
Polymer Journal (2022) 54:1119–1126
https://doi.org/10.1038/s41428-022-00661-9

ORIGINAL ARTICLE

Bioinspired macromolecular templates for crystallographic
orientation control of ZnO thin films through zinc hydroxide
carbonate

Takahiro Mikami1 ● Shunichi Matsumura1 ● Rino Ichikawa1 ● Riki Kato1
● Junya Uchida1 ● Tatsuya Nishimura1,3 ●

Takashi Kato 1,2

Received: 10 March 2022 / Revised: 23 April 2022 / Accepted: 25 April 2022 / Published online: 10 June 2022
© The Author(s) 2022. This article is published with open access

Abstract
The biomineralization-inspired preparation of inorganic hybrid materials has attracted attention. Here, we report a new
approach to the orientation control of zinc oxide (ZnO) thin-film crystals through the preparation of zinc hydroxide
carbonate (ZHC) by the macromolecular templates of poly(2-hydroxyethyl methacrylate) (PHEMA) and poly(vinyl alcohol)
(PVA). Using 100-nm-thick PHEMA templates, ZHC thin films with the c-axis oriented parallel to the substrate were
obtained, while ZHC thin films prepared by 100-nm-thick PVA templates showed perpendicular orientation. After the
thermal treatment of ZHC, the crystal orientations of the ZnO thin films were maintained. The effects of the thickness and
annealing time for the polymer templates on the morphologies of the ZnO thin films were examined.

Introduction

In nature, biological minerals are widely produced inside
the tissues of organisms [1–8]. The crystallization of those
biominerals is precisely controlled by bioorganic molecules,
which results in the elaborate functional structures of bio-
minerals. The morphologies and orientation of the inorganic
crystals are beautifully engineered in ambient conditions
[1–12]. Therefore, biominerals provide us with clues to

establishing new environmentally friendly methods of
developing inorganic materials with ordered structures [1–
8]. Inspired by such biological crystallization mechanisms,
macromolecular template approaches for CaCO3 and
hydroxyapatite (HAP; Ca10(PO4)6(OH)2) thin-film crystal-
lization with various polymorphs, morphologies, and
orientation were reported [3, 13–23]. Chitin [13, 14], chit-
osan [13, 14], cellulose [14, 15], poly(vinyl alcohol) (PVA)
[16–21], poly(2-hydroxyethyl methacrylate) (PHEMA)
[22], and poly(N-isopropyl acrylamide) [23] were used for
the formation of thin-film crystals in insoluble polymer
matrices as crystallization templates in collaboration with
acidic, water-soluble polymers such as poly(acrylic acid)
(PAA) and acidic peptides [24, 25].

On the other hand, it has been recognized that amor-
phous minerals play a key role in the formation of bio-
minerals in nature [6, 26, 27]. In the synthetic system,
amorphous CaCO3 colloids can be stabilized by polymer
additives [28–32]. These amorphous colloids serve as a
precursor for spontaneous CaCO3 crystallization in polymer
matrices in aqueous solutions, which is similar to the bio-
mineralization phenomena that occur in nature
[29, 30, 33, 34].

Our intention here is to tune the crystallographic orien-
tation for zinc hydroxide carbonate (ZHC) and zinc oxide
(ZnO) thin films through the biomimetic macromolecular
template approach (Fig. 1). Because ZnO has versatile
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applications in various electro-optic fields, the crystal-
lization control of ZnO has been widely studied [35–40]. In
particular, the aqueous-solution-mediated approach attracts
much attention as a new way of manufacturing for a sus-
tainable society. Biomineralization-inspired synthetic
approaches are attractive because of their simple processes
and low energy consumption. Previously, we reported the
biomineralization-inspired preparation of ZHC and zinc
hydroxide thin-film hybrids, which were converted to ZnO
[41–43]. In this method, the polymer-stabilized amorphous
precursors presumably infiltrate into the polymer matrix and
induce crystallization. A ZnO thin film with the c-axis
aligned perpendicular to the substrate was obtained by using
PVA matrices [41]. In general, ZnO thin films are fabricated
by widely used deposition methods, such as sputtering,
chemical vapor deposition, and pulse vapor deposition. For
these ZnO thin films, the c-axis of ZnO exhibited perpen-
dicular alignment to the substrate [40]. There have been few
reports on the synthetic methods of ZnO thin films with the
c-axis aligned parallel to the substrate [44–46].

Here, we report a new macromolecular template method
for the control of perpendicular and parallel orientations of
thin-film crystals of ZHC and ZnO based on the PHEMA
and PVA templates. To understand the template effects, we
also fabricated ZnO thin films by varying the thickness and
annealing time of the polymer matrices.

Experimental section

Materials

PHEMA (Mv= 3.0 × 105), PVA (Mw= 1.46–1.86 × 105,
87–89% hydrolyzed), and PAA (Mw= 1.8 × 103) were
purchased from Sigma–Aldrich Japan (Tokyo, Japan). Zinc
nitrate hexahydrate and ammonium carbonate were pur-
chased from FUJIFILM Wako Pure Chemical (Osaka,
Japan). All reagents were used without further purification.

Preparation of zinc hydroxide carbonate and zinc
oxide thin films

To prepare the polymer matrix, PHEMA and PVA solutions
in dimethylsulfoxide were spin-coated on glass substrates.
After the matrix was annealed at 200 °C for 10 min, it was
immersed in the solution prepared by mixing zinc nitrate
hexahydrate aqueous solution containing PAA and ammo-
nium carbonate aqueous solution. The final concentration of
zinc nitrate hexahydrate and ammonium carbonate was
20 mM, and that of PAA was adjusted to 7.2 × 10−2 wt%.
The PVA matrices were immersed in 4 ml of the solution
for 24 h at 40 °C. After the crystallization processes, the
samples were rinsed with purified water and dried in air.
The resultant samples were annealed at 500 °C for 2 h.

Characterization

The morphologies of the samples were observed with
scanning electron microscopy (SEM) (JSM-7800F Prime,
operated at 3.0 kV, JEOL, Tokyo, Japan). SEM observa-
tions were performed with osmium coating. The crystal
structures of the hybrids were analyzed by X-ray diffraction
(XRD) (Smartlab, Rigaku, Tokyo, Japan) measurements
using a parallel beam method with CuKα radiation (λ=
0.154 nm). To examine the crystallographic orientation,
XRD measurements of the thin-film samples were recorded
in two different geometries (i.e., out-of-plane with 2θ
scanning and in-plane with 2θχ scanning). The scanning
directions of the out-of-plane and in-plane are perpendicular
to the substrate and parallel to the substrate, respectively
(Supplementary Fig. S1). The samples collected from the
glass substrates were observed with transmission electron
microscopy (TEM) (JEM-2000EX, operated at 200 kV,
JEOL, Tokyo, Japan). The surfaces of the samples were
observed with atomic force microscopy (AFM) (Multi-
mode8, Bruker Japan K.K., Kanagawa, Japan) in the air at
room temperature. Thermogravimetric measurements
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(TG-8120, Rigaku, Tokyo, Japan) were performed up to
200 °C at a heating rate of 20 °Cmin−1 and held at 200 °C
for 90 min under airflow.

Results and discussion

The PHEMA and PVA thin-film matrices with 100 nm
thickness were prepared by spin-coating and subsequent
annealing (Supplementary Fig. S2). After the crystallization
process, spherulitic thin-film crystals were observed in the
matrices by SEM, and they fully cover the substrates,
forming flat thin films (Fig. 2, left and middle). The thick-
ness of the thin-film hybrids was determined by cross-
sectional SEM images (Fig. 2, right). The thickness of
hybrids consisting of ZHC and PHEMA (ZHC/PHEMA)
and ZHC/PVA thin-film hybrids was 250 nm.

Figure 3 shows XRD patterns of the as-prepared thin-
film crystals. All the peaks observed in the XRD patterns
are assigned to ZHC (Zn(CO3)x(OH)y·nH2O; x= 0.25, y=
1.5, n= 0.25 in ICDD no. 011-0287 and x= 0.4, y= 1.2,
n= 0 in ICDD no. 019-1458, respectively). The powder
sample of the thin-film crystals formed in the PHEMA
matrix was collected from the substrate, which also shows a
diffraction pattern of ZHC without any distinct orientation
(Supplementary Fig. S3).

Preferential crystallographic orientations of ZHC crystals
were observed in the XRD patterns of thin-film samples. In
the out-of-plane XRD pattern of thin-film samples grown in
the PHEMA matrix, the intensified peak of the (200) plane
is seen except for the broad peak of the glass substrate at
2θ= ~25°. In contrast, the in-plane XRD pattern exhibits an
intensified peak of the (002) plane of the ZHC crystals.

ZHC crystals grown in the PHEMA matrix were pre-
ferentially oriented along the (200) plane parallel to the
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Fig. 2 a ZHC/PHEMA thin-film
hybrids and b ZHC/PVA thin-
film hybrids. SEM images of
top-view surfaces of the
spherulitic thin-film crystals
grown in (left) 6 h, (middle)
24 h, and (right) cross-sectional
SEM images of the hybrids
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Fig. 3 Out-of-plane and in-plane XRD patterns of the ZHC thin films
grown in the PHEMA and PVA matrices after a 24 h crystallization
process. The standard powder XRD patterns of a ZHC crystal (ICDD
011-0287 and 019-1458) are shown at the bottom
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substrate. On the other hand, the thin-film sample grown in
the PVA matrix with the same thickness as the PHEMA
matrix shows a totally different crystallographic orientation.
It exhibits the intensified peak of the (002) plane in the out-
of-plane diffraction pattern and the (200) plane in the in-
plane diffraction pattern, which suggests that the ZHC
crystals are oriented along the (002) plane parallel to the
substrate.

In the previous studies on CaCO3 thin film formation, no
such drastic change in crystallographic orientation was
observed [13–17]. Because ZHC has an anisotropic layered
crystal structure [47], the crystal growth direction may
easily be affected by the environment. When the bare glass
substrate was used in place of the polymer matrix, no
crystallization was observed.

These thin-film crystals were converted to ZnO thin films
by annealing at 500 °C for 2 h (Fig. 4). Both samples
maintained their thin-film morphologies after the thermal
treatment. The thickness of the ZnO thin film prepared by
using the PHEMA matrix was 150 nm, and that of the ZnO
thin film prepared by using the PVA matrix was 200 nm.

XRD patterns of the annealed samples show that ZnO
was formed (Fig. 5). The intensities of the (002) peaks are
different between the out-of-plane and in-plane XRD pat-
terns. This observation suggests that these ZnO thin films
had specific c-axis orientations, which were the same as
those of the precursor ZHC thin films (Fig. 3). These results
indicate that the orientation of ZnO thin films reflects the
orientation of ZHC before the conversion. It is noteworthy
that the ZnO thin films with the c-axis oriented parallel to

the substrate were obtained. This orientation is not easy to
achieve by widely used methods [40].

The nanostructures of the ZnO thin films were examined
with AFM and TEM. The AFM images (Fig. 6) show that
the top surface of both samples had a homogeneous dis-
tribution of nanocrystals. The TEM observation was carried
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Fig. 4 ZnO thin films through ZHC thin films prepared by using
a PHEMA and b PVA matrices. SEM images of (left) top-view sur-
faces and (right) cross-sectional SEM images of the thin films
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out on the samples after scraping the surface of the thin
films. The TEM images (Fig. 7) show that both samples
were composed of granular crystals with sizes of 10–50 nm,
and all the polymer matrices were apparently decomposed.

To examine the relationship between the polymer
matrices and oriented crystallization behavior, the effects of
the thickness and annealing time for the matrices on the
crystal orientation were studied. The PHEMA and PVA
matrices with 100, 300, and 1000 nm thickness annealed at
200 °C for 10, 30, and 90 min (Supplementary Figs. S4 and
S5) were used for ZHC crystallization for 24 h. Figure 8
shows the out-of-plane XRD patterns of the as-prepared
ZHC thin films. The orientation of ZHC crystals grown in
PHEMA matrices is strongly dependent on the thickness
and annealing time. The PHEMA matrices with 100 nm
thickness annealed for 10 min induce the ZHC crystals to
align along the (200) plane parallel to the substrate. In
contrast, the peak attributed to the (002) plane of ZHC was
observed for the PHEMA matrices with a thickness of 1000

20 nm 20 nm

(a) (b)

Fig. 7 TEM images of the crystals separated from ZnO thin films
prepared by using a PHEMA and b PVA matrices
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nm that were annealed for 90 min. For the PVA matrices,
the ZHC crystals were oriented along the (002) plane par-
allel to the substrate, and this orientation was not affected
by the thickness and annealing time.

The ZHC thin films grown in polymer matrices were
converted to ZnO thin films by annealing at 500 °C for 2 h.
Figure 9 shows the out-of-plane XRD patterns of ZnO thin
films. These results show that the c-axis orientation of the
resultant ZnO crystals prepared by PHEMA matrices
strongly depends on the thickness and annealing time of the
matrices. The ZnO thin films prepared by PHEMA matrices
with a thickness of 1000 nm and 90 min annealing indicated
an intensified peak of the (002) plane. As the thickness and
annealing time for the PHEMA matrices decreased, the

intensities of the (002) peak decreased. Using PHEMA
matrices with 100 nm thickness and 10 min annealing, the
(002) peak disappeared, which suggests that the c-axis is
oriented parallel to the substrate. In contrast, PVA matrices
induce the c-axis of ZnO crystals to align perpendicular to
the substrate almost independently of the thickness and
annealing time.

It was reported that the alignment of the plate-like
crystals of ZHC depends on the hydrophilicity of the sub-
strate [46]. Taking these results into account, we hypothe-
sized that the hydrophilic environment inside the PHEMA
matrices was changed by thermal treatment, while the
environment inside the PVA matrices was not changed. In
addition to the effects of thermal treatment, the matrix
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thickness also affects the hydrophilic environment inside
the matrix. It is assumed that the effects of thickness for
PHEMA matrices on the hydrophilicity were more sig-
nificant than those of PVA because the PHEMA matrices
were more hydrophobic than the PVA matrices. The
PHEMA matrices in the vicinity of the water-matrix inter-
face were highly swollen, while the other part of the thicker
matrices tended to be relatively more hydrophobic. There-
fore, for PHEMA matrices, the hydrophobic part might
increase in proportion to the matrix thickness.

Conclusions

In summary, we have achieved control of the crystal-
lographic orientation of ZnO thin films based on ZHC thin-
film hybrids prepared by the biomimetic macromolecular
template approach. The PHEMA and PVA matrices largely
affected the c-axis orientation of the ZHC thin films. It is
noteworthy that ZHC and ZnO thin films prepared by using
the PHEMA matrix exhibited drastic changes in the c-axis
orientation depending on the thickness and annealing time
of the matrices. We demonstrate that not only the prepara-
tion of ZnO thin films but also the tuning of the orientation
is possible in a wide range with the combination of the
biomimetic macromolecular template approach and thermal
treatment. We assume that this method is promising for the
future development of new ZnO materials with controlled
structures. It is also important that biomimetic syntheses of
organic/inorganic hybrids are promising for a sustainable
society [48–50].
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