cas9
transgenic plants utilized the Hi-TOM method as described previously.79

Plants found to carry CIPK10 mutations were chosen for phenotypic
analysis.

Phenotype prediction
Two representative algorithms, G2Pdeep80 and the linear models Genomic
Best Linear Unbiased Prediction (GBLUP) method81 were employed for
each trait prediction. The SNPs used in trait prediction were sourced from
eQTL analysis, while the SMP used in trait prediction were sourced from
eQTM analysis. In order to prevent data leakage, loci identified in EWAS
and GWAS were excluded from the model construction process. The
predictive performance of the models was compared using the PCC
between the predicted (Yˆ)and the true trait value (Y).

Functional DNA methylation locus prediction using a deep
neural network
A total of 2336 CG loci from 2423 CG-eQTMs were considered to be
functional DNA methylation sites, i.e., positive samples; matching 2336
DNA methylation sites were randomly selected as negative samples. For
each sample, a DNA sequence of 8192 bp centered at the CG methylation
site is extracted and one-hot-encoded (A = (1,0,0,0), C = (0,1,0,0), G =
(0,0,1,0), T = (0,0,0,1), N = (0,0,0,0)) to serve as model input. Since the
Enformer model52 was trained on a large amount of human genomic data,
we used its core as our backbone, i.e., the convolution part with 7
convolution-pool blocks and the transformer part with 11 transformer
encoding layers. The convolution part down-samples the input sequence
by 128 and extracts local sequence features, while the transformer part
aggregates long-range global features. This backbone transforms inputs
into features of shape 64 × 3072. The middle features of shape 8 × 3072
are then flattened and fed to the output layer, which is a fully connected
layer and predicts whether the site in question is a functional DNA
methylation site.
Prediction experiments were implemented using the PyTorch frame-

work82 with four NVIDIA Tesla P100 GPUs. The Adam optimizer was applied
with an initial learning rate of 1 × 10‒4 and weight decay of 1 × 10‒8. Each
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mini-batch contained 64 samples. In each training period, we trained the
deep model up to ten epochs. All experiments used binary cross-entropy
as the loss function, and 10-fold cross-validation was applied to evaluate
the results.

DATA AVAILABILITY
All RNA-seq and BS-seq have been deposited in the NCBI Short Read Archive (https://
www.ncbi.nlm.nih.gov/sra) under respective Bioproject PRJNA1146873. Sample IDs
and metadata can be found in Supplementary information, Tables S1 and S2.
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