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EDITORIAL

Cochrane corner: artificial intelligence for diagnosing 
exudative age-related macular degeneration
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Exudative or neovascular age-related macular degeneration 
(nAMD) is one of the leading causes of severe vision loss in older 
adults worldwide [1] and affects an estimated 2% of Europeans 
aged over 65 [2]. The potential impact on individuals’ and 
caregivers’ quality of life is profound [3]. In addition, nAMD 
contributes to a significant burden on healthcare resources due to 
the need for ongoing monitoring and treatment with costly 
intravitreal anti-vascular endothelial growth factor (anti-VEGF) 
injections [4], with late diagnosis and delayed treatment initiation 
producing diminishing returns in terms of long-term visual 
outcomes [5]. The incidence of nAMD is projected to continue 
rising as the population ages, making early detection even more 
essential.

Advancements in artificial intelligence (AI) for retinal image 
analysis have the potential to improve patient outcomes by 
enabling early detection and more accurate diagnosis, and hence 
more timely intervention. This commentary features a recent 
Cochrane review which evaluates the accuracy of artificial 
intelligence (AI) tools in diagnosing nAMD [6].

The authors identified 36 eligible diagnostic test accuracy (DTA) 
studies published up to April 2024 which evaluated 40 AI 
algorithms. This comprised 16,655 participants across 20 studies 
analysing optical coherence tomography (OCT) scans, fundus 
images, infrared images, OCT angiography, or a mix of these. The 
total cohort size could not be determined as the remaining 
16 studies did not report on the number of participants. 
Demographics were poorly reported as well – only four studies 
described participants’ age and sex, and none reported ethnicity. 
However, the populations studied did encompass countries 
across Asia, Europe, and the United States.

Twenty-eight algorithms were internally validated, demonstrat
ing high accuracy with a summary sensitivity of 0.93 (95% 
confidence interval (CI) 0.89–0.96) and specificity of 0.96 (95% CI 
0.94–0.98). A further three underwent external validation, 
demonstrating similarly excellent performance with a pooled 
sensitivity of 0.94 (95% CI 0.90–0.97) and a high specificity with 
wider CIs (0.99, 95% CI 0.76–1.00). The remaining nine studies did 
not provide data suitable for meta-analysis.

While these AI algorithms appear to perform promisingly well 
for diagnosing nAMD, these results should be interpreted with 
caution because of the risk of overfitting with small datasets and 
internal validation studies, and the low certainty of evidence from 
imprecision (wide CIs) and risk of bias.

None of the studies were free of bias across the four domains of 
the modified Quality Assessment of Diagnostic Accuracy Studies‐ 
2 (QUADAS‐2) tool. For example, multiple studies did not report 
the numbers and experience levels of human graders setting the 
reference standard (16/36, 44%), describe masking or indepen
dence (35/36, 97%), or whether the graders were provided with 

clinical information (25/36, 69%). Given the subjective nature of 
image-based reference standards and the impact of errors on 
algorithmic performance [7], robust evaluations should involve at 
least two experienced graders and a robust arbitration process 
[8]. In addition, it is important to consider whether the reference 
standard should be based on expert(s) grading the same image as 
the AI model, or be benchmarked against the clinical gold 
standard with fluorescein angiography and/or multimodal ima
ging. For several studies, the image used was sometimes a single 
modality such a fundus photograph, which would not be used 
alone in clinical practice for nAMD detection [9].

Study design was another area of concern. The prevalence of 
nAMD across the studies was artificially high (33%, range 0.3–49%), 
as the majority (31/36, 86%) employed a case-control design, most 
of which compared patients with and without nAMD, rather than 
nAMD versus a spectrum of other retinal diseases with potentially 
similar imaging features. The former presents a distinct and less 
complex task than typically seen in clinical practice. In addition, the 
strict eligibility criteria and exclusion of patients with additional 
ocular conditions or diagnostic uncertainties may produce 
unrealistically optimistic results, as such “clean” datasets do not 
reflect real-world diagnostic challenges. This is especially true for 
the use case where these models could deliver the highest value 
proposition - nAMD detection for non-specialists managing 
populations with a wide variety of complaints. This misalignment 
between datasets and the potential implementation niche invites 
spectrum bias and risks inflating AI performance.

Overall, this review highlights a clear need for improved 
reporting of diagnostic accuracy studies. Reporting standards 
which cover diagnostic accuracy studies (Standards for Reporting 
of Diagnostic Accuracy Studies, STARD) and AI studies (Minimal 
Information about Clinical Artificial Intelligence Modelling, MI- 
CLAIM) are already well established [10, 11]. The forthcoming 
STARD‐AI extension [12] may help to improve reporting, but will 
require active implementation from journal editors and other 
stakeholders given the limited compliance with existing tools.

This Cochrane review has also surfaced inadequate reporting of 
sociodemographic characteristics across multiple studies, which 
limits our understanding of the model’s performance across 
diverse patient populations. The MINimum Information for 
Medical AI Reporting (MINIMAR) standards recommend reporting 
demographic variables including age, sex, race, ethnicity, and 
socioeconomic status at a minimum [13]. More recently, the 
STANDING Together collaboration has developed international 
consensus recommendations to highlight and/or mitigate bias in 
datasets used to develop and validate AI models [14]. In addition 
to reporting relevant patient metadata, the importance of 
evaluating AI performance across these patient subgroups is 
emphasized – beyond simply aggregating performance, assessing 
whether the AI is ‘safe on average, or safe for all’ is essential [15].

While the lack of external validation studies is concerning, real- 
world applicability should extend beyond simple dichotomous 
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concepts of internal versus external validation. Future studies 
should consider real world deployment such as silent trials (also 
known as translational trials) [16], randomised controlled trials, or 
prospective deployment studies with adequate safety guardrails 
to evaluate algorithm performance in clinical environments. In 
addition to diagnostic accuracy, this should incorporate evalua
tions of human-computer interactions and patient-centred out
comes to obtain insights into the system-wide impact of AI 
models on healthcare services and help build robust evidence for 
clinical utility and feasibility.

There are several key considerations outside of this Cochrane 
review. Should an AI model for diagnosing nAMD function 
autonomously, or serve as a decision support tool for clinicians? 
Should it be used to triage symptomatic patients in primary care 
and remote settings where access to specialist care is more 
limited? What value can these models offer in well-resourced 
secondary care settings? Such considerations have important 
implications for evidence generation to support regulatory 
approval processes, and for other stakeholders such as payers 
and policymakers as they consider reimbursement structures that 
facilitate the sustainable provision of patient benefit by AI 
developers.

This Cochrane review highlights the potential of AI to transform 
current paradigms of nAMD detection. It also highlights 
significant gaps in the current evidence base, including inade
quate reporting, external validation, and real-world evaluations. 
Addressing these gaps will require robust study designs, 
adherence to reporting standards, and greater clarity on how 
diagnostic AI can fit into the clinical workflow. These are essential 
steps towards bridging the “AI chasm” [17], and develop early 
signals of efficacy into products that can be integrated in routine 
clinical practice to achieve scalable benefit to patients and 
healthcare services.
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