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Mitochondrial dysfunction in Spaceflight Associated Neuro- 
Ocular Syndrome (SANS): a molecular hypothesis in 
pathogenesis
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INTRODUCTION
Spaceflight-associated neuro-ocular syndrome (SANS) is a condi
tion affecting astronauts during long-duration spaceflight (LDSF). 
SANS is characterized by hyperopic refractive shifts [1], optic disc 
edema [2], globe flattening, and chorioretinal folds [3]. With the 
commercialization of human spaceflight, the amount of space 
travelers experiencing LDSF will grow exponentially over the 
coming years, and there may be a potential increase in cases of 
SANS. In addition, the planned crewed 2030 Mars Mission will 
expose astronauts to LDSF greater than previously experienced 
[4]. Although, the exact mechanisms underlying SANS is not fully 
understood, it is believed to be related to the unique environ
ment of LDSF [5]. SANS has been traditionally linked to fluid shifts 
and structural changes in the eye caused by microgravity [5]. This 
hypothesis is based on that the absence of gravity in space leads 
to a redistribution of bodily fluids, resulting in increased 
intracranial pressure and subsequent changes in the eye [5]. 
However, recent research is exploring the role of mitochondrial 
dysfunction as a possible underlying cause of SANS [6].

Microgravity and increased exposure to galactic cosmic 
radiation during spaceflight are known to have significant 
impacts on mitochondrial function [7]. Recent multi-omics and 
systems biology analysis of data from 59 astronauts and mice and 
data from NASA’s GeneLab found that mitochondrial stress is a 
consistent phenotype of spaceflight [8]. This remarkable study 
highlights how spaceflight significantly impacts mitochondrial 
function, resulting in altered gene expression, reduced antiox
idant defences, and increased oxidative stress [8]. These changes 
affect metabolic pathways and gene expression, indicating that 
mitochondrial dysfunction is a critical consequence of long- 
duration space missions and could potentially be connected to 
SANS development [8].

Mitochondria are essential cellular organelles responsible for 
energy production through oxidative phosphorylation [7]. They 
play a crucial role in regulating apoptosis and maintaining cellular 

homeostasis, neuronal excitability and synaptic transmission [7]. 
Mitochondria play an essential role in the eye, aiding with the 
transmission of visual information from the retina to the brain, 
and are densely concentrated in the retinal ganglion cell axons 
[9]. The inner segments of retinal photoreceptors have an 
abundance of mitochondria, allowing for outer segment renewal 
and phagocytosis [10]. The retina ages significantly faster than 
other organs due to its elevated density of photoreceptors, and 
an individual experiences a decline of 70% in ATP production 
throughout their lifetime [11].

Diabetic retinopathy and Age-related macular degeneration are 
two major eye conditions associated with mitochondrial defects 
[12]. The retina is highly susceptible to oxidative damage due to 
its high oxygen consumption and exposure to light [12]. Excessive 
production of reactive oxygen species (ROS) damages retinal cells 
and contributes to disease progression [12]. Leber hereditary 
optic neuropathy is another critical example of a mitochondrial 
disease leading to vision loss, characterized by acute or subacute 
bilateral loss of central vision [13]. This diversity in diseases 
underlines the crucial role of mitochondria in maintaining retinal 
health.

Microgravity conditions can alter cellular signaling pathways, 
leading to mitochondrial dysfunction and subsequent cellular 
damage [14]. Recent research has also shown that other effects of 
microgravity on mitochondrial function include alterations in 
gene regulation, lipid metabolism and innate immunity [8]. 
Microgravity is also associated with decreased metabolic 
demands which may reduce the expression of proteins involved 
in oxidative phosphorylation [6].

During LDSF, astronauts are outside of Earth’s protective 
magnetosphere, which exposes the eye to significantly higher 
levels of ionizing radiation, which has known deleterious effects 
on mitochondria [15, 16]. Additionally, the space environment 
exposes astronauts to increased levels of oxidative stress, which 
can further compromise mitochondrial function [17]. Oxidative 
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stress occurs when there is an imbalance between the production 
of ROS and the ability of cellular antioxidants to neutralize them 
[17]. Mitochondria are both sources and targets of ROS, and their 
dysfunction can potentially contribute to the oxidative stress 
observed in SANS [17].

Mao et al. previously showed in a rodent study that spaceflight 
conditions induced mitochondrial oxidative damage in ocular 
tissue [18]. Levels of 4-hydroxynonenal (4-HNE) protein, a specific 
marker for lipid peroxidation was significantly elevated in the 
retina of mice following spaceflight compared to ground-control 
mice, and significant apoptosis was seen in the inner nuclear layer 
and ganglion cell layer of the retina in the spaceflight mice [18]. 
Additional research will be required to examine the effects of 
spaceflight on mitochondrial function in-vivo with retinal 
flavoprotein autofluorescence imaging, which can non- 
invasively assess retinal dysfunction prior to the death of 
retinal cells.

In a study of 49 astronauts by Zwart et al. [19], B-vitamin status 
was shown to be a significant predictor of visual outcomes 
observed after spaceflight (P < 0.001).

B-vitamin are essential nutrients, that are known to directly 
regulate the metabolism of mitochondria [20]. Vitamin B3, 
nicotinamide, is known to promote retinal pigment epithelium 
differentiation and enhance mitochondrial metabolism. This same 
study by Zwart et al. also found that affected astronauts had 
higher levels of 1-carbon metabolites (such as homocysteine) 
prior to spaceflight [19]. Homocysteine is known to affect 
mitochondrial function, structure and energy production, and 
has been shown to have neurotoxic effects on ischemic brain cells 
[21]. An excess of 1-carbon metabolites occurring in astronauts 
during LDSF may lead to mitochondrial dysfunction, which 
potentially manifests as SANS in the eye.

Understanding the precise mechanisms linking mitochondrial 
dysfunction to SANS is crucial for developing effective counter
measures to mitigate the risks associated with long-duration 
space missions. These countermeasures may include lifestyle and 
pharmacological interventions and modifications aimed at pre
serving mitochondrial health. Emerging countermeasures for 
SANS include the use of swimming goggles to provide a 
moderate increase in intraocular pressure to mitigate SANS [22], 
and the use of augmented reality to restore any potential losses 
in visual function [23, 24]. Near-infrared light therapy may also be 
a useful side effect free, and non-invasive method to improve 
mitochondrial function during spaceflight. Improved diagnostics 
methods in space will also be essential as well to detect subtle 
structural changes during spaceflight [25, 26]. Further research 
will be required to determine the effects of mitochondrial 
function on the development of SANS and the efficacy of various 
countermeasures.
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