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We reanalyzed through a cytogenomics approach a case published 20 years ago, describing a girl with developmental delay and
epilepsy. Karyotype and FISH analysis showed a de novo 2.3 Mb terminal inverted-duplication at 8q24.3. The interpretation was
inconsistent with the absence of a more distal deletion as expected for distal inverted duplications, and it was inconceivable to
highlight rearrangements smaller than 5-10 Mb at that time. Chromosomal microarray (CMA), optical genome mapping (OGM), and
short-read whole genome sequencing (srWGS) identified a complex configuration at 8g24.3, which resembles events like
chromoanasynthesis or DUP-TRP/INV-DUP (duplication-triplication/inverted-duplication), both characterized by clustered
duplications and triplications, some of which are inverted. In the EBV-line genes located in the amplified regions were
overexpressed. Despite a more precise definition of the imbalance, we were unable to provide a clear-cut explanation for the

proband’s clinical features.
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INTRODUCTION

We re-examined the genome of a previously described girl
affected by developmental delay and epilepsy [1]. At the age of 6,
her karyotype and FISH revealed a de novo inverted duplication
(INV-DUP) at distal 8q of 2.3 Mb. Questions remained about how
karyotype analysis identified such a small rearrangement and why
the distal inv-dup was not associated with deleting a more
terminal region, as described in INV-DUP DEL rearrangements [2].
To address the problem, we re-analyzed the genome of the
proband on a new blood sample by CMA, srWGS, and OGM.
Overall, we detected a complex configuration at 8924.3, which
resembles but does not exactly overlap events like chromoana-
synthesis or DUP-TRP/INV-DUP (duplication-triplication/inverted-
duplication), both characterized by clustered duplications and
triplications, some of which inverted [3, 4]. Genes within amplified
regions were overexpressed despite a more precise genomic
definition of the imbalance, the etiology of the proband’s clinical
features remains unclear, similar to many amplifications reported
in sporadic rearrangements.

PATIENT AND METHODS

We report the nineteen-year clinical follow-up of a patient’s case
published in 2005 [1]. The proposita, currently 25 years old, has
been characterized by severe neurodevelopmental delazy and
unexplained epilepsy since her assessment at age 6. At 9%'? years
old, her weight and height were in the 10th and 3rd percentiles,
respectively, and her cranial circumference (CC) was -2SD. She

showed severe ID, absence of language, and stereotyped move-
ments, along with lower limb hypertonia, equinovarus deformity,
skin dryness, and flaking. Tonic-clonic convulsive seizures became
more frequent at 12 years of age when menarche appeared. At
the age of 25 years, her weight and height were in 10-25th
percentile, and CC was 1.03 DS. She exhibited short philtrum and
malar hypoplasia, bilateral clinodactyly, right camptodactyly of the
fifth finger, and club foot with syndactyly of the second and third
right fingers. Stereotyped movements, ataxic gait, and hypertonia
were evident. Molecular investigations (CMA, RT-PCR, quantitative
expression PCR, srWGS, OGM, Sanger sequencing validation, and
parental origin) are described in the supplemental material.

RESULTS

The 400 G-banding karyotype showed a distal 8q rearrangement.
Dual-color FISH highlighted a distal INV-DUP at 8923, sized 2.3 Mb
[1]. Contrary to our expectations for this type of structural variation,
no associated terminal deletion was detected. CMA confirmed the
rearrangement’s size and identified two clustered copy number
gains, one duplicated and the other at least triplicated, separated by
a copy-neutral fragment. No additional relevant copy number
variants were detected elsewhere. OGM data showed a CNV profile
nearly identical to the CMA (Fig. 1a). RT-PCR confirmed copy
number amplification (4 to 6) of selected distal regions (RT2-RT6)
and the absence of the terminal 8q deletion using probes RT7-RT8
(Fig. 1a, Table S1). Furthermore, quantitative expression analysis
of GRINA and PLEC in amplified regions showed about fourfold and
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s
o $
g i Normal chr 8
8 gqv 8 8qs
G-banding karyotype
g 1 1§
1§
| n
oom 4l —
iH
&
a
rea(8q)
b
® o

C o« [N RN (Chm G s
® e o ©0 ® oo o

N~ I c o] ¢ N EINERNN

-
BIE v~ qglivMnnoraqRr rSH|
@6 06

C. Prop i replication-based

I

ote

r[Blr R gaPon N mKH

< inverted fragment

Fig. 1 Characterisation and interpretation of the 8q24.3 rearrangement. A Cytogenetics and cytogenomics data: a Cut-out of chromosome
8 from a 400-banding karyotype; b CMA, RT-PCR and OGM of the 8q24.3 region showing nearly identical profiles. Numbers represent the log2
ratio (ADM2) of CMA and fractional copy numbers of OGM. B Genome sequencing details (a) NGS coverage plot (50x) of the 8g24.3 region
(chr8:142,664,805-145,138,635, hg38) in control and the proband showing the duplicated (lighter blue box), triplicated (blue box), and
amplified regions (darker blue boc) present in the patient only; quantification of copy number gains was based on the increased coverage in
the plot (see Table S1). The three light gray boxes, present both in the control and the proband, indicate portions with poor coverage.
b Schematic drawing of the order of the shattered fragments, according to hg38. In white, neutral copy number fragments (A, C, E, f, T); in red,
deleted fragments (B, F, G); in light blue, the duplicated fragment D; in blue, the triplicated fragments H, h, |, L, S, and in dark blue, the
amplified ones M, N, n, O, P, q, R, s. Left or right-oriented arrows represent discordant reads as they appear when aligned back to the reference
genome (hg38). Note that hN junction one breakpoint lies within a clusted of segmental duplication (see Table S3) ¢ Partial reconstruction of
rearranged blocks; numbers within circles correspond to the breakpoint junctions verified by Sanger sequencing analysis (see Fig. S4). C The
plausible replication-based mechanism of the 8q24.4 rearrangement. The schematic drawing indicates the 8q normal chromosome
segmented according to the breakpoints (see panels B and Table S1). In the proposed replication pathway, arrows in the normal orientation
(from left to right) or inverted (from right to left) denote the 8g24.3 regions shuffled on the patient’s chromosome 8q. The dashed lines
indicate the movement from one replication fork to another, either in the normal or reverse orientation. At the bottom is a diagram of the final
new rearranged chromosome 8 [rea(8q)], where the distal portion 8q24.3 presents inversions, deletions, duplication, triplication, and
amplification. It is not certain where the block of fragments CfDO and DENMNgLMNNnOPQQRrST are inserted.

25-fold overexpression compared to controls, respectively (Fig. S1).
srWGS identified 23 fragments from 43 bps to 701 kbs, five
indicated by lowercase letters below 626 bps. All fragments were
confined to the 8g24.3 region (chr8:143286493-144976557, hg38)
(Table S2). Three were deleted (B, F, G, Figs. S2, 3), one duplicated
(D), while others were triplicated (H-L and S) or amplified (M-r).
Three normal copy fragments (C, E, f) were located upstream of the
genomic TRIP-AMP portion, between deleted and duplicated
fragments (Fig. 1b). The distal 162 Kbs of 8q portion (fragment T)
were in the same orientation as the reference genome. Overall, the
duplicated, triplicated, and amplified fragments were intermixed,
with some of the triplications and amplifications that were inverted
(Fig. 1c, Table S2).

We were able to verify eight of the breakpoints’ junctions, of
which two (junctions 4 and 8) involved microhomology of 1-3 bp
and six (junctions 1-3 and 5-7) non-templated insertions of
2-19 bps. Also, at breakpoints 4-5 and 7-8, we identified inserts of
106 (fragment n) and 626 bp (fragment q), respectively (Fig. S4,
Table S4). We examined the overall distribution of the repeats
elements (UCSC RepeatMasker) near the rearrangement’s break-
points of which 7/17 contained LTR, Alu, DNA repetitions, LINE/
AluSx and one segmental duplication. Five protein-coding RefSeq
genes (JRK, TOP1MT, ZC3H3, EPPK1, ARHGAP39) were disrupted, as
confirmed by Sanger sequencing in three of them (ZC3H3, EPPK1,
ARHGAP39). Of the three putative fusion genes (Table S4), one
could not be confirmed. STS- and SNP-parent-of-origin showed
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that the duplicated/triplicated/amplified regions involved only
one of the two maternal alleles (Table S5).

DISCUSSION
Although most constitutional pathogenic structural aberrations
appear as two breakpoint rearrangements, deeper DNA investiga-
tions can show unexpected complexity with the involvement of
more than two chromosomes or more than two in cis breakpoints
[5-7]. In this case, we were surprised that we did not find any
deletion downstream of the duplication, as expected for the INV-
DUP DELs, the rearrangements deriving from the breakage of
mirror dicentric chromosomes [2]. Another concern was that the
rearrangement was visible on the 400-band karyotype, although it
would only be 2.3 Mb in size if it was an INV-DUP-DEL. CMA
answered both questions: the 8qg24.3 rearrangement was a
duplication/amplification having nothing to do with the INV-
DUP-DELs [8]. In addition, the amplification showed that the
rearrangement size was not less than 5-10 Mb, which is the
threshold for detecting imbalances by the G banding [9]. The
amplified region was, indeed, significantly much larger, with a
region of ~540 kb amplified at least threefold (~1.6 Mb) and a
portion of ~1.14 Mb amplified from at least fourfold (~4.6 Mb) to
over eightfold (~9 Mb) (Fig. 1a, Table S2).

WGS partially resolved the variant's structure, showing a series of
contiguous triplicated and amplified fragments, preceded by a
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Fig. 2 Genome view of the rearranged genomic region 8q24.3 spanning the distal 2.5 Mb of chromosome 8q (GRCh38/hg38). a The
colored horizontal lines represent the rearranged segments of our patient’s identified by genome sequencing. Each color indicates the copy
number status: gray means normal copy numbers; red denotes deletions; light blue indicates duplication; blue represents triplication, and
dark blue amplification. b Magnified view of the 8g24.3 DUP/TRIP/AMP. From top to bottom: UCSC genes (GRCh38/hg38); triplosensitivity
genes (pTriplo) map: in red circles those having a probability of triplosensitivity (pTriplo 20.94) [17]; segmental duplications >1000 bps.

duplicated region (D in Fig. 1b, c) of smaller size, which was
interspersed between normal copy number segments and copy
number losses. The inverted orientation of some of the amplified
segments immediately suggested iterative intrachromosomal
switches within a clustered chromosomal region. In agreement,
genotyping data showed that informative markers (2 / 3) within the
amplified regions were from a single maternal chromosome 8. This
type of amplification has been reported as a consequence of
chromoanasynthesis or DUP-TRP/INV-DUP rearrangements, both in
cancers [10, 11] and constitutional diseases [4, 12]. None of these
types of rearrangements is recurrent; that is, they do not share the
same breakpoints. However, when they insist on the same dosage-
sensitive gene, they give rise to specific pathogenic conditions. The
MECP2 locus at Xq28 provides an impressive example: in hemizygous
males, a severe developmental disorder (MIM#300260) associates
with the triplication of the gene, which in turn is secondary to a DUP-
TRP/INV-DUP reorganization. Mapping the breakpoint junctions in
several cases [4] has revealed that, despite the overlapping core
features associated with MECP2 amplification [13], the DUP-TRP/INV-
DUP structure was diverse in the different cases. In contrast, we could
not find cases overlapping the clinical and molecular features of the
proband described here. A few cases with 8243 inverted
duplications without any associated triplication are reported [14].
Indeed, in one case describing an inv-dup del(8q), the region
contiguous to the deletion was partly more than triplicated for about
90 kb [15, 16], suggesting that further sequencing investigations
might reveal more complexity. According to Collins et al. 2022 [17],
the 8g24.3 region includes six triplosensitivity genes: LYNX1, LY6D,
SCRIB, PUF60, RPL8, and ZNF517 (Fig. 2). Of these, only PUF60 is
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disease-associated (MIM#615583), although evidence of pathogeni-
city points to haploinsufficiency (https://www.deciphergenomics.org/
gene/PUF60/overview/clinical-info). GPAAT (MIM#603048), located
within the amplified segment Q, is another disease-associated gene
(Fig. 2). Biallelic variants of GPAA1, primarily missense ones, have been
associated with a disorder (MIM#617810) which includes develop-
mental delay and epilepsy as seen in our patient. However, no
pathogeneic or likely pathogenic variant in GPAAT, which, along with
the amplified allele, could be responsible for the proband’s
phenotype were detected. Finally, WGS did not find pathogenic
SNVs in other disease-associated genes per ACGM guidelines [18].
Potential pathogenic correlations with interrupted or fusion genes
(Table S4) could not be excluded.

In summary, the rearrangement’s molecular definition has
clarified that it is much more complex than initially highlighted.
The presence of several amplified regions, either in direct or
reverse orientation, as shown by WGS and OGM (Fig. 1b, ¢, Fig. S5),
immediately pointed to an aberrant DNA replication at the basis of
the event. It remains challenging to distinguish whether it is a
process of chromoanasynthesis or a DUP-TRP/INV-DUP event, both
characterized by clustered duplications and triplications. The
presence of short sequence insertions parallels what Zhang and
Pellman (2024) [19] reported in a process they termed break-
replication/fusion (B-R/F). Accordingly, this B-R/F explains the
complexity of the rearrangement patterns, including composite
and rapid DNA amplification after chromosome fragmentation.

Interestingly, some breakpoint junctions appear to have formed
two times: hH, Sr, Ng, gL. The latter junction, The structure of the
hN junction (Table S4) illustrates the role of segmental
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duplications in forming complex rearrangements [20]. Indeed, one
of its breakpoints is located within a cluster of segmental
duplications. Unsurprisingly, this region is recognized as a
“problematic region” (UCSC hg38). This finding together the
multiple amplification, suggests a rolling circle mechanism
underlying the formation of this complex genomic rearrangement
[21, 22]. In constitutional diseases, complex rearrangements
characterized by clustered duplications and amplifications seem
to be less common than those mediated by chromothripsis and
NAHR. The former, following partial trisomy rescue, can lead to a
series of de novo imbalances, including unbalanced transloca-
tions, insertions, and supernumerary small marker chromosomes
[23, 24]. Conversely, NAHR-mediated rearrangements can result in
mirror dicentric chromosomes, which, after breakage, produce
INV-DUP DEL rearrangements and simple distal deletions.

One final consideration concerns the difficulty of correlating the
genotype to the phenotype in the presence of amplifications.
Indeed, most of them are sporadic rearrangements, and their
functional effects, especially in embryogenesis, much less in tumors,
are not obvious. This condition may hinder the publication of
unsolved cases, making such rearrangements appear even rarer.
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