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Purpose: Diagnosing monogenic diseases facilitates optimal care,
but can involve the manual evaluation of hundreds of genetic
variants per case. Computational tools like Phrank expedite this
process by ranking all candidate genes by their ability to explain the
patient’s phenotypes. To use these tools, busy clinicians must
manually encode patient phenotypes from lengthy clinical notes.
With 100 million human genomes estimated to be sequenced by
2025, a fast alternative to manual phenotype extraction from
clinical notes will become necessary.

Methods: We introduce ClinPhen, a fast, high-accuracy tool that
automatically converts clinical notes into a prioritized list of patient
phenotypes using Human Phenotype Ontology (HPO) terms.

Results: ClinPhen shows superior accuracy and 20× speedup over
existing phenotype extractors, and its novel phenotype prioritiza-
tion scheme improves the performance of gene-ranking tools.

Conclusion: While a dedicated clinician can process 200 patient
records in a 40-hour workweek, ClinPhen does the same in 10
minutes. Compared with manual phenotype extraction, ClinPhen
saves an additional 3–5 hours per Mendelian disease diagnosis.
Providers can now add ClinPhen’s output to each summary note
attached to a filled testing laboratory request form. ClinPhen makes
a substantial contribution to improvements in efficiency critically
needed to meet the surging demand for clinical diagnostic
sequencing.
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INTRODUCTION
Every year, 7 million children worldwide are born with severe
genetic diseases.1 Diagnosing these conditions involves
determining which of numerous genetic variants is causing
the patient’s symptoms. Proband-only exome sequencing
typically results in 100–300 rare coding variants of unknown
significance.2 A clinician spends an average of 54 minutes
evaluating each variant3 until the causative one is identified
(Fig. 1). As sequencing technology improves, the number of
clinical applications skyrockets, with 100 million human
genomes expected to be sequenced by 2025 (ref. 4). With this
surging demand, manual variant curation by a limited pool of

experienced clinicians and curators creates a bottleneck in the
diagnostic process.
Although clinicians must make the final diagnosis, the

process leading up to it can be greatly expedited by
computational tools. Tools such as ANNOVAR,5 M-CAP,2

VEP,6 and SnpEFF7 can filter out likely benign variants, and
narrow down the candidate gene list. Phrank,8 hiPhive,9

Phive,10 PhenIX,11 and other automatic gene-ranking
tools12–19 improve the efficiency of evaluating the candidate
genes. These algorithms require a list of patient phenotypes
from a phenotype ontology (notably, the Human Phenotype
Ontology, or HPO20). They use these phenotypes to rank a
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provided list of candidate genes in order of estimated
likelihood of causing the patient’s phenotype. Consequently,
clinicians may reach a diagnosis faster by going down the
computer’s ranked list.
However, comparable tools for automatically encoding

phenotypes mentioned in the patient’s clinical notes are
lacking. While gene-ranking tools can considerably shorten
the lengthy manual review of a gene list,3 their ability to do so
depends on the careful input of coded phenotypes (see below).
Manual encoding of phenotypes is a slow and unstructured
process, making gene-ranking tools difficult for clinicians to
adopt.
Existing natural language processing tools that identify

patient phenotypes were not designed to expedite Mendelian
disease diagnosis.21–27 Many such tools only look for
indications of specific phenotypes or diseases.26,28,29 Others
report all of the phenotypes they can find—including negated
phenotypes (“The patient does not have symptom X”),
unrelated findings in family members (“The patient’s mother

has symptom X”), and phenotypes mentioned while discuss-
ing a differential diagnosis (“Patients with disease W often
have symptom X”).23,27 Two general purpose phenotype
extractors, cTAKES25 and MetaMap,21 do aim to extract only
the phenotypes that apply to the patient, but they are not
optimized for a high-volume workflow. They have relatively
slow runtimes and suboptimal accuracy. Importantly, they do
not indicate which phenotypes may be more useful in
establishing a diagnosis. A patient’s clinical notes can mention
over 100 phenotypes, but for disease diagnosis, clinicians
typically list only the ones they think will help diagnosis the
most.30

Here, we introduce ClinPhen: a fast, easy-to-use, high-
precision, and high-sensitivity alternative to existing pheno-
type extractors. ClinPhen scans through a patient’s clinical
notes in seconds, and returns phenotypes that help gene-
ranking tools rank the causative gene higher than they would
with manually identified phenotypes. Using several cohorts of
diagnosed patients, we show how to expedite the diagnosis of
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Fig. 1 Steps to diagnose a patient with a Mendelian disease using automated gene-ranking algorithms. The patient’s genotypic information is
encoded using standard formats (variant call format [VCF] file, candidate causative gene list) and a list of patient phenotypes encoded as ontology terms.
Extensive tool support exists for obtaining candidate causative variants and genes from an exome sequence. Tool support for obtaining an appropriate list of
encoded patient phenotypes from the patient’s clinical notes is limited. Encoded phenotypes are currently acquired by manually reading through the
patient’s clinical notes and recording the phenotypes found as their IDs in a phenotype ontology. We introduce ClinPhen, a tool that automates phenotype
extraction from clinical notes, optimized to accelerate patient diagnosis. SNV single-nucleotide variant.
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Mendelian diseases by letting gene-ranking tools run directly
on phenotypes extracted from the clinical notes by ClinPhen.

MATERIALS AND METHODS
Overview of ClinPhen
ClinPhen extracts phenotypes from free-text notes and
translates them into terms from the Human Phenotype
Ontology (HPO), a structured database containing 13,182
human disease phenotypes (Fig. 2, Supplementary Methods).
To extract HPO terms from the clinical notes, ClinPhen

first breaks the free text into sentences, subsentences, and
words. ClinPhen normalizes inflected words using the Natural
Language Toolkit (NLTK) Lemmatizer.31

Subsequently, ClinPhen matches subsentences against
phenotype names and synonyms (Supplementary Methods).
Rather than looking for continuous phrases, ClinPhen checks
if the subsentence contains all words in the given synonym.
For example, “Hands are large” will match the HPO
phenotype “Large hands.” For efficiency, ClinPhen passes
the clinical documents into a hash table that maps words to
the subsentences that contain them.
After identifying phenotypes, ClinPhen decides if each

mentioned phenotype applies to the patient. If, for instance, a
sentence contains words such as “not” or “cousin,” ClinPhen
does not associate with the patient any phenotypes mentioned

in the sentence (Fig. 2). ClinPhen also ignores phenotypes
that are commonly found in the patient population
(Supplementary Methods).
For each HPO phenotype, ClinPhen counts the number of

occurrences in the clinical notes, and saves where in the notes
it first appears. ClinPhen returns a sorted list of all HPO
phenotypes found, with the most- and earliest-mentioned
phenotypes at the top (Fig. 2).

Training ClinPhen to recognize phenotypes in free-text
notes
Real patient cases used to improve and test ClinPhen
ClinPhen was trained and tested on six sets of real patient
data from four different medical centers. The training set
(clinical notes of 25 patients with undiagnosed but presumed
genetic diseases from Stanford Children’s Health [SCH]) was
used to improve the accuracy of ClinPhen; the STARR set
(5000 random patients from Stanford’s STARR database32)
was used to train ClinPhen’s phenotype-frequency filter
(Supplementary Methods); the Stanford test set (clinical
notes, genetic data, and diagnoses of 24 diagnosed patients
from SCH) was used to test the accuracy and runtime of
ClinPhen, as well as the performance of gene-ranking tools
when using ClinPhen’s phenotypes; and the Manton test set
(21 diagnosed patients from the Manton Center for Orphan
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Fig. 2 ClinPhen sentence analysis process. ClinPhen splits the clinical notes into sentences, and those sentences into subsentences. It then finds
phenotypes whose synonyms appear in the subsentences. A high-precision, high-sensitivity, rule-based natural language processing system decides which
phenotypes correspond to true mentions and which are false positives. Because the third sentence contains the flag word “father,” for instance, it is
assumed that this sentence does not refer to the patient, and any phenotype synonyms found in the sentence will not be associated with the patient.
ClinPhen sorts the identified phenotypes first by how many times they appeared in the set of notes (descending), then by the index of the first subsentence
in which they were found (ascending), and then by Human Phenotype Ontology (HPO) ID (ascending).
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Disease Research, at Boston Children’s Hospital) was used to
independently verify the findings from the Stanford test set.
The Duke and University of California–Los Angeles (UCLA)
test sets (14 and 15 diagnosed individuals, respectively), from
the respective Undiagnosed Diseases Network (UDN) sites,
were used to test the performance of gene-ranking tools when
using ClinPhen’s phenotypes in realistic “off-label” settings:
notes from the Duke site were taken from PDFs rather than
text files, and converted to text without any manual correction
(to preserve full automation) using an optical character
recognition (OCR) program;33 while the UCLA test set
included only one clinical note per patient (other sets had 4–5
notes per patient, on average). In all cases, only notes created
by clinical genetics and pediatrics providers before documen-
tation of the patient’s diagnosis were used. Patient character-
istics were similar across the four test sets, with average age at
last note of 7, 9, 13, and 15. All but one disease diagnosis were
unique per center, and only seven diseases were repeated
across the different centers. Clinical and genetic data were
obtained under research protocols approved by the Stanford
institutional review board (IRB), Harvard IRB, and National
Human Genome Research Institute (NHGRI) central IRB for
the UDN. Informed consent was obtained from all
participants.

Testing the accuracy of ClinPhen’s extracted phenotypes
To test the accuracy of the extracted phenotypes, we produced
for each patient in the Stanford test set a gold standard set of
phenotypes called the All set: a nonphysician and a licensed
physician blinded to ClinPhen’s development independently
extracted phenotypes from the clinical notes. The physician
recorded only the phenotypes that he considered useful for
diagnosis (i.e., more likely to pertain to a genetic disease, such
as skeletal abnormalities, as opposed to allergies) to generate
the Clinician phenotype set. The nonphysician recorded all of
the phenotypes he found, regardless of predicted usefulness.
The physician then verified the nonphysician’s identified
phenotypes to be correctly interpreted and applicable to the
patient. These verified phenotypes, plus those in the Clinician
set, made up the All phenotype set. We ran each automatic
phenotype extractor on the patient’s clinical notes, and
measured the extractor’s precision and sensitivity by compar-
ing the extracted phenotypes with the All set.
We compared the All set with the phenotypes returned by

ClinPhen, across the Stanford test set. Due to the nature of
HPO, the presence of a phenotype in a patient implies the
presence of all ancestor phenotypes. For instance, the term
“Seizures” is an ancestor node of the term “Grand mal
seizures”: a patient presenting with grand mal seizures must
also present with seizures. The “closure” of a set of HPO
terms S consists of S plus all ancestors of the terms in S up to
“Phenotypic abnormality” (HP:0000118). We compared the
extracted phenotypes with the true phenotypes using the
closures of the two sets.
For each patient in the Stanford test set, we found the

closure of the All set and that of the phenotype set returned by

ClinPhen. True positives (TP) were defined as the nodes
present in both the All and ClinPhen closures. False positives
(FP) were defined as the nodes only present in the ClinPhen
closure. False negatives (FN) were defined as the nodes only
present in the All closure. Standard definitions of precision
(TP/TP+ FP) and sensitivity (TP/TP+ FN) were used.
We used bootstrapping to calculate a 95% confidence

interval around the average precision. For each of 1000 trials,
we randomly selected (with replacement) a cohort of patients
equal to the size of the original cohort, and determined the
average phenotype extraction precision across the random
cohort. We then sorted the 1000 precision values. The
confidence interval was defined to be between the 2.5th and
the 97.5th percentiles. The confidence interval around the
average sensitivity was calculated similarly.
Because the phenotype extractors cTAKES and MetaMap

output Unified Medical Language System (UMLS) terms,
while all gene-ranking tools require HPO terms, we converted
UMLS terms to HPO using the UMLS Metathesaurus.34

Measuring phenotype extraction times of clinicians and
automatic phenotype extractors
For each patient in the Stanford test set, 3 licensed clinicians
(blinded to ClinPhen development) timed themselves reading
through the clinical notes, manually extracting the pheno-
types that they considered useful for diagnosis and finding
their matching HPO terms. These times served as reference
points for how long a clinician would take to manually extract
phenotypes from clinical notes. We also timed each of the
automatic phenotype extractors when running them on the
same clinical notes. The phenotypes extracted by one clinician
across all patients comprised a Clinician set.
To determine runtimes of automatic phenotype extractors,

we ran all three extractors on a 2017 15-inch MacBook Pro
with macOS High Sierra version 10.13.5 operating system and
a 2.9-GHz intel core i7 processor, with 16 GB (2133 MHz) of
memory.

Verification of ClinPhen results on patients from different
clinical centers
To verify our findings on a patient test set from a different
clinical center, we additionally performed the above tests—
precision and sensitivity testing, determining the optimal
number of phenotypes for gene ranking, comparing extrac-
tion times with other gene-ranking algorithms and clinicians,
and comparing automatic gene-ranking algorithm perfor-
mance using automatically and clinician-extracted pheno-
types—on a set of patients from the Manton Center at Boston
Children’s Hospital. We also tested the gene-ranking
performance of Phrank using ClinPhen, cTAKES, or Meta-
Map on patients from the UDN sites at Duke and UCLA.

RESULTS
ClinPhen extracts the most accurate phenotype sets
We compared the accuracy of three tools that automatically
extract patient phenotypes from clinical notes: ClinPhen,
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cTAKES, and MetaMap. We tested for precision and
sensitivity by comparing each extractor’s returned phenotypes
to the clinician-approved All phenotype set (defined above).
Across the Stanford test patients, cTAKES had an average

precision of 57%, and MetaMap 56%. ClinPhen had a
superior average precision of 78%. cTAKES had an average
phenotype sensitivity of 57%, and MetaMap 71%. ClinPhen
had a superior average phenotype sensitivity of 71.6%
(Fig. 3a).

Automatic extraction of phenotypes accelerates Mendelian
disease diagnosis
Limiting the number of extracted phenotypes leads to
better results with automatic gene-ranking methods
A patient undergoing genome sequencing can present
hundreds of candidate genes containing potentially deleter-
ious variants,2 and each gene can take an hour to evaluate.3

Gene-ranking tools expedite the process of finding the
causative gene by sorting the genes based on how well their
associated phenotypes match the patient’s presentation. The
closer the causative gene is to rank 1, the sooner clinicians will
find it. The rankings depend on a provided list of patient
phenotypes, meaning that the ideal phenotype set for
diagnosis is the one that helps gene-ranking tools rank the
causative gene close to the top. We show that this goal is
better accomplished not by the full set of patient phenotypes,
but by a subset thereof.
For genetic disease diagnosis, a good phenotype set

accurately reflects the patient’s presentation, but an optimal
phenotype set reflects only the phenotypes that likely pertain
to a genetic disease. Phenotypes caused by a common cold can
mislead gene-ranking tools, and make the causative gene
harder to identify. ClinPhen, as far as we are aware, is the first
phenotype extractor to account for this caveat.
After identifying all phenotypes, ClinPhen removes the

phenotypes that occur frequently in a large unselected patient
population (Supplementary Methods), and prioritizes remain-
ing phenotypes by number of occurrences in the notes
(phenotypes that likely pertain to a genetic disease are usually
mentioned multiple times, and in multiple notes), then by
earliest occurrence in the notes (expert clinicians often begin a
note with a summary of the phenotypes that seem striking
and indicative of a genetic disease).
To determine the ideal number of top-priority phenotypes

to give to gene-ranking tools, we ran ClinPhen on the
Stanford test patients’ clinical notes, and filtered the extracted
phenotypes down to the n highest-prioritized phenotypes, for
every number n from 1 to 100 inclusive. Each set of n highest-
priority phenotypes was used as input to four automatic gene-
ranking algorithms: Phrank,8 hiPhive,9 Phive,10 and Phenix.11

For each phenotype count(n)/gene-ranking tool pairing, we
found the average causative gene rank across the test patients
(Fig. 3b).
The higher-performing gene-ranking tools (Phrank, hiP-

hive, and PhenIX) ranked the causative genes higher at
phenotype maxima below 10 (n < 10). Phrank, the highest-

performing of these, yielded the best causative gene rankings
at a phenotype maximum of 3. It was thus approximated that
the three highest-priority phenotypes returned by ClinPhen
generally lead to the best causative gene rankings.
Across the Stanford test patients (with an average of 291

candidate genes per patient), Phrank ranked the causative
gene at an average rank of 13.4 with unfiltered ClinPhen
phenotypes, and 9.5 with ClinPhen’s three top-priority
phenotypes (lower number means better ranking).
As an alternative to prioritizing phenotypes using the above

scheme, we tried prioritizing phenotypes by their information
content, a metric that estimates how indicative a phenotype is
of a genetic disease based on the number of genes known to
cause the phenotype (higher–information content phenotypes
are prioritized higher8). However, this prioritization scheme
was found to result in inferior gene-ranking performance
(Supplementary Figure 2a).

Gene-ranking tools perform better when using
automatically extracted phenotypes compared with human-
extracted phenotypes
To show that ClinPhen saves time in the overall diagnostic
process, we set out to show that Phrank does not rank
causative genes higher when using manually extracted
phenotypes.
We compared two manual extraction techniques: manually

subsetting all mentioned phenotypes to those that a clinician
thinks are most likely to help with the diagnosis30

(represented by the Clinician phenotype set), and listing all
mentioned patient phenotypes, whether or not they are likely
to help with the diagnosis (represented by the All phenotype
set). The Clinician and All phenotype sets were generated for
each test patient.
The Stanford test patients were each run through the

automatic gene-ranking tool Phrank using each of five
phenotype sets: the All set, the Clinician set, the three top-
prioritized phenotypes returned by ClinPhen, the pheno-
types returned by cTAKES, and the phenotypes returned by
MetaMap (Fig. 3c). Running Phrank with the All set yields
an average causative gene rank of 14.3, using the Clinician
set yields 12.9, and using ClinPhen’s three top-prioritized
phenotypes yields 9.5 (lower number means better ranking).
Assuming a clinician examines a ranked gene list from
top to bottom, spending an average of one hour
evaluating the variants in each gene for their potential to
have caused the patient’s phenotypes,3 using the three top-
prioritized ClinPhen phenotypes (instead of manually
extracted phenotypes) as input to an automatic gene-
ranking tool can save 3–4 hours per case in the diagnostic
process.

ClinPhen is much faster than previous tools or clinicians’
manual work
A good phenotype extractor runs in a short amount of time.
More clinical notes take longer to read through, and some
patients have far more clinical notes than others do.
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Fig. 3 Performance of all extraction methods. (a) Comparison of the extractors’ precision and phenotype sensitivity (higher bars mean higher accuracy).
We compared the average precision and sensitivity values of ClinPhen, cTAKES, and MetaMap, using patients from the Stanford test set as subjects, and the
All set (all of the phenotypes found manually and confirmed by a physician to apply to the patient) as the correct phenotypes. The average (column) and
95% confidence interval (calculated using bootstrapping with 1000 trials) of the precision and sensitivity values across all patients are displayed for each
extractor. ClinPhen achieves the highest average precision and sensitivity. (b) Causative gene-ranking performance of each gene-ranking tool when run with
different numbers of phenotypes returned by ClinPhen (lower number means better causative gene rankings). ClinPhen was run on the clinical notes of the
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phenotypes than with all extracted phenotypes. (c) Phrank’s causative gene–ranking performance across all extraction methods (lower numbers mean better
causative gene rankings). We compared the causative gene ranks obtained by running Phrank on the Stanford test set with various extracted sets of
phenotypes (All manually found, physician-verified phenotypes [All] versus a subset of phenotypes considered by a physician to be useful for diagnosis
[Clinician] versus automatically extracted phenotypes using various methods). Phrank ranks are sorted lowest to highest for each extractor. Phrank performs
better when run with ClinPhen’s 3 highest-priority phenotypes (the most-mentioned, earliest-occurring phenotypes in a patient’s clinical notes) than when
run with other phenotype sets, manually or automatically extracted. (d) Extractor runtime comparison on each patient (lower number means faster runtime).
We measured the runtime of each extractor (ClinPhen, cTAKES, and MetaMap) on each patient’s clinical notes, in seconds. For each patient, we also
measured the time three clinicians took to manually scan through the same notes read by the automatic extractors, and encode the phenotypes considered
useful for diagnosis. Each data point is one patient whose clinical notes were scanned by one of the extractors (or clinicians). The horizontal position is the
total number of words in the patient’s clinical notes. The vertical position is the time taken for the extractor to run on the notes (logarithmically scaled). While
MetaMap’s runtime scales linearly and cTAKES’ runtime scales exponentially with the total length of the clinical notes, ClinPhen runs in near-constant time,
and is 15–20× faster than the next fastest tool. All automatic extraction tools are much faster than manual extraction.
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Therefore, automatic extractors that quickly extract HPO
phenotypes from long collections of clinical notes are ideal.
The Stanford test patients had an average of four free-text,

prediagnosis clinical notes per patient. Three clinicians timed
themselves manually extracting phenotypes from each
patient’s notes. On average, manual phenotype extraction
took the clinicians 701 seconds per patient. Running cTAKES
took an average of 114 seconds, and MetaMap 58.5 seconds.
The time taken to extract a patient’s phenotypes scaled with

the amount of text to read through: for the longest collections
of notes, it took over 1000 seconds to produce the Clinician
set, over 500 seconds to run cTAKES, and over 100 seconds to
run MetaMap. ClinPhen, uniquely, maintained a nearly
constant runtime of 3.68 seconds per patient, even when
run on the longest collections of clinical notes (Fig. 3d). On
average, ClinPhen is more than 15 times faster than the fastest
current extractor.

Replication of findings on patients from different clinical
centers
We repeated the above tests on patient data from an
independent cohort of diagnosed patients from the Manton
Center for Orphan Disease Research at Boston Children’s
Hospital (see above).

ClinPhen extracts the most accurate phenotypes on cohort
from different center
Across the Manton test patients, cTAKES and MetaMap had
average precisions of 65% and 64%, respectively.
ClinPhen significantly outperformed both at a precision of
75.8%. cTAKES and MetaMap had average phenotype
sensitivities of 58% and 72%, respectively. ClinPhen had
an average phenotype sensitivity of 72.6% (Supplementary
Figure 1a).

Limiting number of phenotypes confirmed to yield better
gene rankings
The Manton patients had an average of 267 candidate genes.
Without limiting the phenotypes, ClinPhen yielded an
average causative gene rank of 14.7. Setting ClinPhen’s
phenotype limit to 3 resulted in an average causative gene
rank of 8.6 (Supplementary Figure 1b). As with the Stanford
test set, causative gene ranks generated by the Exomiser
algorithms (hiPhive, Phive, and PhenIX) for the Manton test
set were better when the number of phenotypes output by
ClinPhen was limited below 10. Again, prioritizing and
limiting extracted phenotypes by their information content
degraded automatic gene-ranking performance (Supplemen-
tary Figure 2b).

ClinPhen-extracted phenotypes confirmed to improve the
performance of automatic gene-ranking tools
As with the Stanford test set, Phrank performed best with
ClinPhen’s three highest-priority phenotypes, yielding an
average causative gene rank of 8.6. Using other sources of
phenotypes (all mentioned phenotypes, clinician-extracted
phenotypes, cTAKES phenotypes, and MetaMap phenotypes)
resulted in lower averages of 13.4, 13.0, 16.5, and 15.4,
respectively (Fig. 4a). Data derived from the Manton test set
suggest that using the three top-prioritized ClinPhen
phenotypes (instead of manually extracted phenotypes) as
input to Phrank can save roughly 4–5 hours per case in the
diagnostic process.
We performed the same test on the automatic extractors

using data from patients at the Duke and UCLA UDN sites.
For the Duke test set (with an average of 259 candidate genes),
cTAKES’ phenotypes yielded an average Phrank rank of 17.0,
MetaMap’s yielded 19.3, and ClinPhen’s top three phenotypes
yielded an average rank of 11.3 (Fig. 4b). For the UCLA test
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Fig. 4 Replication with patient data from three additional centers. The same test used to generate Fig. 3c (running Phrank on each patient’s data,
given each extracted set of phenotypes, and then sorting the causative gene ranks) was performed using (a) Manton Center patients, (b) Duke Undiagnosed
Disease Network (UDN) patients (optical character recognized [OCRed] without manual correction from PDF), and (c) University of California–Los Angeles
(UCLA) UDN patients (which had a single consult clinical note per patient) to evaluate the performance of the automatic extractors (ClinPhen, cTAKES,
MetaMap). ClinPhen (red line) outperforms other automatic phenotype extractors when its phenotypes are used as input to automatic gene-ranking
algorithms (as it did with the Stanford test set).
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set (with an average of 287 candidate genes), cTAKES’
phenotypes yielded an average Phrank rank of 6.9, MetaMap’s
yielded 9.8, and ClinPhen’s top three phenotypes yielded an
average rank of 4.8 (Fig. 4c).

ClinPhen confirmed to extract phenotypes in less than
5 seconds
The Manton patients’ records had an average of five free-text
clinical notes per patient. On these, ClinPhen ran in an
average of 3.64 seconds per case. Both cTAKES and MetaMap
were more than 20× slower on average, running in an average
of 114 seconds and 74.7 seconds, respectively. As with the
Stanford test set, ClinPhen’s runtime did not noticeably scale
with the length of the record, while those of cTAKES and
MetaMap did.
Again, three clinicians (the same as above) manually

extracted phenotypes from notes associated with the Manton
patients. On average, they compiled a phenotype list in 969
seconds, 266× slower than ClinPhen (Supplementary
Figure 1d).

DISCUSSION
Automatic gene-ranking tools expedite genetic disease
diagnosis, but currently require manually encoding reported
patient phenotypes into phenotype ontology terms. We show
here that an automatic phenotype extractor, ClinPhen,
produces an accurate phenotype list in under 5 seconds, and
potentially saves 3–5 hours of candidate gene evaluation per
case.
Most of the diagnosis time saved by ClinPhen stems from

its unique ability to prioritize the more-relevant extracted
phenotypes. Phenotypes that are likely not caused by a
genetic disease can delay a diagnosis. While clinicians use
their intuition to filter out these phenotypes, automatic
phenotype extractors until now have not done such filtering.
Future research can attempt to tackle distinguishing and
perhaps differentially weighting phenotypes with either
genetic or environmental factors. While current gene-
ranking tools we are aware of do not use phenotypes
reported in the proband’s family, extracting these correctly
may incentivize their incorporation. Attempting to diagnose
a case from a handful of the seemingly most telltale
phenotypes is common among practitioners.30 However, to
the best of our knowledge, this is the first work that explicitly
tries to estimate an automated method to both prioritize and
subset to an optimal number of phenotypes. When limiting
ClinPhen’s output to the most-mentioned, then earliest-
mentioned phenotypes, automatic gene-ranking algorithms
rank the causative gene higher than they would using
unfiltered phenotypes, phenotypes ranked by information
content,8 or even phenotypes hand-picked by a clinician.
ClinPhen enables clinicians to search through 3–5 fewer
genes per case, potentially reaching a diagnosis hours
sooner.3 Such step-ups in efficiency are needed to meet the
high demand and rapid production of diagnostic sequencing
data, as well as facilitate periodic case reanalysis.

ClinPhen is available at http://bejerano.stanford.edu/
clinphen. It can be immediately incorporated into clinical
practice. For example, its output can be added to the clinical
note sent to the testing laboratory along with the filled
request form. Compared with other phenotype extractors,
ClinPhen produces more accurate HPO phenotypes in a
shorter amount of time. We optimized ClinPhen to extract
HPO terms, commonly used to describe patients with
Mendelian diseases.24,35,36 Rapidly growing databases like
OMIM37 use HPO terms to describe tens of thousands of
disease–phenotype associations. ClinPhen could be used to
accelerate the growth of these databases by quickly analyzing
patients’ clinical notes and finding new disease–phenotype
associations at a rate unachievable by clinical experts.
The large number of undiagnosed patients1,14 with

presumed Mendelian diseases necessitates an efficient diag-
nostic process. The diagnostic process for rare diseases is
continually expedited with the help of computer systems that
analyze genetic data and prioritize findings.2,38 With the help
of ClinPhen, clinicians can handle large batches of patients,
and accurately diagnose each case 3–5 hours sooner, advan-
cing the future of precision medicine.

URLs
ClinPhen is publicly available at http://bejerano.stanford.edu/
clinphen as a noncommercial, free-to-download tool.
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