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of missense variants in the PAX6 gene
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The PAX6 gene encodes a highly-conserved transcription factor involved in eye development. Heterozygous loss-of-function
variants in PAX6 can cause a range of ophthalmic disorders including aniridia. A key molecular diagnostic challenge is that many
PAX6 missense changes are presently classified as variants of uncertain significance. While computational tools can be used to
assess the effect of genetic alterations, the accuracy of their predictions varies. Here, we evaluated and optimised the performance
of computational prediction tools in relation to PAX6 missense variants. Through inspection of publicly available resources
(including HGMD, ClinVar, LOVD and gnomAD), we identified 241 PAX6 missense variants that were used for model training and
evaluation. The performance of ten commonly used computational tools was assessed and a threshold optimization approach was
utilized to determine optimal cut-off values. Validation studies were subsequently undertaken using PAX6 variants from a local
database. AlphaMissense, SIFT4G and REVEL emerged as the best-performing predictors; the optimized thresholds of these tools
were 0.967, 0.025, and 0.772, respectively. Combining the prediction from these top-three tools resulted in lower performance
compared to using AlphaMissense alone. Tailoring the use of computational tools by employing optimized thresholds specific to
PAX6 can enhance algorithmic performance. Our findings have implications for PAX6 variant interpretation in clinical settings.

European Journal of Human Genetics (2024) 32:1005–1013; https://doi.org/10.1038/s41431-024-01638-3

INTRODUCTION
The PAX6 gene (Paired box 6, OMIM #607108, HGNC 8620)
encodes a DNA-binding protein that performs essential regulatory
functions during eye development in many animal species
including humans [1, 2]. Genetic variants in PAX6 underlie a
number of ophthalmic disorders. By far the most common PAX6-
related oculopathy is aniridia (OMIM #106210), a condition
associated with PAX6 haploinsufficiency due to heterozygous
loss-of-function variants [3]. Missense variants have been generally
linked with milder phenotypes [4, 5]. However, in 2020, a study by
Williamson et al. highlighted that certain heterozygous PAX6
missense variants can cause clinical manifestations that are more
severe than aniridia (including microphthalmia and anophthalmia)
[6]. Predicting the effect of the growing number of missense
variants that are being identified remains challenging. Notably,
when established criteria (such as those described by the
American College of Medical Genetics and Association of
Molecular Pathology (ACMG/AMP)) are used to classify these
sequence alterations, a significant proportion are classified as
variants of uncertain significance (VUS) [7, 8].
Computational (in silico) tools are commonly used to provide

evidence to support or refute variant pathogenicity [8]. Each tool
employs a different algorithm; features commonly taken into
account include evolutionary conservation and protein/domain

structure (Supplementary Table 1). It is noted that some
algorithms combine the output from other tools to achieve a
single consensus prediction (meta-predictors) [9].
A number of previous studies have evaluated the performance

of commonly used computational tools in different genes, noting
significant variability in predictive performance [10–13]. Aiming to
increase the reliability of existing algorithms and to optimize their
predictions, some studies have proposed the introduction of
gene-specific thresholds [14, 15]. To date, computational tool
evaluation and optimization have not been undertaken in the
context of PAX6 and this study aims to address this gap.

MATERIALS AND METHODS
Dataset collection
In our primary analysis, PAX6 missense variants from publicly available
resources were collected from: the Genome Aggregation Database
(gnomAD) version 2.1.1 (v2) and version 3.1.1 (v3) (controls/biobanks
subsets); the Leiden Open Variation Database (LOVD) version 2.0 and
version 3.0; the Human Genetic Mutation Database (HGMD) Public version;
and ClinVar (the websites of these resources can be found in the Web
Resources section) (all accessed in February 2023). A biomedical literature
search (MEDLINE/PubMed) using the term “PAX6” and focusing on articles
between 2021 and 2023 was also undertaken [16–20]. We excluded
duplicates and VUS (including “likely disease-causing mutation with
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questionable pathogenicity” (DM?) in HGMD), and then categorized the
remaining variants into: “Primary Dataset Neutral” and “Primary Dataset
Disease” (Fig. 1).
Primary Dataset Neutral included: (i) variants previously classified as

benign or likely benign and (ii) variants present in gnomAD, a population-
scale database that does not include individuals with severe pediatric
disease [16]. While it cannot be excluded that certain PAX6missense variants
reported in the gnomAD controls/biobanks cohorts are pathogenic (e.g. if
linked with subclinical phenotypes or incomplete penetrance), we adopted a
pragmatic approach and considered these changes as “presumed benign”.
Although filtering gnomAD variants based on their allele frequency would
increase the likelihood of including only truly benign variants, this would
reduce the dataset size. Hence, we did not apply such a filter. Primary Dataset
Disease includedmissense variants labeled as pathogenic in ClinVar, LOVD or
PubMed and variants labeled as DM in HGMD.
For validation purposes, a secondary analysis was conducted involving

PAX6 missense variants from our local database at the Manchester Center
for Genomic Medicine (MCGM), part of the North West Genomic
Laboratory Hub (accessed in May 2023). These variants correspond to
changes that were evaluated in an accredited diagnostics laboratory with
>15 years’ experience in assessing genetic alterations from individuals with
ophthalmic disorders. All variants were classified according to the ACMG/
AMP 2015 guidelines [8] and changes assigned to the “likely pathogenic”
and “pathogenic” categories formed the “Secondary Dataset Disease”
(Fig. 2). For this replication study, variants present in the BRAVO database
(version TOPMed Freeze 8) were collected (accessed in May 2023) and
formed “Secondary Dataset Neutral”. Duplicates were excluded, while the
detected VUS were used for downstream analysis [21].
All variants were numbered based on Genome Reference Consortium

Human Build 38 (GRCh38). Variants from gnomAD v2 were lifted over to
this reference, using the transcript ENST00000241001 (Ensembl ID), which
encodes the canonical PAX6 protein, comprising 422 amino acids (UniProt
ID: P26367-1) [22].

Descriptive analysis
The distribution of variants in Primary Dataset Disease, Primary Dataset
Neutral, Secondary Dataset Disease and Secondary Dataset Neutral along
the linear protein sequence (as retrieved from UniProt) was visualized
using a lolliplot diagram. The cBioPortal (version 5.4.5) tool was used to
generate the relevant figure (accessed in May 2023) (Fig. 3) [23].

Computational tools
Ten commonly used computational prediction tools were assessed:
AlphaMissense, BayesDel, CADD, ClinPred, Eigen, MutPred2, Polyphen-2,

REVEL, SIFT4G and VEST4 [24–33]. These tools employ various algorithms
to evaluate variant pathogenicity (more information on the utilized
approaches can be found in Supplementary Table 1). The dbNSFP (version
4.1) resource was used to obtain pathogenicity scores for each tested
variant. As the utilized version of dbNSFP did not include AlphaMissense
prediction scores, these were extracted from the AlphaMissen-
se_hg38.tsv.gz file provided in the relevant publication [24].
Depending on how the obtained scores compared to each algorithm’s

pre-set threshold (determined by the respective tool’s developers), the
studied variants were classified as “predicted pathogenic” or “predicted
benign” [34]. Default thresholds were set for CADD and Eigen based on
previous studies (although the use of a single, arbitrary threshold is not
recommended by the tools’ developers). For AlphaMissense, variants with
scores ranging from 0.564 to 1.00 were assigned to the “predicted
pathogenic” category (in line with observations in the publication that
introduced this tool) [24]; all other variants were assigned to a “predicted
benign” group. Higher scores indicated a higher likelihood of a pathogenic
prediction for all tools except SIFT4G. In a few cases, a single tool
generated multiple scores and we opted for the following: CADD-phred;
BayesDel AddAF (incorporates allele frequency data); Eigen raw for coding
variants; and the PolyPhen-2 HumVar-trained model (which is suitable for
studying Mendelian diseases) [26]. The prediction outputs “deleterious”,
“damaging”, “probably damaging”, or “possibly damaging” were consid-
ered “predicted pathogenic”, while the terms “tolerated” or “benign” were
deemed “predicted benign”.

Performance assessment
Initially, performance parameters were calculated using the PAX6 missense
variants included in the primary datasets. We estimated sensitivity,
specificity, accuracy, precision (Positive Predictive Value; PPV), and the
Matthews Correlation Coefficient (MCC) [35]. To determine the best-
performing tool, we used MCC, which ranges from -1 (constant false
predictions) to 1 (perfect predictions) with 0 indicating random predictions.
We hypothesized that using an optimized, gene-specific threshold can

improve the performance of each tool. Receiver Operating Characteristic
(ROC) curves were utilized to identify the threshold that yielded the
highest MCC score for each tool. This was achieved by iteratively adjusting
the threshold and calculating the corresponding MCC score until the
optimal value was identified. The quality of the prediction obtained using
the optimized threshold was then compared to that obtained using the
default threshold. The IBM SPSS (Version 25.0) [36] software was used for
these analyses.
Subsequently, we explored if the analytical performance could be

further improved by combining the three tools with the highest MCC
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Fig. 1 Overview of the datasets used in the primary analysis. The utilized resources, selection criteria and filtering steps are outlined.
Orange boxes: number of compiled variants; gray boxes: exclusion criteria and number of excluded variants; blue boxes: number of filtered
variants based on their pathogenicity; yellow box: number of variants in the two sub-datasets. gnomAD Genome Aggregation Database,
LOVD Leiden Open Variation Database, HGMD Human Gene Mutation Database, DM “disease-causing mutation” (as assigned in HGMD); DM?,
“likely disease-causing mutation with questionable pathogenicity” (as assigned in HGMD), VUS variants of uncertain significance. All five
resources were accessed in February 2023.
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scores into a custom meta-predictor. We adopted the “majority rule”
method (agreement of over 50% of the employed tools), which involved
classifying a variant as “predicted pathogenic” if it received a “predicted
pathogenic” score in at least two out of the three selected tools.

Validation and evaluation
The findings for the tool with the highest MCC score were validated using
a fivefold cross-validation approach (similar to that previously described by
Tang et al. [11]). Briefly, this involved randomly dividing variants into five
subsets of equal size, four of which (80%) formed the training set, while
the remaining subset (20%) served as the test set. Within the training set,
the optimized threshold that maximized the MCC was determined. The
obtained threshold was then applied to assess performance on the testing
set. This process was repeated five times until all subsets were utilized as
the testing set. The resulting analytical pipeline was then evaluated on a
secondary dataset and was used to assess a set of variants that were
previously classified as VUS.

RESULTS
PAX6 variant datasets
Our primary analysis included a total of 241 variants from publicly
available databases. Using pre-determined criteria (see Methods)
these were split into two groups: Primary Dataset Disease
(n= 167) and Primary Dataset Neutral (n= 74) (Fig. 1). For the

secondary analysis, we collected 17 unique variants from our local
database, consisting of seven that were classed as VUS and 10
classed as pathogenic (Secondary Dataset Disease). We supple-
mented these with 65 presumed benign variants from the BRAVO
resource (Secondary Dataset Neutral) (Fig. 2). All missense variants
included in the primary and secondary analyses are shown in
Supplementary Table 2.

Descriptive analysis
When the distribution of the studied variants was mapped,
presumed pathogenic changes tended to cluster around the two
DNA-binding protein domains of PAX6: the Paired Domain (PD)
and the HomeoDomain (HD). Conversely, presumed benign
variants were more likely to affect residues outside these domains.
VUS did not show a clear clustering pattern (Fig. 3).

Performance of computational tools
The predictive performance of ten tools was evaluated. When the
performance metrics were calculated using the default threshold
set by the tools’ developers, considerable variability was noted
(Table 1a). Most tools exhibited high sensitivity (exceeding 88%)
but had low specificity scores (with the latter being in keeping
with the findings of previous studies, e.g. [10, 11, 37, 38]). SIFT4G
and AlphaMissense achieved specificity scores of 88% and 81%,
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Fig. 2 Overview of the datasets used in the secondary analysis. The utilized resources, selection criteria and filtering steps are outlined.
Orange box, number of compiled variants; gray box, exclusion criteria and number of excluded variants; blue box, number of filtered and
compiled variants based on their pathogenicity; yellow box, number of variants grouped into two sub-datasets and the number of VUS
(Variant of Uncertain Significance) collected. MCGM denotes Manchester Center for Genomic Medicine while BRAVO denotes TOPMed (Trans-
Omics for Precision Medicine) Data Freeze 8. Both resources were accessed in May 2023.
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d. Secondary Dataset Disease (n=10)

f. Secondary analysis of variants labelled as VUS (n=7)

e. Secondary Dataset Neutral (n=65)
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Fig. 3 Distribution of the PAX6 missense variants included in this study. Variant distribution according to their pathogenicity is shown. The
X-axis represents the PAX6 canonical protein sequence (422 amino acids), while the Y-axis denotes the number of variants impacting the same
residue. A difference can be noted in the clustering patterns of the presumed neutral variants between the primary and secondary datasets
(b compared to e). In the latter, the number of variants that are found to be altering amino acids in the DNA-binding domains is greater and
this could potentially reflect the more diverse ancestral backgrounds and phenotypic profiles of the individuals included in the BRAVO dataset
compared to those included in the gnomAD controls/biobanks cohorts. Green bar, paired domain; red bar, homeodomain. DM?, “likely
disease-causing mutation with questionable pathogenicity” (as assigned in the Human Gene Mutation Database [HGMD]); VUS variants of
uncertain significance. BRAVO denotes the TOPMed (Trans-Omics for Precision Medicine) Data Freeze 8 while gnomAD denotes Genome
Aggregation Database v2 and v3 (controls/biobanks subsets).
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respectively. In contrast, other tools showed specificities below
70%, with CADD, BayesDel and VEST4 scoring the lowest at 12%,
14% and 19%, respectively. The other metrics, such as accuracy
and PPV, ranged from 72% to 88% and 71% to 94%, respectively.
The MCC scores ranged from 0.22 to 0.74, with the top-three tools
attaining the highest scores being SIFT4G at 0.74, followed by
AlphaMissense at 0.72 and MutPred2 at 0.62.

Improving performance through threshold optimization
Aiming to obtain gene-specific thresholds tailored to PAX6, we
performed ROC curve analysis and determined the value that
achieved the maximum MCC score for each tool (see Supplementary
Fig. 1). The default thresholds were generally lower compared to the
optimized thresholds (Table 2b), except for SIFT4G (which, unlike the
other tools, assigns lower scores to variants with a higher likelihood
of being predicted as pathogenic). Following threshold optimization,
all the performance parameters of the tools showed improvement,
with a notable increase in specificity scores. At the optimized
threshold, AlphaMissense achieved the highest MCC score of 0.81,
succeeded by SIFT4G and REVEL at 0.77 (Table 2b).

Performance of combination of tools
We assessed if the predictive performance could be further
improved by combining multiple tools. A combination of the top-
three tools (AlphaMissense, SIFT4G and REVEL) with optimized
thresholds, demonstrated an MCC score of 0.78, with a sensitivity
of 87% and accuracy of 90%. These results outperformed those
obtained by combining the predictions of SIFT4G and AlphaMis-
sense or REVEL and AlphaMissense but the MCC score was lower
than the combination of SIFT4G and REVEL (Supplementary
Table 3). Interestingly, the MCC score of AlphaMissense alone
(following threshold optimization) was higher (0.81) than the MCC
score of all combined approaches.

Validation and further evaluation
To assess the reliability of the results of our primary analysis
(concerning AlphaMissense), we conducted further studies using a
fivefold cross-validation approach. The findings confirmed the
robustness of AlphaMissense (with the threshold optimization) in
predicting the effect of PAX6 variants (Table 2).
Further evaluation using a different set of variants (secondary

dataset) confirmed (i) that AlphaMissense and SIFT4G are among
the higher-ranking tools; and (ii) that gene-specific thresholds lead
to enhanced predictive performance (Table 3). It is worth noting
that, except for sensitivity, the values in the secondary analysis
were lower than those obtained in the primary analysis. This
difference is likely to be influenced by the varying proportion of
presumed benign and presumed pathogenic variants between the
corresponding primary and secondary datasets.
Lastly, a set of seven VUS from our local database were analyzed.

Among these variants, six were consistently classified as pathogenic
by all the ten tools investigated. However, one variant, PAX6
c.926 T > G, p.(Phe309Cys), showed discordant predictions (see
Supplementary Table 2b) with AlphaMissense and SIFT4G labelling
this variant as predicted benign (with scores of 0.1654 and 0.16,
respectively). Notably, PAX6 c.926 T > G, p.(Phe309Cys), affects a
residue in the C-terminal region, whereas the other six variants alter
residues in one of the PAX6 DNA-binding domains (PD or HD).

DISCUSSION
We assessed the performance of ten commonly used variant
prediction tools in the context of missense variants in a highly-
conserved gene, PAX6. Using default settings, most tools were
able to make reliable predictions in relation to pathogenic
variants. However, their ability to correctly predict benign variants
was limited (i.e., there was high sensitivity but low specificity).
These results are consistent with those from previous studiesTa
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conducted on a genome-wide or an individual gene level
[10, 11, 13, 37–39]. By generating optimized, gene-specific
thresholds for each tool, it was possible to achieve improved
performance compared to conventional approaches.
When default thresholds were used, SIFT4G, AlphaMissense and

MutPred2 were found to be the top-ranking algorithms (i.e., had the
highest MCC scores). Following threshold optimization, AlphaMis-
sense emerged as the best performing tool with the highest MCC
score, followed by SIFT4G and REVEL, while MutPred2 shifted to the
fourth position. AlphaMissense uses a deep learning model that
builds on the protein structure prediction tool AlphaFold2 [24].
SIFT4G evaluates the impact of amino acid substitutions based on
evolutionary conservation and sequence homology, aligning well
with the highly-conserved nature of the PAX6 gene [25, 40].
MutPred2 also incorporates a conservation-based approach along
with other features. It is noted that MutPred2 was previously found
to have good performance in prediction tasks involving variants in
PITX2, a paired-like homeodomain transcription factor that is also
expressed in the developing eye [41]. REVEL emerged as the best
meta-predictor in the context of PAX6; this was unsurprising as its
superior performance over other ensemble tools has previously been
demonstrated [37, 42–44].
Our findings support the use of gene-specific thresholds, as

opposed to relying on default settings [45]. Even REVEL, one of the
highest performing tools, had a specificity of 47% (misclassifying 39
out of 74 presumed benign missense variants) with the default

threshold. This issue arises due to the training process of the tools,
where variants from multiple genes are used. This default approach
allows for the possibility of underfitting, where crucial details
necessary to capture the characteristics of an individual gene are
overlooked. It is noted that, upon applying optimized thresholds, all
tools demonstrated substantial improvement, particularly in specifi-
city (Table 2). This observation is consistent with the findings of other
studies looking at different genes [11, 13].
We attempted to combine the predictions of the top-three

performing tools (following threshold optimization) using the
majority rule method. The results demonstrated good perfor-
mance, with most of the parameters surpassing 84% and the MCC
ranging from 0.76 to 0.79 (Supplementary Table 3). However, the
use of AlphaMissense alone outperformed this approach
(Table 1b). The high performance of this tool was confirmed
through a fivefold cross-validation experiment and in the
secondary dataset (Table 3). To a degree, our findings contradict
the observations of similar studies. For instance, Leong et al. found
that the best performance for predicting KCNQ1 variant patho-
genicity was achieved by considering three out of the five tools
that were examined [12]. Likewise, Tang et al. reported achieving
optimal performance in the context of SCN1A variants when
combining the three best-performing tools [11]. Conversely, our
findings align with those of a study by Gunning et al. which
supported the adoption of a single tool instead of using a
consensus-based approach [42].

Table 2. Fivefold cross validation results showing the performance of the AlphaMissense tool (in tasks involving PAX6 missense variant evaluation).

Test Sp (%) Sn (%) Acc (%) PPV (%) MCC

1 93 94 93 97 0.85

2 86 97 93 94 0.84

3 93 84 87 96 0.74

4 93 82 85 96 0.70

5 100 91 94 100 0.87

Average 93.1 ± 5.1 89.5 ± 6.3 90.6 ± 4.0 96.7 ± 2.2 0.80 ± 0.1

All percentages were rounded to zero decimal points.
Sp specificity, Sn sensitivity, Acc accuracy, PPV positive predictive value, MCC Matthews correlation coefficient.

Table 3. Performance of the computational tools assessed in this study (in tasks involving PAX6 missense variant evaluation): secondary analysis.

Tool Threshold Sp (%) Sn (%) Acc (%) PPV (%) MCC

AlphaMissense Default thresholds 65 100 69 30 0.44

BayesDel 6 100 19 14 0.09

CADD 3 100 16 14 0.06

ClinPred 12 100 24 15 0.14

Eigen 15 100 26 14 0.14

MutPred2 34 100 43 19 0.25

PolyPhen2 65 100 69 30 0.44

REVEL 37 100 45 20 0.27

SIFT4G 79 90 80 39 0.50

VEST4 20 100 31 16 0.18

AlphaMissense Optimized thresholds 88 90 88 53 0.63

REVEL 82 100 84 46 0.61

SIFT4G 83 90 84 45 0.56

Combination (AlphaMissense + SIFT4G
+ REVEL)

85 90 85 47 0.58

The MCC score of the best-performing tool in the secondary analysis is highlighted with bold font style.
All percentages were rounded to zero decimal points.
Sp specificity, Sn sensitivity, Acc accuracy, PPV positive predictive value, MCC Matthews correlation coefficient.
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Using AlphaMissense to evaluate seven PAX6 missense variants
that have been previously classified as VUS resolved some of the
discordance for one change, c.926 T > G, p.(Phe309Cys), by
suggesting that it does not have an effect on molecular function.
This variant, unlike most PAX6 pathogenic missense changes,
affects a residue outside the DNA-binding domains [46]. This result
could potentially be attributed to AlphaMissense’s ability to
pinpoint functionally crucial sites (instead of simply evaluating the
overall evolutionary conservation of a protein) [24]. It is noted that
a few recent studies have shown that AlphaMissense can reliably
classify subsets of variants that are known to affect molecular
function [47–49].
The present study has several limitations, including the

availability of a relatively small number of presumed pathogenic
variants due to the rarity of PAX6-related disease. Additionally, we
were unable to exclude the possibility that some of the studied
genetic variants may have been utilized for training some of the
evaluated tools. Notably, it is possible that some of the PAX6
missense variants that were presumed to be neutral/benign in this
study (e.g. due to their presence in the gnomAD controls/
biobanks datasets) may have been miscategorized and could in
fact be associated with overlooked phenotypes or incomplete
penetrance. To evaluate the robustness of the findings, we
modeled this potential issue by repeating the analyses using an
intentionally contaminated variant dataset. The main results of the
study could be replicated in this context (Supplementary Table 4).
Finally, it is noted that we did not (i) consider all mechanistic
consequences of missense events, (ii) seek to exclude exonic
splice variants from the core datasets, (iii) combine conventional
missense impact prediction methods with methods that evaluate
other mechanisms of genetic variant impact (e.g. splicing or gene
expression). Future studies could explore the performance of a
wider range of computational approaches, including tools
considering splicing and/or the 3D-structure of the protein, and
algorithms using advanced artificial neural network approaches.
It is highlighted that variant pathogenicity predictors constitute

one of the many pieces of evidence that can be used to evaluate
the effect of genetic alterations. It is crucial to consider other
factors (including segregation analysis, population frequency and
the outcomes of functional assays) [50]. Refinement of the ACMG/
AMP sequence variant guidelines (and utilization of Bayesian
approaches) is expected to provide an enhanced framework that
would help generate robust estimates by improving how different
lines of evidence are combined.

CONCLUSION
In summary, this study offers insights into how computational
prediction tools can be optimally used for the task of PAX6
missense variant evaluation. The best-performing approach, which
involves using a PAX6-specific threshold for AlphaMissense, can be
utilized in different contexts and has the potential to enhance
variant interpretation, ultimately leading to more precise and
timely diagnoses for individuals with PAX6-related disorders.

Main web resources

● Genome Aggregation Database version 2.1.1 (v2) and version
3.1.1 (v3)

● https://gnomad.broadinstitute.org/, accessed in February 2023
● Leiden Open Variation Database version 2.0 and 3.0
● https://www.lovd.nl/, accessed in February 2023
● Human Genetic Mutation Database
● https://www.hgmd.cf.ac.uk/, accessed in February 2023
● ClinVar
● https://www.ncbi.nlm.nih.gov/clinvar/, accessed in February 2023
● BRAVO Powered by TOPMed Freeze 8 on GRCh38
● https://bravo.sph.umich.edu/freeze8/hg38/, accessed in April 2023

● cBioPortal
● https://www.cbioportal.org/, accessed in May 2023
● dbNSFP
● http://database.liulab.science/dbNSFP, accessed in March 2023

DATA AVAILABILITY
The data supporting the results of this study are openly accessible and can be
obtained through the link provided in the Main Web Resources section and detailed
in the Supplementary Information.
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