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Abstract
Barocaloric materials are particularly promising for green and efficient solid-state cooling technology because of their
great potential in terms of cooling performance. However, intermetallic materials with outstanding barocaloric effects
under low hydrostatic pressure are especially lacking, which has severely delayed the development of barocaloric
refrigeration. Here, in a rare-earth intermetallic La-Ce-Fe-Si-H, we achieve a giant specific barocaloric temperature
change of 8 K per kbar according to direct measurements of the adiabatic temperature change ΔTBCE under
hydrostatic pressure, which is confirmed by a phenomenological transition simulation. This barocaloric strength is
significantly better than those in previously reported phase-transitioned alloys. By using a cutting-edge in situ neutron
diffraction technique operating under simultaneously varying temperature, magnetic field, and hydrostatic pressure,
we reveal that the large isotropic transition volume change in La-Ce-Fe-Si-H plays a crucial role in the giant barocaloric
effect. Additionally, we employ Landau expansion theory to demonstrate that the high sensitivity of the transition
temperature to the applied pressure produces the sizable ΔTBCE in the itinerant electron metamagnetic transition
alloys. Our results provide insight into the development of high-performance barocaloric materials and related cooling
systems.

Introduction
Novel cooling technologies based on caloric effects have

attracted much attention in recent decades as efficient
and environmentally friendly alternatives to conventional
gas-compression refrigeration1–3. In solid-state caloric
materials, phase transitions under the application of a
magnetic (magnetocaloric effect)4–6, electric (electro-
caloric effect)7,8, uniaxial stress (elastocaloric effect)9,10, or
hydrostatic pressure (barocaloric effect) field11–14 lead to
changes in entropy and temperature. The main benefits of
materials that exhibit the barocaloric effect (BCE) over
other caloric materials are related to the high power

density in condensed solids and the wide variety of these
materials2,3. The giant BCE has been extensively reported
for a large number of phase-transition materials, such as
magnetic shape memory alloys13,14, antiperovskite com-
pounds15, plastic crystals11,16, organic–inorganic
hybrids17,18, ferrielectric ammonium sulfate19, and natural
rubber20,21. However, BCE requires high hydrostatic
pressure to trigger phase transitions and to generate large
adiabatic temperature changes ΔTBCE, which has
undoubtedly limited the development of relevant BCE
refrigeration devices2,3. In addition, metals with high
thermal conductivity are preferred for efficient heat
transfer between heat-transfer fluid and barocaloric
refrigerants. Regardless of the relatively abundant mate-
rials exhibiting a significant barocaloric effect, as shown in
Fig. 1, more emerging intermetallic materials exhibiting
the giant BCE under low pressure are highly sought to
promote barocaloric techniques. NaZn13-typed La-Fe-Si
alloys are of particular interest as high-performance
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magnetocaloric materials22. Since the degrees of freedom
of the lattice and magnetism in La(Fe,Si)13-based alloys
coexist and are strongly coupled, both magnetic fields and
hydrostatic pressure are capable of driving itinerant
electron metamagnetic (IEM) transitions and thus pro-
duce magnetocaloric and barocaloric effects. In this study,
we focus on a Ce-doped rare-earth-rich La1.2Ce0.8Fe11-
Si2H1.86, with an off-stoichiometric composition, owing to
its strengthened magnetoelastic coupling, as revealed by
earlier works23,24. Here, we directly measure a giant
ΔTBCE of 8 K under a change in hydrostatic pressure of 1
kbar through an IEM transition in the La1.2Ce0.8Fe11-
Si2H1.86 alloy. The directly measured BCE strength
(ΔTBCE/ΔP) exceeds the corresponding values that have
been found for both metallic alloys and non metallics. By
combining the changes in hydrostatic pressure, magnetic
field, and temperature, we employ advanced in situ neu-
tron scattering measurements under multiple fields to
unveil the unique lattice-magnetism coupling mechanism
under different stimuli and thus to understand the origin
of the remarkable barocaloric effect for the present IEM

system. Additionally, a phenomenological calculation
based on the Landau expansion model is performed to
optimize pressure-sensitive first-order phase transitions
and to create a pathway for exploiting promising BCE
materials.

Materials and methods
The La1.2Ce0.8Fe11Si2 alloy was prepared by arc melting

followed by annealing at 1423 K for 24 h. Slices with
thicknesses of ~1.5–2 mm were cut from the parent
samples to absorb hydrogen. Hydrogenation was carried
out at 573 K under a high purity hydrogen gas atmosphere
of 100 kPa for ~5 h to saturate the H concentration.
According to the neutron diffraction pattern, the resulting
alloy contains mainly the 1:13 phase (~84% in volume
fraction) with the chemical composition of La0.57Ce0.43-
Fe11.68Si1.32H1.86 and several secondary phases, i.e.,
Ce2Fe17 (~7%), La5Si3 (~5%), and α-Fe (~4%) (see the
“Phase fraction” section in the Supplementary Informa-
tion). It is known that the α-Fe and La5Si3 phases do not
exhibit ambient phase transformation and hence do not
exhibit the barocaloric effect near room temperature.
Ce2Fe17 alloy undergoes spontaneous magnetostriction at
~300 K accompanied by a volume shrinkage of 0.3%25.
The volume change of Ce2Fe17 is much smaller than that
of La(Fe,Si)13 alloy (~1.6%). According to the
Clausius–Clapeyron equation, the barocaloric effect of
Ce2Fe17 alloy is much smaller than that of La(Fe,Si)13
alloy. Moreover, the content of the Ce2Fe17 phase is much
smaller than that of the La(Fe,Si)13 phase in the studied
La1.2Ce0.8Fe11Si2H1.86 alloy. Therefore, we believe that the
barocaloric performance of the studied La1.2Ce0.8Fe11-
Si2H1.86 alloy is mainly due to the La(Fe,Si)13 phase.
Magnetization measurements were acquired using a

vibrating sample magnetometer (VSM, Versalab, Quan-
tum Design) equipped with a beryllium–copper high-
pressure cell. The value of the pressure was determined by
standard hydraulic press sets equipped with an
optional–digital pressure gauge. Thermomagnetization
data were recorded at a slow rate of 1.5 Kmin−1 to ensure
that the temperature in the pressure cell kept the same
pace as the ambient temperature. In-field specific heat
measurements were carried out from 0 to 3 T using the
heat capacity option of a VersaLab system. For the direct
measurement of the adiabatic temperature change of the
BCE, a high-pressure hexahedron press was used, where
three pairs of symmetrical indenters simultaneously
compress the sample from six directions. Cubic pyr-
ophyllite was used as the pressure-transmitting medium
to avoid heat exchange. La1.2Ce0.8Fe11Si2H1.86 powders
filled the middle of the cubic pyrophyllites, with a PT-
1000 thermistor to measure the temperature of the sam-
ple during the compression process. The description of
the adiabatic temperature change setup is given in the

Fig. 1 Comparison of low hydrostatic pressure cooling for
selected materials. Barocaloric cooling strength defined as the ratio
of the adiabatic temperature change to the applied pressure for
typical phase-transitioned intermetallics and non metallics:
La1.2Ce0.8Fe11Si2H1.86 (this work), Fe49Rh51

46, MnCoGeB0.03
47,

MnCoGe0.99In0.01
48, Mn3GaN

12, Gd5Si2Ge2
26, LaFe11.33Co0.47Si1.2

28,
Ni49.26Mn36.08In14.66

13, CeSb49, neopentylglycol (marked as NPG)16,
natural rubber (marked as NR)21, (NH4)2SO4 (marked as NHSO)19,
Rb2KTiOF5 (marked as RbKTiOF)17, (NH4)3MoO3F3 (marked as
NHMOF)18, and (NH4)2NbOF5 (marked as NHNbOF)17. Indirectly
measured data were from hydrostatic pressure-dependent differential
thermal analysis (DTA)12,47 and differential scanning calorimetry
(DSC)19,26. The value of ΔTBCE for different materials is obtained from a
low pressure of ~1 kbar, at which condition the barocaloric behavior is
almost linear with applied pressure.
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Supplementary Information. Neutron powder diffraction
data on the La1.2Ce0.8Fe11Si2H1.86 sample were collected
at the NIST Center for Neutron Research with a high-
resolution powder neutron diffractometer (BT1) with
monochromatic neutrons of wavelength 0.20774 nm
produced by a Ge(311) monochromator. Data were col-
lected in the 2θ range of 14–140° with a step size of 0.05°
in the temperature range of 280–350 K, pressure range of
0–6.3 kbar and magnetic field range of 0–7 T. Refine-
ments were carried out using the program GSAS to
determine the phase constitution, scaling factor, back-
ground, peak shape, atomic positions, thermal vibration
factor, and occupancies. The refinement results are given
in the ‘Neutron powder diffraction section of the Sup-
plementary Information.

Results and discussion
From the curves of field dependences of heat capacity

and magnetization in Fig. 2a, b, we can see that the
external magnetic field and pressure obviously affect the
first-order transition behavior but in an opposite direction
for La1.2Ce0.8Fe11Si2H1.86: the thermal-induced IEM
transition temperature (TC) increases under the applica-
tion of a magnetic field but decreases under hydrostatic
pressure. This is reasonable given that the low-
temperature ferromagnetic (FM) phase has a higher
volume than the high-temperature paramagnetic (PM)
phase. The rate of the shift in TC under a magnetic field
(dTC/dH) is ~3.7 K T−1 and under external pressure (dTC/
dP) is ~−26 K kbar−1. It should be emphasized that the
response of Tc to the application of external pressure in

Fig. 2 External field-induced phase transition and adiabatic temperature changes for La1.2Ce0.8Fe11Si2H1.86. a Heat capacity as a function of
temperature under various magnetic fields in the cooling protocol. b, Magnetization as a function of temperature under various hydrostatic pressures
under a magnetic field of 0.05 T. The curves in the heating and cooling processes are indicated by solid and open circles, respectively. c Calculated
adiabatic temperature as a function of pressure ΔTBCE by the transition distribution model. d Directly measured time-dependent adiabatic
temperature curve under a pressure of 1 kbar at an initial temperature of 289.5 K, with the load maintained and the pressure released. e Adiabatic
temperature change in response to the cyclic pressure change from 0-1-0 kbar. f Adiabatic temperature change as a function of temperature-
induced by various magnetic fields using direct and indirect measurements. The indirectly measured ΔTMCE is from the data of heat capacity under
magnetic fields (a).
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our sample is more sensitive than those for other mag-
netostructural transition alloys, e.g., Mn-Ga-N (−6.5 K
kbar−1)12, Gd-Si-Ge (−3.5 K kbar−1)26, Ni-Mn-In (+1.8 K
kbar−1)13, stoichiometric La(Fe,Mn,Si)13 (−13.9 K
kbar−1)27, and La(Fe,Co,Si)13 (−9.4 K kbar−1)28. For IEM
systems, TC is determined by the band structure near the
Fermi surface. In the case of the studied La1.2Ce0.8Fe11-
Si2H1.86 alloy, the hydrostatic pressure shortens the
exchange of the 3d electrons of Fe atoms and thus affects
the band structure near the Fermi surface. Therefore, the
nature of the first-order transition strengthens, and the
transition hysteresis increases with applied hydrostatic
pressure (0.5 K for 0 kbar, 3 K for 1.9 kbar, and 9 K for 2.8
kbar), as shown in Fig. 2b. Importantly, such an ultrahigh
sensitivity indicates that low pressure is expected to
trigger the IEM transition and thus generate a giant
adiabatic temperature change (ΔTBCE) in our sample.
First, we theoretically evaluate how the sample cools

during adiabatic pressurization using a phenomenological
simulation called the “transition distribution model”. This
convergence method has been employed to approach the
real cooling behavior for MCE materials by analyzing the
controlling parameters of phase transitions5. Analogous
to the magnetic field, we show the change in temperature
influenced by pressure. Details of mathematical deduction
can be seen in the section “Transition distribution model
under pressure” of the Supplementary Information. As
shown in Fig. 2c, at the initial temperature of 290 K, the
sample maintains the FM state when the pressure is lower
than 0.4 kbar and then starts to undergo the FM-PM
transition. The magnetostructural transition is completed
with pressurization up to 1.4 kbar, resulting in a max-
imum ΔTBCE of 11 K. More strikingly, a giant BCE
strength of ΔTBCE= 8 K at 1 kbar is achieved by fulfilling
a phase transition fraction of ~80%. Such an exceptional
ΔTBCE under low pressure has also been verified by
pressure-dependent calorimetric measurement with the
quasi-direct method (described in the section “DSC under
pressure” in the Supplementary Information).
As a straightforward assessment of BCE, a direct mea-

surement of the adiabatic temperature change upon the
rapid application and removal of hydrostatic pressure was
carried out (see the section “Description of direct ΔTBCE

measurements” in the Supplementary Information). The
time-dependent temperature change is presented in
Fig. 2d. Upon the application of a pressure of 1 kbar
within 50 s, the sample cools from 290 to 282 K, causing a
large ΔTBCE of 8 K. Then, it remains at a nearly constant
temperature for 70 s when the pressure is maintained,
indicating very good adiabatic pressurization conditions
that guarantee the accuracy of the measured ΔTBCE in this
experiment. Upon the release of pressure, the sample
heats back to the initial temperature. This confirms the
reversibility of the phase transition and BCE temperature

variation. It should be noted that the sharp temperature
peaks prior to BCE are due to the signal from the tem-
perature sensor subjected to the applied pressure. The
directly achieved temperature change is highly consistent
with the theoretically predicted value from the afore-
mentioned phenomenological model, as well as the results
from quasi-direct measurements. Furthermore, the influ-
ence of pressure cycles on ΔTBCE is measured. Although
for each cycle the giant temperature change exhibits good
recoverability (a symmetric rise and drop in temperature),
there is a slight degradation of the absolute value of ΔTBCE

down to 6 K under pressurization-depressurization cycles
(Fig. 2e). Such energy losses could be ascribed to
mechanical friction at particle and grain boundaries29,
which might be overcome by lattice tuning and micro-
structural optimization30,31.
For comparison to the BCE, the magnetic field-induced

adiabatic temperature change (ΔTMCE) was investigated
by direct and indirect measurements based on heat
capacity data. As shown in Fig. 2f, under a magnetic field
of 2 T, which in general is accessible with permanent
magnets, the maximum ΔTMCE is approximately +4 K,
which is only half of the value of the ΔTBCE generated by 1
kbar pressure (Fig. 2f). This comparison clearly reveals
that relatively low pressure is prone to producing a more
significant caloric effect than a magnetic field is for our
La1.2Ce0.8Fe11Si2H1.86 refrigerant.
From the Clausius–Clapeyron equation, the ΔTBCE in a

complete first-order phase transition can be determined
by the crucial parameters of (i) the volume change of
transition Δω and (ii) the sensitivity of the transition
temperature to applied pressure dTC/dP:

ΔTBCE ¼ T
Cp

ΔSBCE ¼ T
Cp

VΔω

ρ

dTc

dP

� ��1

ð1Þ

where T is the temperature, P the pressure, Cp the heat
capacity, V the volume, and ρ the density. Both Δω and
dTC/dP are strongly dependent on magnetostructural
coupling12. To obtain experimental insight into the
physical mechanism of the field-triggered IEM transition
and particularly to examine the bond structural changes,
cutting-edge neutron scattering measurements were
carried out as a function of pressure, magnetic field, and
temperature (Fig. 3a). The collected diffraction spectrum
shows the shift in the diffraction peaks, which indicates
that the sample undergoes complete phase transitions
under different fields.
The crystallographic structure of La-Fe-Si-based com-

pounds is described as a CsCl-type packing of rare-earth
atoms and Fe-I centered icosahedra (Fig. 3a). La/Ce atoms
occupy the 8a sites, and the Fe-I sites at 8b are fully
occupied by Fe atoms. Each Fe-I atom is surrounded by an
icosahedron of 12 Fe-II atoms at 96i, which is randomly
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Fig. 3 Changes in lattice structure under different external stimuli. a Schematic of the La-Ce-Fe-Si-H crystallographic structure, in situ neutron
diffraction device, and collected diffraction spectrum under different fields (from left to right). b Lattice parameters as functions of hydrostatic
pressure, magnetic field, and temperature. c Multifield dependence of the Fe-Fe bond length in a unit cell.
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occupied by Si and Fe atoms. The icosahedra centered by
the Fe-I site are interconnected with adjacent icosahedra
rotated 90° by the Stella quadrangular. H interstitials enter
the 48 f site, an octahedral site with 4 Fe-II/Si and 2 La/Ce
nearest neighbors32. The lattice exhibits a discontinuity in
the magnetic ordering. As shown in Fig. 3b, the sample
remains in the PM state under a pressure of 3.4 kbar.
However, the pressure-dependent thermomagnetization
data (Fig. 2b) indicate that 3.4 kbar pressure is sufficient
to fully induce the transition at 280 K. Such an incon-
sistency is very likely because the actual pressure value on
the powder sample is less than the calculated pressure in
the high-pressure neutron diffraction experiment. During
the pressurization process, some particles of the sample
inevitably fill in the tiny gap between the rig and pres-
surized cylinder of the high-pressure units in the neutron
diffraction device. The resultant large friction offsets a
considerable part of the pressure, and thus, the pressure
might be overestimated. Therefore, the pressure-
dependent neutron diffraction experiment can only be
used to qualitatively discuss the difference in the effects of
pressure, magnetic field, and temperature on lattice
structure and bond length.
The application of a nominal pressure of 6.3 kbar at

280 K drives the sample to undergo the FM-PM transition
and produces a giant Δω of 2%. Such a volume change
consists of two parts: shrinkage by phase transition and
normal elastic volume compression. Using the bulk elastic
modulus of 2.29 × 103 kbar taken from the close compo-
sition of LaFe11Si2

33, the volume change by the com-
pression effect is calculated to be 0.3%. Therefore, the
dominant contribution to the total volume change can be
ascribed to the magnetostructural transition (~1.7%). In
comparison, the application of a magnetic field leads to a
volume change of 1.6% in the phase transitions, which is
similar to the volume change caused by hydrostatic
pressure. However, the temperature-induced volume
change is detected to be an even smaller value of 1.2%.
To understand the discrepancy in volume change

induced by different external stimuli, we employ general
local-moment volume magnetostriction theory in the
framework of the Callen-Callen model34. The volume
magnetostriction Δω on the IEM transition is propor-
tional to the squared magnetization ΔM2, compressibility
k, and magnetoelastic coupling coefficient Cmv, while it is
negatively proportional to the squared thermal spin fluc-
tuations Δξ2:

ΔωðTCÞ ¼ kCmv ΔM TCð Þ2�Δξ TCð Þ2� � ð2Þ

Here, Δξ2is proportional to the squared temperature.
Considering that the temperature range in our in situ
neutron diffraction experiment is quite narrow, the con-
tribution from Δξ2 to the volume change is similar under

different external stimuli. Therefore, the large transition
volume change triggered by external fields is mainly
ascribed to the change in the local magnetic moment. For
La-Fe-Si-based alloys, ferromagnetism originates from the
exchange interaction of the 3d itinerant electrons of Fe-II
atoms35. In La(Fe,Si)13-based alloys, the shortened bond
length between the Fe atoms weakens the ferromagnetic
coupling between Fe atoms and therefore lowers the
magnetization of the alloy. Compared with the bonds
between Fe-I and Fe-II atoms, the lengths of Fe-II - Fe-II
bonds (marked as B2, B3, B4, and B5) are the determining
factors in mastering the magnetic moment36. With an in-
depth investigation of the fine structure of La1.2Ce0.8-
Fe11Si2H1.86 by in situ neutron diffraction methods, we
can see that the Fe-II - Fe-II bonds display the most sig-
nificant shrinkage, by 0.66 and 0.53% with the application
of pressure and magnetic field, respectively (Fig. 3c). It
should be clarified that the difference in bond length
changes under hydrostatic pressure and the magnetic field
is due to the compression effect of hydrostatic pressure
and experimental error. The field-dependent neutron
diffraction results indicate that the symmetry of the ico-
sahedra in the La1.2Ce0.8Fe11Si2H1.86 alloy remains con-
stant during the IEM transition triggered by external
hydrostatic pressure and magnetic field. Interestingly, in
terms of the thermal phase transition, the icosahedron
cluster is deformed. In the case of the temperature-driven
PM-FM transition, however, the B4 bond varies by a
much smaller magnitude, 0.2%, and the B5 bond remains
nearly unchanged. In addition, the B2 bond changes by a
smaller magnitude (0.1%) than B3 (0.55%). Since the IEM
transition is closely related to the distance-dependent
exchange, the deformation of the cluster could cause
weakening of the IEM transition37. Thus, we assume that
the small value of Δω in the thermally triggered phase
transition is very likely due to its lattice distortion. In
other words, the application of pressure and magnetic
field are assumed to induce a more drastic change in the
magnetic moment and to drive a larger phase transition
volume change than the temperature.
After investigating the impact of Δω on the BCE, we

discuss another important parameter, dTC/dP, for the
enhancement of ΔTBCE. The pressure dependence of the
transition temperature is regarded as an approximate
measure of the stability of the ordered state against
pressure12. Assuming an ideal condition of infinite pres-
sure in Eq. (1), ΔTBCE varies inversely with dTC/dP.
However, the real phase transition occurs in a finite
temperature range rather than at a specific temperature.
In the case of a small dTC/dP, it is extraordinarily difficult
to complete phase transition at low pressure, and thus the
obtained ΔTBCE is significantly smaller than the upper
bound of ΔTBCE. Similar to magnetocaloric materials38,
the magnitude of dTC/dP must be at an optimal value to
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maximize ΔTBCE under limited pressure. It must be noted
that most of the available room temperature BCE material
systems exhibit a relatively small dTC/dP that needs to be
critically improved to achieve a larger BCE under low
pressure. As modulating the IEM transition order has
been proposed as a feasible way to increase dTC/dP and to
reduce the strength of the required driving pressure39, we
attempt to explore the potential of dTC/dP based on the
IEM transition model.
According to Landau’s theory, the slope of the H/M-M2

curve (Arrott curve) is nearly equal to B(T). Therefore, the
secondary Landau coefficient B(TC), similar to the Arrott
curve, can be used as the basis for judging the transition
order of the La(Fe,Si)13-based alloys40. Generally, a
negative B(TC) leads to a first-order phase transition, and
a positive B(TC) corresponds to a second-order phase
transition41. By taking the influence of spin fluctuations
and magnetoelastic coupling into account, the Landau
expansion theory can describe the IEM transition beha-
vior under hydrostatic pressure well: the pressure
dependence of TC around zero pressure is maximized
when the secondary Landau coefficient B at TC approa-
ches zero42. We derived the value of B at TC by fitting the
magnetization data for reported La-Fe-Si-based alloys
(described in the section “Landau expansion model” in the
Supplementary Information). As plotted in Fig. 4, the

magnitude of dTC/dP for La-Fe-Si alloys in the literature
varies from 6 to 22 K kbar−1 owing to the scattered B at
Tc far from zero25,28,34,39,43–45. For the present work, we
manipulate the IEM transition by simultaneously intro-
ducing large Ce atoms and interstitial H atoms. Conse-
quently, the studied composition of La1.2Ce0.8Fe11Si2H1.86

is near the boundary of the phase transition, where the
value of B at Tc is rather small. Such a unique phase-
transition feature indicates that our La1.2Ce0.8Fe11Si2H1.86

alloy simultaneously possesses both a giant volume
change and small hysteresis, especially under low pres-
sure. Thus, low pressure of ~1 kbar can convert a large
phase fraction of almost 80%, leading to a giant reversible
ΔTBCE of 8 K.

Conclusions
From the present findings, we demonstrate that giant

barocaloric performance at low pressure can be realized
by enhancing the transition volume change Δω and
manipulating the pressure-sensitive phase transitions
dTc/dP. Both crucial parameters are closely related to the
magnetoelastic coupling coefficient. In this sense, the
strengthening of magnetoelastic coupling is one key step
for developing more efficient BCE materials. This criter-
ion goes beyond La-Fe-Si IEM-type alloys and should be
applicable to other first-order transition materials.

Fig. 4 Pressure-sensitive phase transition. The ratio of the transition temperature to applied pressure related to the secondary Landau coefficient
at TC for selected La-Fe-Si IEM alloys: La1.2Ce0.8Fe11Si2H1.86 (this work), LaFe11.33Co0.47Si1.2

28, LaFe11.74Mn0.06Si1.2
25, LaFe11.44Si1.56

43, LaFe11.4Si1.6
39,

LaFe11.57Si1.43
44, LaFe10.95Co0.95Si1.1

45, and La0.7Ce0.3Fe11.44Si1.56H
34. BTc is calculated from the magnetization curve at TC using the Landau expansion

theory.
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