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Abstract
Crosslinked rubbers and gels derive their softness and toughness from a three-dimensional network of junction points
connected by polymer strands. Classical affine and phantom network models qualitatively relate the network architecture to
the shear modulus but fail to predict absolute values owing to elastically ineffective defects such as loops and dangling
chains. In the present study, we employed coarse-grained molecular dynamics simulations combined with an iterative defect-
removal algorithm to compare four model networks formed under various cross-linking protocols and binding ratios: three-/
four-armed star polymer networks (SPNs) and three-/four-armed telechelic polymer networks (TPNs). We directly counted
elastically effective junctions and eliminated primitive and even higher-order defects. The SPNs exhibited higher shear
moduli than the TPNs did, which was a consequence of more rapid generation and greater density of effective junctions as
well as suppressed loop formation. Remarkably, in both network types, the simulated modulus G obeyed:

G � 2Gph;

where Gph represents the prediction by the phantom network model using the actual effective junction, which is
independent of the cross-linking protocols, binding ratio, or functionality.

Introduction

Cross‑linked rubbers and gels are soft materials that are
widely used in structural applications that require both
softness and toughness, such as tires and isolators for

buildings. The distinctive mechanical behavior of these
materials is attributed to a polymer network that is com-
posed of junction points connected by network strands.
Many theoretical models have been developed for rubbers
[1–17] and gels [18–25] to determine the relationship
between this network architecture and their bulk properties.
The affine [1, 2] and phantom [3–6] network models are
two of the most widely used classical models.

In both frameworks, junction points are assumed to
deform affinely with macroscopic strain, and the elastic
forces of the network originate from the loss of conforma-
tional entropy of the strands. Moreover, all strands are
assumed to deform uniformly, irrespective of their length.
The affine network model predicts the following:

Gaf ¼ νkBT ;

whereas the phantom network model yields:

Gph ¼ ðν � μÞkBT ;
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where ν represents the number density of strands, μ denotes
the number density of junctions, and kBT indicates the
thermal energy at temperature T. Although these models
qualitatively capture trends, such as the increase in the shear
modulus with cross-link density, they do not quantitatively
provide accurate values.

The root of this discrepancy is elastically ineffective
structures (e.g., dangling chains and loops) and more
complex defects (e.g., superloops and superbridges)
[26, 27], which do not contribute to elasticity but none-
theless affect the apparent junction and strand density. To
increase model accuracy, researchers have designed model
networks that minimize these defects, typically by using a
uniform strand length [28]. Common examples include
telechelic polymer networks (TPNs), which are composed
of linear chains and a multifunctional telechelic cross-lin-
ker, e.g., polydimethylsiloxane [29] (PDMS; hereafter, we
refer to these networks as TPNs with reference to the lit-
erature [28]), and star polymer networks, which are com-
posed of multiple terfunctional macromers, e.g., tetra‑ or
tri‑polyethylene glycol (PEG) gels [30, 31] (hereafter, we
refer to these networks as SPNs with reference to the lit-
erature [28]).

The Scanlan–Case criterion[11, 12], i.e., a junction that
is connected to the percolated network via at least three
independent paths, is widely used to define an elastically
effective structure. In practice, the mean-field approxima-
tion of Miller and Macosko [13] is used to estimate the
number of these junctions. The resulting Miller–Macosko
model accurately predicts the effectiveness of the junctions,
as confirmed by mechanical tests [18–20, 32, 33] and
nuclear magnetic resonance (NMR) structural analyses [34].
Coarse‑grained molecular dynamics simulations by Gusev
and Schwarz further validated this theory, reporting that it
reliably predicts the plateau moduli of end cross-linking
PDMS, despite the omission of explicit percolation
mechanisms [35].

Unfortunately, experiments were unable to determine the
absolute numbers of primitive defects (e.g., loops and
dangling ends) until direct molecular simulations enabled
their enumeration [36–39]. Among these studies, Furuya
and Koga conducted comprehensive investigations into the
cross-linking structures of SPNs and TPNs, focusing on the
effects of polymer chain length and initial concentration
during the cross-linking process. The authors examined
fully cross-linked SPNs and TPNs over a range of initial
polymer concentrations and evaluated their mechanical
properties under various swelling conditions. Their findings
revealed that SPNs have higher densities of effective strands
—and consequently higher shear moduli—than TPNs do
[39]. In their analysis, junctions with three or more con-
nected strands were considered “elastically effective”.
However, their work was limited to nearly fully cross-

linked networks, and exploring the structure or defect dis-
tribution in incompletely cross-linked systems, particularly
in the prepercolation regime, was difficult.

To investigate defect structures and the effective network
in more inhomogeneous systems that contain large-scale
defects, we recently developed an iterative algorithm that
identifies and removes all primitive and higher-order defects
—including superloops and superdangling chains—by tra-
cing paths to the percolated network. We applied this
method to SPNs to show that the Miller–Macosko
approximation very precisely predicts the remaining num-
ber of effective junctions [40]. We also showed that the
shear moduli are approximately twice those predicted by the
phantom network model with the detected effective junc-
tions in the case of SPNs.

In the present study, we extended that approach to
incompletely cross‑linked networks formed under different
protocols. We compared PDMS-like TPNs and tetra‑/tri-
PEG gel-like SPNs across various binding ratios and
determined how their formation mechanisms affect defect
populations and mechanical responses. We discovered that
the SPNs inherently reincorporated loops into elastically
effective strands, yielding a higher fraction of effective
strands, whereas the TPNs tended to trap loops. Conse-
quently, the measured shear moduli were approximately
twice those predicted by the phantom network model with
an effective network, independent of the cross-linking
protocol, binding ratio, or junction functionality.

Methods

Coarse-grained models and system setup

The network was based on the classical Kremer–Grest
model [41]. We prepared two TPN systems, each com-
prising a telechelic polymer and a multifunctional cross-
linker, and two SPNs comprising different terfunctional
macromers (Fig. 1). We also used two values (3 and 4) to
represent the functionality of branch f. The number of beads
in the telechelic polymer was 8, and the number of beads in
the multifunctional cross-linker was f+ 1. The number of
beads per arm in the terfunctional macromer was 5. In this
way, the resulting structures were designed to have 10
uniform beads per network strand in the ideally cross-linked
state, as shown in Fig. 1.

The beads at the ends of the arms were assigned as reactive
beads, and the other beads were assigned as normal beads
(C). For the SPNs, we prepared two types of macromers with
different reactive beads (A and B), as shown in Fig. 1. For the
TPNs, the terminal beads of the cross-linker molecules and
the telechelic polymers were A and B, respectively. By uti-
lizing the reaction calculation only between beads A and B to
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form an A–B bond, we obtained the structures of the end-
cross-linked elastomer, as shown in Fig. 1.

The nonbonding interaction is expressed by the repulsive
Lennard Jones potential, which is known as the
Weeks–Chandler–Andersen (WCA) potential below:

UWCA rð Þ ¼ 4ϵ0 σ
r

� �12 � σ
r

� �6n o
þ 1

4

h i
; r < 2

1
6σ

0; r � 2
1
6σ

8<
: : ð1Þ

We used finitely extensible nonlinear elastic
(FENE)–Lennard‒Jones (LJ) potential as a bonding poten-
tial (UWCA+UFENE):

UFENE rð Þ ¼ �15ϵ0R2
maxln 1� r

Rmax

� �2
� �

; r < Rmax

1; r � Rmax

8<
: : ð2Þ

where σ and ε0 represent the units of length and energy,
respectively, and Rmax denotes the maximum length of the
FENE potential. All the simulations were performed on the
NVT ensemble (constant number of particles, volume, and
temperature) using the Langevin equation with a friction
constant Γ= 0.5τ−1, where τ represents the unit of time.
We also examined the effect of the friction constant Γ on
the mechanical properties, as discussed in Section 3.3.

Generation of the cross-linked structure and
uniaxial elongation

We generated the cross-linked structures of the 3- and
4-armed systems with the TPN- and SPN-type cross-linking
protocols, resulting in a total of four systems. For each
system, the same numbers of A- and B-type macromers
were randomly placed in the box while keeping the total
number of beads in the system approximately 105 under the
condition that the number density of beads ρN= 0.85 σ−3 in
the isotropic box. The parameters of the four systems are
listed in Table 1. Note that we unified the box size and the
number of network strands in an ideally cross-linked state
(rA–B= 1), thereby ensuring that the moduli should have the
same value according to the affine network model.

For each of these four systems, we performed 106τ
structural relaxation simulations followed by a reaction
calculation. For the reaction conditions, a bond was kine-
tically fabricated at an acceptance rate of 0.01 between
reaction bead A and reaction bead B when they approached
the criterion radius rc= 1.3σ of each other, in reference to
classical work [42]. The bond formation decision is made at
every MD time step with the acceptance rate. Shorter rc
values are often used recently; we also examined the effect

Table 1 System setup
System TPN 3-arm TPN 4-arm SPN 3-arm SPN 4-arm

Num. of branches 3 4 3 4

Num. of macromers – – 6250 4762

Num. of multifunctional CLs 6250 4762 – –

Num. of telechelic chains 9375 9524 – –

Num. of network strands in the ideal cross-linking
state (rA–B)

9375 9524 9375 9524

Total num. of beads 100,000 100,002 100,000 100,002

Box size [σ] 49.00 49.00 49.00 49.00

Total reaction time 14,100 14,500 15,500 16,500

Final binding ratio rA–B, final 0.9883 0.9850 0.9791 0.9686

(TPN represents the telechelic polymer network, SPN represents the star polymer network, and CL
represents the cross-linker)

Fig. 1 Schematic of the
processes used to fabricate the
networks: TPNs and SPNs.
(SPN represents the star polymer
network; TPN represents the
telechelic polymer network)

Coarse-grained molecular dynamics simulations and structural analysis of end-linked polymer networks. . . 1185



of this rc value on the cross-linking structures, as shown in
Section S1 in the Supporting Information. The binding ratio
of the sample was defined as rA–B= 2nA–B/
(nA+ nB+ 2nA–B), where nA–B, nA, and nB were the num-
bers of A–B bonds, unbonded A beads and unbonded B
beads in the system, respectively. Reaction times greater
than 104 τ were used for the reaction calculation, enabling
the binding ratios at all the final states rA–B, final to ultimately
exceed 0.96, as shown in Table 1.

We performed mechanical and structural analyses on the
structures formed during the reaction procedure. We
selected target binding ratios of rA–B,target= 0.25, 0.40, 0.55,
0.70, 0.85, 0.95, and the final state and recorded the
structure at the time when rA–B exceeded the target binding
ratio rA–B,target for the uniaxial elongation calculations. The
resulting binding ratios rA–B are summarized in Table 2. The
recorded structures were then equilibrated for 105 τ at 1T0
as the 2nd structural relaxation.

Uniaxial elongation simulations along the z-axis were
performed for the resulting 28 structures at a speed of 1.0 ×
10−6 τ. The maximum elongation ratio was 1.4. We analyzed
the obtained snapshots to obtain the stress–extension ratio
curves by defining the stress tensor σ on the basis of the virial:

σ ¼ 1
V

Xn2V
n¼1

mn _rn � _rn

* +
þ 1
2

Xn2V
n

Xm2V
m≠ n

rnm � Fnm

* +( )

ð3Þ
where V represents the volume of the cell, _rn denotes the
velocity of the nth bead, rnm indicates the position of the nth
bead relative to the mth bead, and Fnm represents the force
on the nth bead generated from the potential of the mth
bead. We then calculate the engineering stress σeng using the
diagonal components σxx; σyy and σzz:

σeng ¼
σzz � σxxþσyy

2

� �
λ

ð4Þ

The equilibrium and elongation simulations were per-
formed using LAMMPS [43], and the reaction simulations
were conducted using COGNAC101 on OCTA 84 [44].

Structural analysis

We used our proposed methods [40], which are based on the
Scanlan–Case criteria, for extraction of the elastically
effective network from the cross-linked network. In our

algorithm [40], the effective junctions and strands are
extracted by recursively eliminating the elastically ineffec-
tive junctions from the original network. The ineffective
junctions can be considered the following four network
defects (Fig. 2a–d):

1. Sols: the junctions not connected to the effective
network.

2. Dangling fronts: the junctions connected to the
effective network by one path.

3. Bridge centers: the junctions connected to the
effective network by two paths.

4. Ineffective loops: paths connected to the same
junction.

We used iterative algorithms to self-consistently elim-
inate higher-order defects, i.e., superdanglings, superloops,

Table 2 Resulting rA–B and rA–B,
target values for all samples

rA–B, target 0.25 0.4 0.55 0.7 0.85 0.95

rA–B TPN 3-arm 0.2524 0.4006 0.5568 0.7006 0.8508 0.9502

TPN 4-arm 0.2508 0.4006 0.5535 0.7011 0.8503 0.9503

SPN 3-arm 0.2508 0.4074 0.5510 0.7008 0.8539 0.9507

SPN 4-arm 0.2501 0.4075 0.5517 0.7016 0.8529 0.9500

Fig. 2 Schematics of network defects: a sol, b dangling front, c bridge
center, d ineffective loop, e superdangling chain, f superloop, and
g superbridge The green dots represent the junction points, which are
elastically ineffective
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and superbridges (Fig. 2e–g). Consequently, no such
defects were detected. The practical analysis process is
summarized in our previous paper [40] and briefly pre-
sented in Section S2 in the Supporting Information. Some
examples of the procedures for the bridge center and dan-
gling end are shown in Section S3 in the Supporting
Information. With these procedures, the superloops and
superdangling chains are also eliminated. The detected
numbers of dangling ends (f= 1), bridge centers (f= 2), and
n-armed effective chains (f > 3) are represented by Nbridge,
Ndangling, and Neffective,f, respectively. The number of sols
(f= 0) is calculated by subtraction of Nbridge, Ndangling, and
Neffective from the total number of junctions, i.e., the number
of macromers or the number of multifunctional CLs in
Table 1.

Results and discussion

Mechanical properties

Each stress–elongation ratio curve obtained in the simu-
lations is shown in Fig. 3. For all the systems, the stres-
s increases as the binding ratio increases. This is natural
behavior considering classical rubber elasticity theories.
The binding ratio rA–B has a criterion for stress emergence
and should determine the percolation point. Because
all curves can be fitted with Neo-Hookean curves, the
elastic moduli Gsim were evaluated using the following
equation:

σeng ¼ G λ� 1

λ2

� 	
ð5Þ

We also took the Mooney‒Rivlin plots in Section S4
(Fig. S8) in the Supporting Information and confirmed that
the curves clearly show a plateau corresponding to the
modulus G obtained by Neo-Hookean fitting. The resulting
G values are summarized and plotted against rA–B in Fig. 4.
We also show the predicted percolation points rA–B

gel as
arrows using the theoretical Miller–Macosko model in the
same figure as the arrows. Our analysis confirmed that the
elastic modulus emerged just after the predicted percolation
point in all the systems. Therefore, the Miller–Macosko
approximation is reasonable and validates our own work
[40] and that of Gusev and Schwarz [35]. The elastic
moduli of the TPN systems were lower than those of the
SPN systems for both numbers of arms, whereas the net-
work strand density in an ideally cross-linked state was the
same. This finding reveals that the SPN mechanism makes
elastically effective strands more efficiently than the TPN
mechanism does, as suggested by the work of Furuya and
Koga [39].

Structural analysis

To determine the correlation between this elasticity and the
cross-linking structure, especially under cross-linking pro-
cedures, we performed a structural analysis using graph
theory-based effective network analysis, as described in the
Methods section. We plotted Nsol, Ndangling, Nbridge, Neffec-

tive,3, and Neffective,4 against the binding ratio, as shown in
Fig. 5a–d. All the systems exhibited a similar tendency with
respect to Ndangling and Nbridge. First, the number of dangling
fronts increased, and then, the dangling fronts saturate (step
I), and the bridge center (step II) increases. Second, the
effective junctions emerged, and the number of dangling
fronts and bridge centers simultaneously decreased (step
III). The general mechanism is that shown in our literature
[40] (for SPNs) and in Fig. 5e: Region I corresponds to the
connection process of multifunctional CLs or macromers to
neighboring CLs because only Ndangling increases. Region II
corresponds to the elongation process of long superdangling
chains because Ndangling remains constant, but Nbridge

increases.
The delay of the transition from I to II and from II to III in

TPNs should correspond to the delay in the percolation
points. According to the discussion of the Miller–Macosko
model and Appendix in the present paper, the probability of
the connection of two junctions in the TPN system is repre-
sented as rA–B

2, whereas that in the SPN system is represented
as rA–B. Therefore, more A/B reactions are needed to form a
network with the same number of network strands by the
TPN mechanism than by the SPN mechanism.

We also obtained the number of effective strands and the
number of elastically ineffective loops in the networks Nloop

from the structural analysis. The total number of effective
strands is plotted against rA–B in Fig. 6a. The curves reveal
behavior that is similar to that shown in Fig. 4, which was
produced by mechanical analysis. Furthermore, the effective
chains emerged immediately after the percolation points,
which was the same behavior as the G values. This finding
confirms that the occurrence of effective junctions and per-
colation were synchronized and clearly indicates that there
were fewer effective strands in the TPNs than in the SPNs.

We also counted the number of ineffective loops elimi-
nated in the graph transformation process (Section 2.3). The
number of detected loops is plotted against rA–B, as shown
in Fig. 6b. The TPNs clearly had more ineffective loops.
The number of loops in the SPNs decreased immediately
after the percolation point, as indicated by the arrows,
which is the same behavior as Ndangling and Nbridge. However,
the number of ineffective loops in the TPNs simply
increased and never decreased. Consequently, we consider
that SPNs reduce the number of ineffective loops to several
effective strands by the proceeding reaction, whereas TPNs
do not have this mechanism when the smallest loops are

Coarse-grained molecular dynamics simulations and structural analysis of end-linked polymer networks. . . 1187



fabricated (Fig. 6c). Therefore, it is obvious that SPNs
should have fewer ineffective loops and consequently have
more effective strands and higher moduli.

Quantitative evaluation of the classical model

For a quantitative evaluation, we compared the elastic
modulus G obtained by uniaxial elongation calculation with
the predicted values Gaf obtained from the affine network
model and Gph obtained from the phantom network model
calculated from the structural analysis.

Affine network model:

Gaf ¼ νkBT ¼ 3
2
μ3kBT þ 2μ4kBT ð6Þ

Phantom network model:

Gph ¼ ξkBT ¼ 1
2
μ3kBT þ μ4kBT ; ð7Þ

where f represents the effective functionality of the junction; ξ
denotes the cycle rank, the number density of closed cycles in
the network; ν indicates the network strand density, and μf
represents the junction density with functionality of f. In the
3-armed system, f is uniformly equal to 3. For the 4-armed
system, the effective branching number varies during the
crosslinking procedure, as shown in Fig. 5b, d.

Fig. 3 Stress–elongation ratio (σeng - λ) curves for a TPN 3-arm, b TPN 4-arm, c SPN 3-arm, and d TPN 4-arm. (TPN represents the telechelic
polymer network; SPN represents the star polymer network)

Fig. 4 Shear moduli obtained from uniaxial elongation plotted against
the binding ratio rA–B. The arrows indicate theoretical predictions of
the percolation point rA–B

gel included in Table 3 and the Appendix
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A comparison with the Gaf values revealed that there
was no linear dependence between G and Gaf in the case
of 4 arms in either the SPNs or the TPNs as illustrated in
Fig. 7a. However, a comparison with the Gph values
(Fig. 7b) revealed that the values of both the SPNs and
TPNs exhibited a proportional relationship with the same
proportional constant, independent of the number of arms
(G ≈ 2Gph). This equation was confirmed only for SPNs in
previous work [40]. However, the present work confirms
that the elastic modulus is approximately twice that pre-
dicted by the phantom network model with the
Scanlan–Case criterion, regardless of the number of
branches or cross-linking protocols. This proportionality
between G analyzed by mechanical tests and Gph predicted

by the phantom network model with an effective
network was also confirmed experimentally by Sakumichi
et al. (G ≈ 2.4Gph) using the Miller‒Macosko approxima-
tion for structural prediction [25], confirming the
approximate twofold discrepancy between the theoretical
predictions and the experimental observations of elastic
moduli.

Several possible explanations are considered for this
factor of 2 discrepancy, including nonlinear spring beha-
vior, excluded volume effects, Brownian forces, and flaws
such as the double counting of closed circuits. To investi-
gate this issue further, we conducted additional elongation
simulations starting from the final binding states, system-
atically varying parameters such as the binding potential,

Fig. 5 Number of elastically ineffective/effective junctions in the
a TPN 3-arm, b TPN 4-arm, c SPN 3-arm, and d SPN 4-arm.
e Suggested general percolation mechanism for the TPN and SPN. The

arrows indicate the theoretical prediction of the percolation points
rA–B

gel included in Table 3 and the Appendix. (TPN represents the
telechelic polymer network; SPN represents the star polymer network)

Coarse-grained molecular dynamics simulations and structural analysis of end-linked polymer networks. . . 1189



excluded volume interaction (Eq. 1), and the friction con-
stant Γ in the Langevin equation.

For the friction constant in Langevin dynamics, we
tested values of Γ= 1.0 and 2.0 [τ-1]. To evaluate the
effect of the excluded volume, we turned off the non-
bonding potential (virtual chain). For the bonding poten-
tial, we replaced the FENE-LJ potential with a harmonic

potential defined by

Uharm rð Þ ¼ K

2
ðr � r0Þ2 ð8Þ

with K= 1000 [ε/σ2] and equilibrium bond length r0= 1.0 σ.
The results shown in Fig. 8 indicate that the friction

constant has a minimal effect on the stress‒elongation ratio

Fig. 6 a Number of detected effective strands plotted against rA–B,
b number of ineffective loops plotted against rA–B, and c suggested
mechanism for the formation and transformation of ineffective loops.

The arrows indicate the theoretically predicted percolation points
rA–B

gel included in Table 3 and the Appendix. (TPN represents the
telechelic polymer network; SPN represents the star polymer network)

Fig. 7 Quantitative comparison of G with the theoretical prediction by effective network analysis using a the affine network model Gaf and b the
phantom network model Gph

1190 Y. Akagi et al.



curve. Furthermore, the virtual chain exhibits slightly higher
moduli than the real chain does, which can be attributed to
variations in the relative extension rate of network strands
compared with free chains. The harmonic spring slightly
reduced elasticity, but not nearly enough to account for the
twofold discrepancy between the theoretical prediction and
experimental observation of the elastic modulus. Overall,
these parameters had minimal impacts on the uniaxial
elongation curves. Additionally, stress evaluations via
energy-minimized networks, such as those performed by
Svaneborg et al. [45], Nishi et al. [19, 20], and Masubuchi
et al. [46], may provide further insights, which we will
investigate in future studies.

We also performed additional structural analyses on SPNs
to recalculate the theoretical Gph by removing not only the
three primitive defects (Fig. 2b–d) but also multiple binding
strands, as described in Section S5 in the Supporting Infor-
mation. Nevertheless, the relation G ≈ 2Gph held, suggesting
that the effect of multiple binding events is negligible.
Notably, Masubuchi et al. reported a proportionality factor of
approximately 0.3 between the elastic modulus G and the
phantom network model prediction with the Miller‒Macosko

approximation in simulations of energy-minimized networks
without conformational fluctuations [46]. However, their
simulations were conducted at much higher polymer den-
sities (ρ= 2‒16) than our conditions (ρ= 0.85), and the force
field used during cross-linking (virtual chain model) is dif-
ferent from that used in our work (Kremer‒Grest model).
This finding suggests that the proportionality factor can be
sensitive to these factors, as well as to the conformational
fluctuations of the network strands.

In the virtual chain model employed by Masubuchi et al.,
when the reaction progresses and the clusters become larger,
the clusters may collapse excessively. As a result, neigh-
boring clusters are weakly connected after cluster formation,
resembling network formation in poor solvents. Therefore,
the proportionality factor between G and Gph may rely on the
polymer concentration and the choice of the force field during
cross-linking, as well as these conditions used during
mechanical analysis. A systematic investigation of these
dependencies, including reaction kinetics and network
architecture, remains an important topic for future studies.

Overall, the molecular origin of Factor 2 remains
unknown. We now hypothesize that the conformation

Fig. 8 Stress‒elongation ratio curves of the Γ= 1.0 and 2.0 [τ-1]
chains, chains without excluded volumes (virtual chains), and virtual
chains with a harmonic bonding potential at the final binding states for

the a TPN 3-arm, b TPN 4-arm, c SPN 3-arm, and d SPN 4-arm (TPN
represent the telechelic polymer network; SPN represent the star
polymer network)

Coarse-grained molecular dynamics simulations and structural analysis of end-linked polymer networks. . . 1191



entropy of the closed cycles (effective loops) should also be
considered because the Gph values are proportional to the
number density of the closed cycles in the network (cycle
rank). Calculations and analyses to verify this hypothesis
will be conducted and reported in future works.

Conclusions

In the present study, we used coarse-grained molecular
dynamics simulations to investigate the relationships among
cross-linking mechanisms, cross-linking structures, and
mechanical properties, especially by focusing on two cross-
linking mechanisms: TPNs and SPNs. The results showed
that the moduli of SPNs are greater than those of TPNs. A
delay occurs in the generation of elastically effective junc-
tions and a decrease in the number of effective junctions in
TPNs compared with those in SPNs, which is caused by a
decrease in the probability of forming strands between
junctions (rA–B to rA–B

2) and by an increase in the number of
ineffective loops. We consider that these ineffective loops are
a consequence of the absence of a mechanism by which they
are transformed into several effective strands, as shown in
Fig. 6c. We also confirmed that the elastic modulus can be
predicted (G = 2Gph) by the phantom network model with
respect to the number of effective junctions, regardless of the
cross-linking protocols, binding rate, or number of branches.
These findings will provide fresh insights into classical
rubber-elasticity theory and elucidate how cross-linking
protocols control network structure—particularly loop for-
mation—and thereby determine mechanical properties.

Appendix

Theoretical expression of the percolation points of SPNs
and TPNs using the Miller–Macosko model.

The Miller–Macosko model [13] makes the following
assumption:

1. The rates of reaction of all the reaction points are
the same.

2. No intramolecular reaction occurs.

The authors assumed the rate of reaction A–B to be p,
where p had the same value as the binding ratio rA–B in our
simulation. The authors also defined the probability that one
n-armed terminal (bead A or B) did not belong to the
effective network P(F= n), where F represents the total
functionality of the macromer or multifunctional CL. In the
case of the SPN, P(F= n) is expressed as:

P F ¼ 4ð Þ ¼ 1� pð Þ þ pP F ¼ 4ð Þ3 ð8Þ

The first term assumes that the terminal bead (“A” in
Fig. 9a) does not belong to the effective network if the A–B
bond is not formed, as shown in Fig. 9aI. The second term
assumes that the terminal bead does not belong to the
effective network and that the rest of the terminals of the
opponent macromer are not connected to the effective net-
work, each of which has a probability of P(F= 4), as shown
in Fig. 9aII. For the 3-armed system (F= 3), the probability
P(F= 3) can be expressed as:

P F ¼ 3ð Þ ¼ 1� pð Þ þ pP F ¼ 3ð Þ2 ð9Þ

With p= rA–B, P(F= 3) and P(F= 4) can then be
expressed as follows:

P F ¼ 3ð Þ ¼ 1� rA�B

rA�B
ð10Þ

Fig. 9 Schematic of the
Miller–Macosko model with (a)
SPNs and (b) TPNs. (TPN
represents the telechelic polymer
network; SPN represents the star
polymer network)
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P F ¼ 4ð Þ ¼ 1
rA�B

� 3
4

� 	1
2

� 1
2

ð11Þ

In the case of the TPN, p is replaced by p2 because two
multifunctional CLs are connected only when two A–B
reactions occur between a multifunctional CL and a tele-
chelic chain and between the telechelic chain and another
multifunctional CL, as shown in Fig. 9b:

P F ¼ 4ð Þ ¼ 1� p2
� �þ p2P F ¼ 4ð Þ3 ð12Þ

P F ¼ 3ð Þ ¼ 1� p2
� �þ p2P F ¼ 3ð Þ2 ð13Þ

P F ¼ 3ð Þ ¼ 1� r2A�B

r2A�B

ð14Þ

P F ¼ 4ð Þ ¼ 1
r2A�B

� 3
4

� 	1
2

� 1
2

ð15Þ

This model predicts only postpercolated structures.
Therefore, the equivalent domain of definition
rA–B

gel < rA–B < 1 can be estimated from the value range
condition 0 ≤ P(F= n)≤1 and from Eqs. (10), (11), (14),
and (15). The percolation points rA–B

gel are listed in
Table 3.
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