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Abstract

Organic semiconductors have received much interest over the past few decades. As the field has progressed, so has the
complexity of the molecular structures of organic semiconductors. Often, the highest-performing organic semiconductors
(i.e., those with the highest charge mobility or those that provide the highest power conversion efficiencies in organic
photovoltaics) involve complex syntheses, making them very challenging to synthesize, even by experienced synthetic
chemists. In this focused review, we report on recent efforts in developing more efficient synthetic pathways. Specifically,
the concept of synergistic catalysis, which involves the use of two or more catalysts with orthogonal reactivity to enable
reactions that are not possible with the use of a single catalyst, is introduced. Synergistic catalysis allows for controlled
polymerizations, room-temperature reactions, and/or polymerizations with greater regioselectivity, opening the door to more

time-, labor-, cost-, and energy-saving methods for synthesizing semiconducting polymers.

Introduction

Over the past few decades, a tremendous amount of
research has been performed in the area of organic semi-
conducting polymers regarding their potential applications
in organic light-emitting diodes [1-3], organic photo-
voltaics [4-6], organic field effect transistors [7-9], photo-
detectors [10, 11], sensors [12, 13], and more recently in
bioelectronics [14, 15]. It is appealing to use them in such
applications because the resulting devices can be made to be
lightweight and flexible; moreover, the devices can be
fabricated in a cost-effective manner using solution pro-
cessing, and the resulting materials are highly tunable,
allowing for the design of materials with varied bandgaps,
charge mobility, ionic conductivity, and biocompatibility.
The research into the above organic electronics devices has
been enabled by the development of organic semiconduct-
ing polymers with increasing complexity, which has also
resulted in an increase in the environmental burdens and
rising costs of polymer synthesis [16, 17].
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Organic semiconducting polymers are typically synthe-
sized using metal-catalyzed cross-coupling reactions,
including Stille, Suzuki, Kumada, or Negishi cross-coupling
reactions (Scheme 1 — black arrow) [18-20]. While these
reactions enable powerful transformations, they require
prefunctionalization (e.g., halogenation followed by meta-
lation) of the monomers, thereby introducing additional
steps in the overall synthesis. Furthermore, the reactions
require the use of stoichiometric amounts of an organo-
metallic species. Direct arylation polymerizations (DArP)
(Scheme 1 — red arrow), and more recently, oxidative
CH/CH coupling, also known as OxiDArP or cross-
dehydrogenative  coupling (CDC)  polymerizations
(Scheme 1 — green arrow), have been the focus of much
interest for overcoming the issues related to more conven-
tional metal-catalyzed cross-coupling reactions. Unfortu-
nately, these reactions also suffer from regioselectivity
issues that can lead to branching and cross-linking, and
homocoupling introduces defects into the polymer back-
bone. Another complication is that living polymerizations
have been challenging to achieve using DArP and CDC
polymerizations.

To address the challenges related to achieving selectivity
and control over polymerization reactions, our group has
been exploring the use of two catalysts to obtain reactivities
that were not previously attainable. Synergistic catalysis
involves the use of at least two different catalysts to activate
two different substrates to allow for previously unattainable
transformations (Scheme 2) [21, 22]. Despite the advantages
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Scheme 1 Routes to the synthesis of alternating semiconducting
polymers. The conventional route is shown with black arrows, where
the halogenation and metalation of precursors are required to generate
monomers for polymerization. The red arrow depicts direct arylation
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Scheme 2 Scheme represents the essence of synergistic catalysis.
Transition metal catalyst M1 activates only S'; transition metal catalyst
M2 activates only S% This allows for a reaction to occur between S'
and S? that would be unattainable if only one of the substrates was
activated

that synergistic catalysis can offer, its examples remain
limited because it can be difficult for a catalyst to selectively
activate one substrate over another, and monocatalytic side
reactions must be avoided. Synergistic catalysis has been
reviewed for small-molecule reactions [21, 22]. This paper
will focus on the use of synergistic catalysis, specifically
dual transition metal synergistic catalysis, for semiconduct-
ing polymer synthesis with some attention to what our group
has recently achieved in this area.

Bimetallic systems

Pd/Cu Sonogashira

The archetypical reaction of dual transition synergistic
catalysis is the Sonogashira reaction, which involves the
alkynylation of aryl iodides using Pd(0)/Cu(I) dual catalytic
conditions (Scheme 3). While different modes of reactivity

have been reported, traditionally, it is believed that the
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polymerization (DArP) where halogenation of one of the monomers is
needed. Finally, the green arrow depicts oxidative CH/CH coupling or
cross-dehydrogenative coupling (CDC) polymerization where no
prefunctionalization is needed
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Scheme 3 Sonogashira cross-coupling reactions of alkynes and aryl
iodides

reaction begins with the oxidative addition of Pd(0) into the
halide to form a Pd(Il) complex. Simultaneous activation of
the alkyne occurs through the coordination of Cu(l).
Transmetalation between the two activated substrates leads
to the regeneration of Cu(I) as well as the formation of
Pd(Il) acetylide. The regeneration of Pd(0) is achieved
through reductive elimination, which also yields the cross-
coupled product. The use of Pd(0)/Cu(I) dual catalysis
allows the reaction to occur under milder conditions (i.e., at
room temperature), whereas the monometallic versions
either involve the use of a stoichiometric amount of metal
(in the case of Cu) or high temperatures (with catalytic Pd).

This concept has been applied in semiconducting polymer
synthesis to the synthesis of poly(phenyleneethynylene)s
(PPEs) [23], which, as the name implies, consist of alternating
phenyl and alkynyl units. The first example of a successful
synthesis of soluble PPE derivatives was reported in 1990 by
Giesa and Schulz (Scheme 4) [24]. A Sonogashira reaction
between a dibrominated monomer and bisalkynyl monomer
yielded polymers with a moderate degree of polymerization
(DP) with cross-linking. The use of a dibrominated monomer
necessitated the use of high temperatures for polymerization,
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which is thought to be the origin of the cross-linking. To
circumvent these issues, Wrighton [25] and Weder [26] used
diiodinated monomers, which allowed for polymerizations to
occur at room temperature or below 70 °C. Similarly, soluble
PPE derivatives with DPs as high as 230 were obtained by
Swager using this strategy [27], and the authors used end-
capping or an excess of one monomer to reduce the DP.

Pd/Cu modified stille cross-coupling

Traditional Stille cross-coupling involves a single transition
metal catalyst (usually Pd(0)) and is a reaction between
halides and stoichiometric equivalents of organostannanes.
Pd/Cu dual catalytic versions of Stille coupling have also
been reported to enhance the reaction compared to the
single-catalyst reaction, allowing room temperature condi-
tions to be used. In the traditional mechanism, the reaction
is commonly believed to occur via oxidative addition, fol-
lowed by the transmetalation of the organostannane with the
Pd(II) complex, with C-C bond formation occurring through
reductive elimination (Scheme 5a), regenerating Pd(0). For
the Pd/Cu dual catalytic version (Scheme 5b) [28, 29], the
proposed mechanism is thought to proceed through the
transmetalation of the organostannane with the copper cat-
alyst. The Pd catalytic cycle is similar to that of the tradi-
tional mechanism such that the transmetalation of the
organostannane is replaced by the transmetalation of Cu(l).
This step regenerates Cu(I) for the Cu catalytic cycle.
While many semiconducting polymer syntheses have
relied on using traditional Stille cross-coupling, there is one
example where modified Stille coupling was used [30, 31].
This was done to allow for a controlled polymerization to
synthesize PPE. Catalyst transfer polymerizations (CTPs)
have been successfully developed to allow for the
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Scheme 4 Synthesis of dialkoxy-PPE [24]
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controlled synthesis of conjugated polymers, including
polythiophenes, polyfluorenes, and polyphenylenes [32].
Most methods rely on using the Kumada and Suzuki cross-
coupling reactions. Regardless of the stoichiometric orga-
nometallic reagent used, control over the polymerization is
thought to be achieved through the formation of a m-aryl
complex between the Ni or Pd catalyst (Scheme 6a). To
achieve a controlled polymerization for the synthesis of
PPE, Bielawski et al. found that the traditional Stille cross-
coupling conditions using a single Pd catalyst were insuf-
ficient to achieve chain polymerization and that catalytic
amounts of Cul, as well as additional ligands, were required
to afford living polymerization (Scheme 6b) [30]. To pro-
vide experimental support of the polymerization displaying
living characteristics, the authors showed that the polymers
could chain extend by the addition of an extra batch of
monomer. Surface-initiated polymerization was also per-
formed to support that the mechanism for polymer growth is
chain polymerization.

Au/Pd systems

Our own foray into dual transition metal catalysis began
through a desire to develop a living DArP for the synthesis
of m-conjugated polymers. Up until this point, our own
work had focused on using Kumada catalyst transfer poly-
merization (KCTP) (Scheme 6) to achieve living poly-
merization [33-39]. In the case of the synthesis of poly(3-
hexylthiophene) (P3HT), KCTP proceeds through the
in situ generation of 2-bromo-3-hexyl-thienylmagnesium
halide, which is then polymerized by a Ni catalyst. The
commonly accepted mechanism for KCTP is the initiation
of the polymerization through transmetalation, which gen-
erates Ni(0), followed by a cycle that consists of oxidative
addition, transmetalation, and reductive elimination. As
mentioned above, upon reductive elimination, Ni(0) is
believed to coordinate with the conjugated m-system, pre-
venting chain transfer through intermolecular catalyst
transfer. While KCTP is highly effective, it does suffer from

R1
() R— Pd L R”
Cu()X \/
Pd(0)L,
X-Sn(alkyl)s

Scheme 5 a Traditional Stille cross-coupling; b Pd/Cu dual transition metal catalyst-assisted Stille cross-coupling
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Scheme 6 a KCTP mechanism @
highlighting the importance of
the Ni(0)-m-aryl complex
between the Ni or Pd catalyst;
b Synthetic scheme to achieve
CTP using a modified Stille
coupling
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the need to use a stoichiometric amount of organomagne-
sium and a bishalogenated precursor.

To overcome these issues, in 2011, Mori et al. reported a
method for synthesizing P3HT using a monohalogenated
thiophene precursor where the Grignard monomer was
synthesized through deprotonation [40]. Subsequently,
reports of using DArP followed where a single transition
metal catalyst was used, thereby bypassing Grignard for-
mation [41-43]. Unfortunately, these DArP methods lack
control over molecular weight and dispersity. We hypo-
thesized that a dual metal catalytic method, where two
different metals with orthogonal reactivity are used, could
facilitate first the activation of a C-H bond and then a
controlled polymerization.

Our initial attempts to achieve such a reaction focused on
the use of Au as the metal to facilitate C-H bond activation
because of its reported ability to activate C-H bonds in
electron-deficient (hetero)aromatic units and its ability to
undergo transmetalation with Pd(IT) and Ni(Il)—this latter
feature was particularly attractive because Pd and Ni have
both enabled controlled CTP for synthesizing semi-
conducting polymers. Au/Pd transmetalation has been
shown to be effective in small molecule-modified Sonoga-
shira cross-coupling reactions, the carbometallation of
alkynes, and modified Stille reactions [44-46]. Given this
propensity for Au/Pd transmetalation to occur, we reasoned
that if a Au(I)-thiophene monomer could be accessed, a
polymerization should proceed upon the addition of Pd.

Studies began by using reported conditions to synthesize
the Au-thiophene complex [47]. Specifically, 2-bromo-3-
hexylthiophene was reacted with chloro(tri-fert-butylpho-
sphine)gold(I) in the presence of base to obtain the desired
product (Scheme 7). Polymerization of the organogold
monomer was achieved by the addition of a Pd catalyst
[48]. Catalyst screening was performed to elucidate the best
Pd source, and it was ultimately found that Pd-PEPPSI-iPr
facilitated a polymerization that showed living character-
istics whereby chain extension occurred upon the addition
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Scheme 8 Ideal mechanism for an Au/Pd-mediated CTP

of extra monomer after the initial monomer had been con-
sumed. The polymerization also showed a linear relation-
ship with the number-average molecular weight (M,) and
monomer conversion, suggestive of controlled poly-
merization. The dispersity (D) ranged from 1 to 1.3.
While these initial findings of Au/Pd transmetalation
occurring to promote P3HT synthesis were exciting, poly-
merization was only possible with the isolated Au-
thiophene monomer. When the Au-thiophene monomer
was generated in situ, the polymerization did not proceed
upon the addition of a Pd catalyst. The transmetalation step
is driven by the formation of a Au(I)-X bond (Scheme 8)
[49]. If X is a halogen, the bond is sufficiently strong to
push the reaction forward. The synthesis of the Au-
thiophene monomer requires a stoichiometric amount of
base to remove the proton. A stoichiometric amount of base
means that an alkoxide or hydroxide is coordinated to Pd,;
thus, the formation of a Au(I)-OR bond needs to drive
transmetalation, but the Au(I)-OR bond is not sufficiently
strong to do so. While Au/Pd dual catalytic Sonogashira and
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Scheme 10 Proposed Ag/Pd dual catalytic synthesis of P3HT

Stille couplings can occur in the absence of a base, C-H
activation requires the presence of a base. Ultimately, we
were not able to achieve a Au/Pd dual-metal catalytic sys-
tem for polymerizations.

Pd/Ag systems
DArP

While we were struggling with Au/Pd-mediated DArP,
reports started to emerge on the topic of Ag/Pd-mediated
small molecule direct arylation reactions (Scheme 9)
[50, 51]. Ag(I)-salts are added frequently to Pd-catalyzed C-
H functionalization reactions, but they are often presumed
to act as halide scavengers or oxidants in the case of oxi-
dative functionalization. However, studies performed inde-
pendently by Larrosa [50] and Sanford [51] showed that
Ag(I)-carboxylates are able to carry out C-H activation on
arenes. These studies encouraged us to move away from
Au/Pd-mediated DArP toward Ag/Pd-mediated DArP
(Scheme 10) [52]. Initially, the conditions of our attempts
led to broad molecular weight distributions. We hypothe-
sized that this occurred because of the ability of Pd to
activate the C-H bond along with Ag, resulting in the
nonorthogonal reactivities of the two metals. To obtain
orthogonal reactivity, pyridine was added to the reaction.
PEPPSI-iPr contains 3-chloropyridine, which acts as a sta-
bilizing ligand. It has been reported that religating Pd with

a) Oxidative cross-coupling of arenes via double C-H activation, and possible
hhomo-coupling by-products
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Scheme 11 a General scheme showing the desired cross-coupled
product in a CDC reaction. Proposed mechanisms for CDC using b Pd
and ¢ Au. Reproduced with permission from the American Chemical
Society [65]

pyridine allows it to play an inhibitory role in the catalytic
process [53]. We thus hypothesized that the addition of
pyridine would inhibit Pd from playing an active role in
C-H activation. While we did not perform kinetic studies to
verify that this did indeed take place, we nevertheless found
that the addition of pyridine led to a narrower molecular
weight distribution. Through this, we were able to achieve
the first, and thus far only, reported case of DArP showing
chain polymerization characteristics [54]. The addition of an
extra equivalent of monomer after the consumption of the
monomer led to chain extension, which also suggested
living characteristics for the polymerization.

CDC polymerizations

As mentioned in the introduction, CDC polymerizations are
very attractive from the point of view of achieving a more
efficient synthesis of conjugated polymers. However,
selectivity, specifically obtaining cross-coupling without
any homocoupling, remains challenging. In our initial foray
into CDC polymerizations, we began by going through the
small molecule literature to identify effective small mole-
cule CDC reactions (Scheme 11a) that could be transferred
over to polymerizations. Specifically, we identified Pd-
based (Scheme 11b) and Au(I)/Au(Ill)-based (Scheme 11c¢)
CDC reactions as possible starting points [55]. It is worth
noting that when we initially started our literature search,
the understanding of these reactions is not what it is now,
and the mechanisms shown below we now know are not
applicable when attempting polymerization. Nevertheless,
since the reported small molecule Pd CDC reactions typi-
cally required a large excess of one of the coupling partners
to afford high yields, we initially decided to focus on Au(I)/
Au(Ill) reactions. At the onset, Au(I)/Au(Ill)-based reac-
tions seemed more suitable due to their cross-selectivity

SPRINGER NATURE
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Scheme 12 Small-molecule model reactions for Au-based and Pd-based CDC polymerizations

Scheme 13 Proposed CDC
mechanism that involves Ag-
and Au(IIl)-mediated C-H
activation. Reproduced with
permission from the Royal of
Society Chemistry [56]

based on the electron density of the monomers, making it
appealing for the synthesis of donor-acceptor (D-A) poly-
mers. Additionally, the ability to run the reaction with high
yield while using stoichiometric ratios of the two molecules
to be cross-coupled would be preferred for polycondensa-
tions where the Carothers equation is obeyed. Indeed, our
initial small molecule studies supported that the Au(l)/
Au(IIl)-based reaction would be more suitable for trans-
ferring to polymerization because of the high yield and low
degree of homocoupling observed (Scheme 12) [56, 57].
Unfortunately, despite optimization reactions being
attempted, we were never able to obtain polymers with
sufficiently high M, (<10kgmol™") [56]. Additionally, a
large amount of homocoupling was observed, with the %
alternation remaining limited to 67-76%, where 100%
alternation indicates no homocoupling. This surprising
result and reports that started to emerge at the time of Ag
participation in C-H activation led us to investigate the
mechanism further, and we discovered that instead of a
Au(l)/Au(Ill)-based system, the reaction involved Ag-
mediated C-H activation, and instead of the electron-
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deficient monomer being activated by Au(l), it was acti-
vated by Ag. Ag-mediated C-H activation is followed by
transmetalation to Au(I), which becomes oxidized to
Au(Ill), at which point Au(Ill) also activates the electron-
rich species. Reductive elimination then leads to the cross-
coupled product (Scheme 13). This mechanism was later
also presented by Zhu [58] and Hong [59]. In particular,
Hong et al. showed through density functional theory that
the chemoselectivity of the reaction was driven by the
acidity of the electron-deficient species and nucleophilicity
of the electron-rich species. Once a cross-coupled dimer is
formed, both the acidity and nucleophilicity decrease,
leading to increasingly lower chemoselectivity and reac-
tivity as the polymer grows.

At around the same time, we were performing these
studies, Kanbara et al. published a highly effective CDC
polymerization using Pd (Scheme 14a) [60]. They later
showed that this polymerization was also Ag-mediated,
altering the originally proposed mechanism (Scheme 14b)
[61]. We were very intrigued as to why this reaction worked
as well as it did, given the poor performance observed in
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Scheme 15 Proposed mechanism of Pd/Ag-mediated CDC. In the Ist cross-coupling reaction, the rate-determining step (RDS) is the C-H
activation of thiophene. In the 2nd cross-coupling reaction, the C-H activation is much faster, rendering the oxidation of Pd by Ag as the RDS

our small molecule model studies and the seemingly similar
mechanism between the Ag/Au-cocatalyzed system vs. the
Ag/Pd-cocatalyzed system. In both cases, Ag activates the
electron-deficient species with Au or Pd activates the
electron-rich species, and the stark difference in perfor-
mance was surprising. We began by looking at the reaction

between a cross-coupled dimer and a monomer to produce a
cross-coupled trimer. In the Ag/Au-cocatalyzed system, the
cross-coupled dimer showed significantly reduced reactivity
compared to the monomer. However, in the Ag/Pd-cocata-
lyzed system, the cross-coupled dimer showed greater
reactivity than the monomer [57].

SPRINGER NATURE
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Scheme 16 a Small-molecule room-temperature direct arylation of indole and b the originally proposed mechanism. ¢ DArP of indole and d newly
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Scheme 17 Room-temperature benzofuran direct arylation by aryl

iodide using hexafluoroisopropanol (HFIP) as the solvent. Reproduced
with permission from the American Chemical Society [64]

With this in mind, our group performed a series of
kinetic studies to understand the mechanism involved in the
chain extension step of the polymerization [57]. It was
found that the first cross-coupling sequence to produce a
cross-coupled dimer was slow and that the Pd-mediated CH
activation of thiophene was the rate-determining step, as
shown by Kanbara (Scheme 15). In the second cross-
coupling sequence, the rate of the Pd-mediated CH activa-
tion of thiophene increased significantly, and the reoxida-
tion of Pd(0) to Pd(II) was the rate-determining step. This
change in the rate-determining step led to an unexpectedly
efficient chain extension that facilitated the polymerization.

Room-temperature reactions

To make CH functionalization even more sustainable, there
is a desire to move away from using high-temperature
reaction conditions that are commonly used to activate a
C-H bond. A handful of room-temperature small-molecule
direct arylation methods have been developed. Inspired by
these, corresponding polymerizations were also attempted.
A notable room-temperature small-molecule direct arylation
is the indole/iodoarene direct arylation reported by Larrosa
[62]—the reaction proceeds in high yields at room tem-
perature with no reported selectivity issues (Scheme 16a)—
which seemed ideal to wuse for a polymerization.
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Polymerization was attempted (Scheme 16¢) but unfortu-
nately led to low molecular weights and significant
branching. Curiously, analysis of the product using
MALDI-TOF showed that nitrobenzene was incorporated
into the polymer, which suggested that this reaction was
radical and photomediated (Scheme 16d). While the exact
role of Ag is unclear at this stage, it is known that Ag is
needed to facilitate the reaction and that the presence of
both Pd and Ag gives rise to unprecedented room-
temperature photomediated reactivity [63].

Inspired by the realization of room-temperature direct
arylation, we chose to investigate whether similar hetero-
aromatic structures could react in a similar manner. Indeed,
it was found that benzofurans could react with iodoarenes at
room temperature using similar reaction conditions as
indole but replacing the solvent DMF with hexa-
fluoroisopropanol (Scheme 17) [64]. Surprisingly, the
reaction involving benzofuran was found not to be light-
sensitive or radical-mediated and appears to be a Heck-type
reaction. This reaction is also not catalytic with Ag.
Nevertheless, the exploration of using a combination of Pd
and Ag led us to discover a new room-temperature reaction,
and we will be exploring its use in polymerizations.

Conclusions and outlook

While reports of synergistic catalysis in polymerizations
remain limited, they do offer the possibility of using milder
conditions to perform polymerizations and can offer ways to
improve the control over different aspects of the poly-
merization, such as regioselectivity and molecular weight.
One of the challenges in using synergistic catalysis has been
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that transferring the equivalent small-molecule reactions to
polymerization has not always worked. However, careful
considerations of the unexpected results of polymerizations
have given insight into small-molecule reactions, allowing
one to elucidate a new mechanism that is operating in the
reaction. As the use of synergistic catalysis in small-
molecule reactions grows, so will their use in polymeriza-
tions—closer collaborations between synthetic organic
chemists and polymer chemists will be important to facil-
itate the development of new polymerization methods.
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