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Expression of anti-amyloid CARs in microglia promotes efficient
and selective phagocytosis of Aβ1‒42
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Genetic engineering of microglial cells is a promising therapeutic avenue emerging with advancements in gene delivery
techniques. Using a recently developed AAV capsid for efficient in vitro transduction we report the engineering of microglia with
CARs (CAR-Mic) targeting phagocytosis of amyloid beta 1‒42 (Aβ42). Functional screening of seven CAR constructs in human iPSC-
derived microglia revealed up to 6-fold increases in internalized Aβ relative to viral control. CAR-driven phagocytic enhancement
was selective for Aβ, dependent on intracellular domain signaling, and was confirmed in primary mouse microglia. These findings
highlight the potential of using this approach to target dysfunctional microglia in Alzheimer’s disease and other CNS disorders.
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INTRODUCTION
Microglia are central nervous system (CNS)-specialized immune
cells with critical roles in neural development, tissue surveillance
and homeostasis. Substantial evidence point to their dysfunction
being a key contributor to pathology in multiple neurodegen-
erative diseases (NDDs) [1], advocating for development of
advanced microglia-based therapies [2, 3]. In late onset
Alzheimer’s disease (AD), a prototypical NDD accounting for
˃95% of AD cases, microglia gradually lose early protective
functions such as phagocytosis of amyloid beta (Aβ) and
become increasingly pro-inflammatory. Recent human genetic
studies show that AD risk genes are highly enriched in microglia
and converge on pathways involved in Aβ clearance and
degradation [4, 5]. This, together with clinical trial results
indicating microglial involvement in Aβ removal in recently
approved anti-amyloid antibody treatments [6, 7], suggests that
strategies to enhance Aβ phagocytosis by microglia could
produce beneficial outcomes.
A powerful approach to manipulate immune cell function is via

genetically encoded chimeric antigen receptors (CARs) that enable
antigen-targeted effector responses [8]. While thus far used
extensively in systemic immune cells, the potential of this
technology has yet to be explored in microglia. Here we
generated multiple CAR variants designed to promote microglial
phagocytosis and used single-chain variable fragments (scFv)
derived from three FDA-approved monoclonal antibodies to
target Aβ. We show that expression of anti-amyloid CARs in
human iPSC-derived and primary mouse microglia drive a
selective increase in engulfment of Aβ42.

RESULTS
To construct anti-amyloid CARs, endogenous receptors associated
with IgG-dependent or independent Aβ phagocytosis in microglia
were used as backbones and combined with a scFv for Aβ targeting
(Fig. 1A, B). Seven constructs were assembled and packaged in adeno-
associated virus (AAV) particles (Fig. 1C) using a recently developed
capsid [9] to support quantitative screening in human iPSC-derived
microglia (hiMG) (Fig. 1D). Following a 5‒7 day expression period, the
ability of mScarlet+ hiMG (viral control and CARs) to engulf pre-
aggregated FAM-labeled Aβ42 was assessed relative to non-
transduced cells using a multicolor flow cytometry panel (Fig. 1E, F).
No apparent toxicity was observed after application of virus particles
over this time period (Fig. S2A–C). Transduction efficiencies,
determined as percent mScarlet+ cells, were on average 32.5% for
CARs and 70.5% for viral control (expression of mScarlet only) (see
Table 1 for details). hiMG expressing anti-amyloid CARs displayed up
to 6-fold increases in mean fluorescence intensity (MFI) after a 2-hr
incubation period (Fig. 1G). A similar increase was observed in a
separate assay of phagocytosis using coated beads (Fig. S3A–C). Gene
expression analysis after a 24-hr incubation period with FAM-Aβ42
versus vehicle control showed trends toward upregulation of genes
associated with pro-inflammatory activation (IL1B), lysosomal induc-
tion (TFEB) and acidification (ATP6V1H) for most of the CARs (Fig. 1H).
To confirm selectivity toward Aβ we used the FcRγ CAR (Fig. 1B) as

base and replaced the scFv derived from aducanumab (the first anti-
amyloid antibody to receive FDA approval for treatment of AD) with
that of two other amyloid-targeting antibodies (lecanemab and
donanemab), as well as an α-synuclein-targeting scFv (prasinezumab)
(Fig. 2A). We found that all three amyloid-targeting scFvs facilitated
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phagocytosis of Aβ42, whereas the α-synuclein-targeting scFv did not
(Fig. 2B). Selectivity was further addressed using a scrambled Aβ42
peptide, for which phagocytic activity was similar to control for all
constructs (Fig. 2B). The dependency of phagocytic enhancement on
intracellular domain (ICD) signaling was tested by replacing the FcRγ
ICD with that of the inhibitory receptor FcγRIIb (Fig. 2C), which
significantly reduced phagocytic activity toward Aβ (Fig. 2D). CAR-
mediated phagocytic enhancement further required actin mobilization
and increased over 24 h (Fig. 2E).
Finally, we tested murine variants of the two best performing

constructs (FcRγ and FcуRI) to confirm CAR function in primary
mouse microglia after AAV transduction (Fig. 3A). Following a 2-hr
incubation with pre-aggregated FAM-Aβ42 (Fig. 3B) or scrambled
FAM-Aβ42, flow cytometric analyses revealed a similar increase in
phagocytosis of Aβ42 by mouse CAR-Mic (Fig. 3C, D).

DISCUSSION
We here report the use of CAR technology in microglia and show that
expression of anti-amyloid CARs potently enhances phagocytosis of

extracellular Aβ42. Functional screening of multiple constructs in hiMG
revealed that TREM2, FcRγ and FcγRI-based CAR variants were most
efficient in promoting phagocytic activity. Phagocytic enhancement
was largely selective for Aβ42, showed strong dependence on ICD
signaling, and was confirmed in primary mouse microglia.
Previous work in macrophages, a systemic immune cell closely

related to microglia, has shown that CARs can promote engulf-
ment of diverse targets ranging from tumor cells [10] to Aβ [11],
and insights from these studies were leveraged to design CARs for
microglia. Given the ontogeny and tissue specialization of
microglia, CAR-Mic would likely have a superior ability to survive
and operate long-term in the brain parenchyma. However, robust
evaluation of this approach requires efficient strategies to
generate CAR-Mic in vivo.
While efficient and specific gene delivery to microglia in vivo

remains a significant challenge, recent progress in AAV-based
approaches [9, 12–14] is providing new opportunities to evaluate
genetically engineered microglia in mouse models. A concerted
effort to benchmark the growing number of new viral tools would
help to further accelerate progress. In addition to gene therapy,
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Fig. 1 Screening of anti-amyloid CARs in human iPSC-derived microglia (hiMG). A schematic showing CAR structure and approach.
B composition of screened constructs. C Outline of the screening procedure. D Morphology and marker expression in hiMG. Magenta:
mScarlet expression post viral transduction (left) and CAR-Mic targeting of extracellular FAM-Aβ42 (right). E Fluorescence images showing
intracellular co-localization of Aβ and lysosomes after incubation. F flow cytometric gating strategy. G Summary of flow cytometric data
showing fold MFI values for the mScarlet+ (CAR high) population versus the mScarlet- (CAR low) population (n= 4‒6 per group) relative to
viral control group (mScarlet). H comparative gene expression analysis of activation/lysosomal markers (as indicated) after incubation with
FAM-Aβ42 versus vehicle control for 24 h (n= 3‒4 per group). *P < 0.05 **P < 0.01, ***P < 0.001.
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human or mouse CAR-Mic could be generated in vitro for
subsequent transplantation and replacement of resident cells in
the mouse brain [15, 16].
Our findings suggest that equipping microglia in vivo with anti-

amyloid CARs could enable efficient Aβ clearance in AD. As
compared to current passive immunotherapeutic strategies in
clinical use, the approach could support long-term management
of amyloid pathology and possibly circumvent side effects
associated with systemic antibody delivery (i.e. brain bleeding
and swelling) [6, 7, 17]. Moreover, expanding CAR functionality
(e.g., through co-induction of lysosomal or neurotrophic signaling
pathways) and implementing temporal control of CAR expression
could further increase the utility of this approach. Beyond AD,
CARs could be modified to target phagocytosis of other
misfolded/aggregated proteins, or to promote other microglial
functions.
Advanced microglia-based approaches could provide more

effective means to modify pathology in NDDs, yet several
challenges exist regarding the translation of such approaches to
the clinic. Two general strategies may be pursued: (1) targeting
of the resident microglial cell population (using a viral or non-
viral gene delivery vehicle) or (2) complete or partial cell

replacement using transplantation of in vitro-engineered exo-
genous cells such as stem-cell derived microglia [18, 19].
Regardless of approach, acute and long-term safety, large-scale
manufacturing and treatment cost are examples of hurdles that
need to be overcome. Despite these challenges, it is imperative
that new treatments are developed to address the projected
increase in disease burden of NDDs in coming decades. Further
research on microglia-based therapies and continued advance-
ments in human disease modeling will be critical for successful
clinical translation.

MATERIALS AND METHODS
Constructs and virus
Human and mouse codon-optimized DNA sequences were generated from
back-translation of UniProt-derived and publicly available monoclonal
antibody sequences. All constructs were expressed under the control of
the SSFV promoter in a single ORF featuring a P2A-mScarlet sequence for
detection. All plasmids (SFFV-CAR-P2A-mScarlet and SFFV-mScarlet) were
custom-cloned and packaged into AAV by VectorBuilder (Chicago, IL, USA)
using rAAV2/cMG (Addgene #184539). Viral titers ranged from 1.3‒4 × 1012

vg/ml for all constructs.

Peptide preparation and incubation
FAM-labeled Aβ1-42 (Aβ42) and scrambled Aβ42 peptides were purchased
from AnaSpec (AS-23525-05, AS-60892). Peptides were briefly solubilized in
DMSO at 1 mM, bath sonicated for 5 min and immediately diluted 1:100 in
sterile low pH/high salt buffer (150mM NaCl, 10 mM HCl) to promote
amyloid plaque formation [20]. Preparations were either frozen at −80 °C
or incubated for 24 h at 37 °C before added to cultures. 5 μl of pre-
aggregated peptide (corresponding to a final 500 nM concentration of
monomer) was gently pipette-mixed and then added to wells (1:20 dilution
in medium). Cells were incubated with peptide at 37 °C for 2 h prior to flow
cytometric and image analyses. In experiments involving actin polymer-
ization inhibition, 5 µM cytochalasin D (Sigma-Aldrich, C8273) was added
to wells 5 min prior to incubation with Aβ42 for 0.5, 4 or 24 h.

Human induced pluripotent stem cell (hiPSC)-derived
microglia
The commercially available human cell line WTSIi015-A (Sigma-Aldrich)
was used and hiPSC-derived microglia were differentiated as previously
described [21]. Briefly, hiPSCs were thawed and cultured on Matrigel
(Corning) with daily media change. Following embryonic body formation
(~2 weeks), cells were transferred to a 6-well plate in hematopoietic
medium (HM). After about 3–4 weeks with weekly media changes,
primitive macrophage precursors were harvested. Precursor cells were
counted and seeded at a density of 3 × 104 cells per well in 96-well plates,
using microglia medium containing 2mM GlutaMAX, penicillin (100 U/ml),
streptomycin (100 μg/ml), 55 μM β-mercaptoethanol and human IL-34 and
GM-CSF (100 and 10 ng/ml, PeproTech) in Advanced DMEM F12 medium
(Gibco). A full medium change was performed every other day. The purity
of hiPSC-derived microglia was assessed by determining the percentage of
IBA1-positive cells after one week in culture (Fig. S1).

Primary mouse microglia
Primary P2 microglia isolated from whole brain tissue of C57BL/6 mice
were obtained from BrainBits (TransnetYX, USA) and handled according to
the supplier’s protocol. Cells were counted and seeded at 2–3 × 104 cells
per well in 96-well plates using TIC medium [22] containing TGF-β2 (2 ng/
ml, PeproTech), insulin (5 μg/ml, Sigma-Aldrich), cholesterol (1.5 μg/ml,
Avanti Polar Lipids), N-acetyl cysteine, apo-transferrin and sodium selenite
(5 μg/ml, 100 μg/ml and 100 ng/ml, Sigma-Aldrich), murine IL-34 (100 ng/
ml, R&D systems), penicillin (100 U/ml), streptomycin (100 μg/ml) in DMEM/
F12 with L-Glutamine (Gibco). Half of the medium volume was replaced
every 2–3 days.

Viral transduction
AAV particles encoding CARs or mScarlet only (viral control) were prediluted
in sterile PBS (pH 7.4, Gibco) and applied to hiMG and primary mouse
microglial cultures at MOI 2.5‒5 × 104 (7.5 × 108 ‒ 1.5 × 109 vg/100 µl/well).
Cultures were incubated with virus or diluent only (control) overnight at

Table 1. Transduction efficiency data obtained in flow cytometry
analyses of hiMG and primary mouse microglia.

Figure 1 Range (%) Mean SD n

Non-transduced 0 0.00 0.00 4

mScarlet 76,9–79,2 78.23 0.90 4

TREM2 CAR 16–20,5 17.95 1.56 6

DAP12 CAR 37,8–39,6 38.62 0.71 6

SIRPB1 CAR 16,4–17,9 17.17 0.49 6

FcRγ CAR 27,2–29,2 27.83 0.68 6

FcγRI CAR 37,1–40,7 38.90 1.33 6

FcγRIIa CAR 46,2–48,8 47.08 0.84 6

FcγRIIIa CAR 45–47,4 46.17 0.99 6

Fig. 2B Range (%) Mean SD n

Non-transduced 0,18–0,28 0.22 0.03 6

mScarlet 46–53 48.10 2.31 6

Adu FcRγ CAR 15,6–16,4 16.12 0.25 6

Don FcRγ CAR 46,3–50,1 48.00 1.22 6

Lec FcRγ CAR 18,9–24,9 23.36 2.06 6

Pras FcRγ CAR 45,6–48,8 47.82 1.13 6

Fig. 2D Range (%) Mean SD n

Non-transduced 2,19–2,64 2.47 0.17 4

mScarlet 77,7–79,5 78.50 0.68 4

FcRγ 10,7–13,6 12.52 0.94 6

FcγRIIb ICD 19,6–23 20.80 1.16 6

Fig. 2E Range (%) Mean SD n

mScarlet 60,7–67,1 64.23 2.65 3

mScarlet CytoD 66,4–69,3 68.03 1.21 3

FcRγ 19,7–23,8 21.10 1.91 3

FcRγ CytoD 18,6–20,5 19.70 0.80 3

Fig. 3 Range (%) Mean SD n

Non-transduced 0 0.00 0.00 4

mScarlet 80,1–91,8 85.88 4.72 4

mFcRγ CAR 50,3–64 56.87 4.93 6

mFcγRI CAR 47,3–59,9 52.62 4.18 6
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37 °C in presence of 200 nM doxorubicin (Sigma-Aldrich, D1515) [9], and a
full medium replacement was performed the next day. Medium changes
were thereafter performed every 2–3 days. Cells were allowed 5–7 days to
express the transgene prior to analysis.

Flow cytometry
Following Aβ incubation, single-cell suspensions of hiMG or primary mouse
microglia were prepared by detaching the adherent cells for 10min at
37 °C using 0.25% Trypsin-EDTA (Gibco). After dilution in PBS supplemen-
ted with 5% FCS (ThermoFisher) the cells were stained with Live/Dead
Fixable Far Red (1:1000, Invitrogen) for 15min, centrifuged at 300 x g for
5 min and resuspended in PBS. One drop of NucBlue™ (Life Technologies)
was added per sample 10min before acquisition. Data were collected on a
LSR Fortessa instrument (BD) and analyzed using the FlowJo™ software (BD
Life Sciences). Each replicate (n) consisted of 2–4 pooled wells per group.
In all graphs the mean fluorescence intensity values were normalized to
mScarlet (viral control).

Gene expression analysis
Following a 24-hr incubation with Aβ42 (500 nM) or vehicle control (150mM
NaCl, 10mM HCl, 0.05% DMSO), hiMG were lysed in RLT buffer (Qiagen) with
1M dithiothreitol (DTT) and stored at −80 °C. RNA extraction was performed
using the RNeasy Mini Kit (Qiagen) according to the manufacturer’s
instructions. cDNA was prepared using the High-Capacity RNA-to-cDNA Kit
(ThermoFisher, #4387406) following the manufacturer’s instructions. Gene
expression was analyzed with qPCR using the following primers: ACTB
(Hs01060665_g1), IL1B (Hs01555410_m1), P2RY12 (Hs01881698_s1), TFEB

(HS01065085_m1) and ATP6V1H (Hs00977530_m1) (ThermoFisher). Expression
was calculated using the delta-delta-ct method and normalized to vehicle
control.

Immunocytochemistry and imaging
hiMG (1 week in culture) were washed with Tris-buffered saline solution
(TBS), fixated with Histofix (Histolab) for 15 min and incubated in
permeabilization buffer (0.3% Triton X-100 in TBS) for 15 min. After 1 hr
of blocking (5% goat serum in permeabilization buffer), anti-IBA1 (1:500,
Cell Signaling #17198 and Wako #019-19741) and anti-TMEM119 (1:500,
proteintech #27585-I-AP) primary antibodies were applied overnight at
4 °C. The next day cells were washed and incubated with secondary
antibody (1:2000, goat anti-rabbit AF568 or donkey anti-rabbit AF647,
Invitrogen) for 1 hr. During wash with TBS, DAPI (1:1000, D1306,
ThermoFisher) was added for 5 min. After final washing the cells were
coverslipped and mounted with ProLong Gold antifade reagent
(Invitrogen #P36930) onto glass slides. Primary microglia were washed
with DPBS (pH 7.4, Gibco), fixated with 4% PFA (in DPBS) for 15 min and
permeabilized with 0.3% Triton X-100 (in DPBS) for 10 min. Following
blocking for 30 min (2% BSA, 0.1% Triton X-100 in DPBS), anti-IBA1
(1:100, MABN92, Merck) and anti-P2RY12 (1:200, BioLegend #848002)
primary antibodies were applied overnight at 4 °C under gentle shaking,
washed with DPBS and incubated with goat anti-mouse (1:1000, A21121,
Invitrogen) and anti-rat (1:1000, A-11006, Invitrogen) secondary anti-
bodies for 2 h at room temperature. After final washing the cells were
coverslipped and mounted onto slides with ProLong Gold (Invitrogen).
Intracellular Aβ and lysosomes were imaged live in 96-well plates using
BioTracker NIR633 (#SCT138, Sigma-Aldrich) immediately following a
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2-hr incubation with FAM-Aβ42. BioTracker dye was prepared according
to the manufacturer’s instruction and applied to cells (1:1000) for 30 min
at 37 °C. All imaging was performed on Ts2, Ti2-E, and A1 microscopes
(Nikon, Japan) using 10, 20 and 40x air objectives together with the NIS-
elements BR software.

Statistics
Statistical significance was evaluated using Kruskal‒Wallis test with Dunn’s
post hoc test for multiple comparisons. Asterisks denote level of

significance (*P < 0.05, **P < 0.01, ***P < 0.001) relative to mScarlet. Data
were analyzed using the GraphPad Prism software (version 10) and are
presented in box and whisker plots featuring median and max-min values
unless otherwise indicated.

DATA AVAILABILITY
All data is included in the article or supplementary material. Amino acid sequences
for all constructs are listed in the supplementary material.
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