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Evaluating the molecular diagnostic yield of joint
genotyping–based approach for detecting rare germline
pathogenic and putative loss-of-function variants
Sabrina Y. Camp1,2, Eric Kofman1,2, Brendan Reardon1,2, Nathanael D. Moore3, Abdullah M. Al-Rubaish4, Mohammed Aljumaan4,
Amein K. Al-Ali4, Eliezer M. Van Allen1,2, Amaro Taylor-Weiner2✉ and Saud H. AlDubayan 1,2,5,6✉

PURPOSE: Cohort-based germline variant characterization is the standard approach for pathogenic variant discovery in clinical and
research samples. However, the impact of cohort size on the molecular diagnostic yield of joint genotyping is largely unknown.
METHODS: Head-to-head comparison of the molecular diagnostic yield of joint genotyping in two cohorts of 239 cancer patients in
the absence and then in the presence of 100 additional germline exomes.
RESULTS: In 239 testicular cancer patients, 4 (7.4%, 95% confidence interval [CI]: 2.1–17.9) of 54 pathogenic variants in the cancer
predisposition and American College of Medical Genetics and Genomics (ACMG) genes were missed by one or both computational
runs of joint genotyping. Similarly, 8 (12.1%, 95% CI: 5.4–22.5) of 66 pathogenic variants in these genes were undetected by joint
genotyping in another independent cohort of 239 breast cancer patients. An exome-wide analysis of putative loss-of-function
(pLOF) variants in the testicular cancer cohort showed that 162 (8.2%, 95% CI: 7.1–9.6) pLOF variants were only detected in one
analysis run but not the other, while 433 (22.0%, 95% CI: 20.2–23.9%) pLOF variants were filtered out by both analyses despite
having sufficient sequencing coverage.
CONCLUSION: Our analysis of the standard germline variant detection method highlighted a substantial impact of concurrently
analyzing additional genomic data sets on the ability to detect clinically relevant germline pathogenic variants.
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INTRODUCTION
Germline genetic profiling is ubiquitously used to guide
molecular-based clinical diagnostic, prognostic, and therapeutic
interventions.1 It was estimated that over 1 million patients would
undergo clinical germline genetic testing in 2019 in the United
States alone, one-third of whom will be for cancer-related
indications.2 Since 2011, clinical and research-based germline
variant detection have largely utilized the widely adopted Best
Practices of the Genome Analysis Toolkit Joint Genotyping (GATK-
JG),3 which leverages population-wide information from all
analyzed samples and high-quality population-based data sets,
such as the 1000Genomes4 and dbSNP,5 to determine the quality
of each identified variant.6–9 The GATK-JG Best Practices strongly
recommends performing a cohort-based joint genotyping, with
the expectation that the performance of this method is stable for
cohorts larger than 30 exomes.10 However, it is unknown if
performing simultaneous germline variant detection of multiple
cohorts affects the molecular diagnostic yield of germline variants
in any particular sample set.
In this study, we hypothesized that the detection of rare

clinically actionable germline alterations in any particular patient
sample is sensitive to the genetic data of other germline samples
that are being simultaneously analyzed by GATK-JG. To explore
this hypothesis, we performed a head-to-head comparison of the
germline variant callsets of 239 testicular cancer patients
generated by running the standard germline pipeline method
on these samples twice, first in the absence and then in the

presence of 100 additional germline exome samples. We
evaluated the quality score concordance and detection rate of
clinically informative pathogenic and putative loss-of-function
(pLOF) variants across several clinically relevant gene sets. We
then replicated these findings in a similarly sized independent
cohort of 239 breast cancer patients whose germline exome data
were characterized in the presence and absence of an additional
cohort of 100 germline exomes. Identical parameters were used
across all analysis runs, and all downstream analyses were limited
to germline variants detected in the original cancer cohort (i.e., all
germline variants in the additional cohorts of 100 samples, used
for joint genotyping, were excluded from all analyses).

MATERIALS AND METHODS
Patient cohorts and genomic data collection
Testicular cancer cohort (discovery analysis). Germline exome sequencing
(ES) data of 239 patients with testicular germ cell tumors (TGCT) were first
used for the performance evaluation of the Genome Analysis Toolkit
(GATK), the standard germline variant detection method7–9,11 (Fig. 1).
These patients came from three independent cohorts: the Cancer Genome
Atlas (TCGA; n= 150), the Dana-Farber Cancer Institute (DFCI) TGCT cohort
(n= 49),12,13 and the TGCT cohort described by Litchfield et al. of the UK
Institute for Cancer Research (ICR) (n= 40).14 To evaluate the effect of
concurrently performing germline analysis on additional samples on the
molecular diagnostic yield of GATK joint genotyping (GATK-JG), 100 high-
quality germline ES samples of cancer-free patients from the Exome
Sequencing Project (ESP) of the National Heart, Lung, and Blood Institute
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(NHLBI) were examined.9 These samples were only used for the joint
genotyping step of GATK. Germline variants detected in these cancer-free
samples were entirely removed and were not included in any of the
described analyses of this study (Fig. 1).

Breast cancer cohort (replication analysis). To explore if the findings from
the testicular cancer cohort analysis extend to other cancer data sets that
were generated independently for a different cancer type, genomic data of
239 patients with breast cancer (infiltrating duct carcinoma) from TCGA
were used to further evaluate the performance of GATK-JG. The GATK-JG
pipeline was run on germline ES data of these 239 breast cancer patients
twice, once in the presence and then in the absence of 100 additional
TCGA breast cancer germline exomes. Similarly, the additional samples
were only used in the joint genotyping step and were subsequently
removed from all analyses.

Sequencing platform, capture kits, and alignment
Testicular cancer cohort analysis. All sequencing data used in the
testicular cancer cohort analysis, including the cancer-free cohort, were
produced by a variety of Illumina platform machines (HiSeq 2500, HiSeq
2000, and Genome Analyzer IIx). The samples’ Binary Alignment Mapping
(BAM) files comprising the four independent cohorts (TCGA, DFCI, ICR, and
ESP) were all aligned to the “hg19” reference genome using the
Burrows–Wheeler Aligner (http://bio-bwa.sourceforge.net/). The exome
capture kits utilized in the library preparation of these cohorts were
NimbleGen SeqCap EZ Exome Library for the TCGA cohort, SureSelect
Human All Exon v.2 Kit for the DFCI cohort, Nextera Rapid Capture Exome
kits for the ICR cohort, and Agilent SureSelect Human All Exon 50Mb for
the ESP samples.

Breast cancer cohort analysis. All sequencing data used in the breast
cancer cohort analysis were produced using Illumina HiSeq and Illumina
Genome Analyzer machines. The samples’ BAM files were aligned to the
“hg19” reference genome using the Burrows–Wheeler Aligner. The exome
capture kits utilized in the library preparation of these cohorts are the

following: Nimblegen EZ Exome v3.0, Nimblegen SeqCap EZ Human
Exome Library v2.0, Nimblegen SeqCap EZ Human Exome Library v3.0, and
SureSelect Human All Exon 38Mb v2. All samples included had a primary
diagnosis of infiltrating duct carcinoma and were blood-derived germline
samples.

Detection of germline variants
GATK “HaplotypeCaller” (HC) pipeline (version 3.7) was used to call
germline variants according to the GATK Best Practices11 (Fig. 1). More
specifically, we ran GATK HC on each sample individually to call single-
nucleotide variants (SNVs) and short indels via de novo assembly of
haplotypes of the examined regions. This per sample analysis generates an
intermediate file called genomic variant calling format (gVCF) file that has a
record for every position of the examined genomic intervals. We then
aggregated the generated single-sample gVCFs and performed joint
genotyping using GATK GenotypeGVCFs as recommended by the current
germline variant calling Best Practices.11 At each position of the input
gVCFs, GATK “GenotypeGVCFs” module evaluates the genotype likelihood
across all the samples and produce one quality score for each unique
genomic alteration across the cohort (n= 239 germline exomes [original
cohort] for the first computational run and n= 339 [239 original cohort
exomes + 100 additional exomes] for the second computational run),
which is then used by the GATK “Variant Quality Score Recalibration”
(VQSR) module to perform variant filtering. To filter low-quality calls, VQSR
uses highly validated variant callsets (such as dbSNP5 and the
1000Genomes4) to build a model that can then be applied to calculate
the probability of each variant being real. As recommended by the GATK
Best Practices, the SNVs VQSR model was trained using HapMap3.3 and
1KG Omni 2.5 SNP sites, and a 99.5% sensitivity threshold was applied to
filter variants. In addition, Mills et al. 1KG gold standard and Axiom Exome
Plus sites were used for VQSR indel recalibration using a 95% sensitivity
threshold.15 The assignment of quality class (high-quality vs. low-quality
variants) was conducted by GATK-VQSR based on the variant’s tranche and
the defined sensitivity levels. GATK “SelectVariants” was used to remove
germline variants detected in the additional cohort and keep germline

Original cohort Additional cohort
Discovery: 239 testicular cancer patients
Replication: 239 breast cancer patients

(aligned BAM files)

Sample-based
HaplotypeCaller (HC)

Sample-based
HaplotypeCaller (HC)

Sample-based
HaplotypeCaller (HC)

Cohort-based Joint
Genoptyping (JG)

Recommended variant
filtering practices using VQSR

Cancer predisposition
genes (n=118)

ACMG genes
(n=59)

OMIM genes
(n=5197)

Clinically oriented multi-
gene panels (n=12)

Removal of all
germline variants
discovered in the
additional cohort
(n=100 exomes)

Recommended variant
filtering practices using VQSR

Cohort-based Joint
Genoptyping (JG)

Training datasets: HapMap,
dbSNP, 1000 Genomes

Functional annotation (Ensemble Variant Effect Predictor)

Pathogenic and likely pathogenic variants
Rare frameshift, stop, and canonical splice

site variants (pLOF)

Manual validation of variants in the raw data using Integrative Genomic Viewer (IGV)*

Concordance of germline validated pathogenic variant detection between the two
computational analysis runs

Discovery: 100 cancer-free patients
Replication: 100 breast cancer patients

(aligned BAM files)

Fig. 1 Overview of the study design. A head-to-head comparison was conducted to evaluate the molecular diagnostic yield of the Genome
Analysis Toolkit Joint Genotyping (GATK-JG) based germline variant detection in two independent cohorts of 239 cancer patients in the
presence and absence of an additional germline sample set of 100 germline exomes. BAM Binary Alignment Map, VQSR Variant Quality Score
Recalibration, ACMG American College of Medical Genetics and Genomics, OMIM Online Mendelian Inheritance in Men, pLOF putative loss-of-
function.
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variants only present in the original cohort (n= 239). Specific commands
and parameters used for the GATK pipeline are summarized in the
Supplementary Note.

Selection of Mendelian gene sets
In this study, we analyzed pathogenic variants in 118 established germline
cancer-predisposition genes and 59 Mendelian high-penetrance genes
deemed clinically actionable by the American College of Medical Genetics
and Genomics (collectively called the ACMG genes) (Table S1). Given that
patients with cancer can also be heterozygous for disease-causing variants
in autosomal recessive and low-penetrant genes, we also characterized
putative loss-of-function (pLOF) variants in 5,197 clinically relevant genes
in OMIM (collectively called the OMIM genes) and 12 clinically oriented
multigene panels (Supplementary Methods) (Tables S1, S2).

Germline variant pathogenicity evaluation
All detected germline variants in the cancer-predisposition and ACMG gene
sets were classified into five categories; benign, likely benign, variants of
unknown significance, likely pathogenic, and pathogenic using the ACMG
guidelines.16 Only pathogenic and likely pathogenic variants were included
in this study (hereafter collectively referred to as pathogenic variants).

Validation of detected germline variants
Validation of the detected pathogenic variants in the cancer-predisposition
and ACMG gene sets was done in an independent blind fashion by two
computational biologists using the gold standard approach of evaluating
the variants in the raw genomic data using the Integrative Genomics
Viewer (IGV).17,18 Variants that were called true positive by both examiners
were considered real variants. Otherwise, the variant was labeled as an
artifactual call (Supplementary Methods).

Statistical analysis
Two-sided binomial tests were used to calculate the 95% confidence
interval (CI) of proportions and p values of the likelihood of the filtered
variants in both computational runs to be truly absent in a cohort of 239
ancestry matched individuals. P values <0.05 were considered statistically
significant. Bonferroni correction was used to correct for multiple testing
when applicable. Statistical analyses were done using “exact2x2” (version
1.5.2), “binom” (version 1.1.1), and “stats” (version 3.5.1) packages on R
(version 3.5.1).

RESULTS
Overall germline variant detection
Two independently sequenced cohorts of patients with testicular
and breast cancer were included in this study. The exome-wide
median sequencing depth of coverage for the testicular and
breast cancer cohorts were 105.9× (interquartile range [IQR]=
84.8–124.8) and 109.7× (IQR= 82.5–125.7) respectively. The mean
depth of coverage for the cancer-predisposition, ACMG, and
OMIM gene sets were 109.4× (IQR= 97.2–124.3), 109.5× (IQR=
96.5–124.0), and 106.4× (IQR= 92.7–120.0), respectively, for the
testicular cancer cohort and 112.5× (IQR= 84.5–130.8), 107.8×
(IQR= 80.8–124.3), and 104.3× (IQR= 78.4–121.0) respectively for
the breast cancer cohort (Figure S1).
For the testicular cancer analysis, a total of 5,650,748 (99.1%

SNVs and 0.9% indels) unfiltered rare and common germline
variants were evaluated (Supplementary Methods). The variant
quality tranche, a calibrated score that GATK-JG generates for each
variant to represent the likelihood of it being a true variant, was
concordant between the two analysis runs for only 84.79% (95%
CI: 84.76–84.82) of all variants while 15.21% (95% CI: 15.18–15.24)
variants had a different quality tranche assignment between the
first and second analysis runs. As a result of this quality tranche
assignment discrepancy, only 92.58% (95% CI: 92.56–92.60) of the
germline variants in the cancer cohort (n= 239) were shared
between the final variant callsets of both analysis runs while

134,847 (2.39%; 95% CI: 2.37–2.40) variants were only detected in
one analysis run (Fig. 2a).
Similarly, a total of 3,437,839 (99.6% SNVs and 0.4% indels)

unfiltered germline variants were present in the raw germline
variant callset of 239 breast cancer patients. However, only
3,115,393 (90.62%; 95% CI: 90.59–90.65) of these germline variants
were found to be in common between the final variant callsets of
both computational runs while 322,446 (9.38%; 95% CI: 9.35–9.41)
variants were undetected by one or both computational runs
(Fig. 2b), highlighting a nontrivial cohort size–driven discordance
of the detected variant callset in the same patient cohort. The
distribution of the population-based minor allele frequency of the
detected germline variants can be found in Figure S2.

Characterization of filtered variants in well-covered genomic
regions
In the testicular cancer cohort, a total of 284,515 (5.03%; 95% CI:
5.02–5.05) variants were considered low quality or computational
artifacts and thus were filtered out by both analysis runs despite
having a median sequencing depth of 75 reads (minimum 11
reads, IQR: 36–140) and a median variant allelic fraction (VAF) of
49.53%, which is consistent with the expected VAF of true
germline variants. Leveraging known minor allele frequency of
these variants in gnomAD,19 we calculated the probability of
variants filtered out in both analysis runs to be truly absent from a
cohort of 239 randomly selected individuals (Supplementary
Methods). Our analysis showed that 166,925 (58.7%; 95% CI:
58.5–58.9) filtered variants were common enough in the general
population, making it improbable for them to be truly absent in a
randomly sampled cohort of this size (adjusted p value <1.76e-07,
Bonferroni correction for 284,515 variants) (Fig. 2c).
Performing the same analysis on 239 breast cancer patients

showed that of 244,694 germline variants that were filtered out by
GATK-GJ in both computational runs, 116,078 (47.4%; 95% CI:
47.2–47.6) variants were common enough in the general
population, making it unlikely for these variants to be artifactual
calls (adjusted p value <2.04e-07, Bonferroni correction for 244,694
variants) and suggesting a systematic exome-wide variant under-
detection of the standard pipeline (Fig. 2d).

Impact of concurrently analyzing multiple cohorts on the
detection of clinically actionable pathogenic variants
To further explore the impact of the cohort size on variant calling,
we systematically characterized all clinically actionable pathogenic
germline variants in 118 cancer-predisposition genes as well as 59
genes deemed highly actionable by the ACMG (Table S1) in the
testicular and breast cancer cohorts (n= 239 patients each). In
total, 54 clinically actionable pathogenic variants were identified in
the unfiltered variant callset from both computational runs in 239
testicular cancer patients (Supplementary Methods). Of these
variants, 50 (92.6%, 95% CI: 82.1–97.9) pathogenic variants were
detected in both computational runs while 2 (3.70%, 95% CI:
0.5–12.7) pathogenic variants were only detected by GATK-JG
when additional samples were used for joint germline variant
calling (Fig. 3a, b). These two variants include a known pathogenic
founder frameshift variant in BRCA1 (c.5329dup, p.Gln1777Prof-
sTer74) (Fig. 3c), which is a common high-penetrance cancer risk
variant in the Ashkenazi Jewish population20, and a frameshift in
LDLR gene (c.2397del, p.Val800SerfsTer129) that is associated with
familial hypercholesterolemia (Fig. 3d). Unexpectedly, our analysis
also highlighted two (3.70%, 95% CI: 0.5–12.7) known pathogenic
cancer risk variants,21,22 a frameshift in BRCA2 (c.9063_9078del, p.
Glu3021AspfsTer2) and splice donor site variant in SBDS (c.258
+2T>C), that were filtered out by GATK-JG in both analysis runs
despite having sufficient sequencing coverage (315 and 75 sequen-
cing reads respectively) and a VAF supporting a germline
heterozygous state (Fig. 3e, f). In addition to validating these
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Fig. 3 Detection of rare germline pathogenic in cancer patients using GATK-JG. a confusion matrix of the quality class assignment of the
pathogenic germline variants detected in 239 testicular cancer patients in the cancer-predisposition and ACMG gene sets (n = 151) in the
presence and absence of the additional cancer-free cohort. b A total of 50 (92.6%) pathogenic variants were consistently detected by GATK-JG
in the testicular cancer cohort (n = 239) while 4 (7.4%) clinically actionable pathogenic variants were detected by GATK-JG in only one or none
of the computational runs despite being present in the raw genomic data file (c–f), highlighting a substantial limitation of the current
standard germline variant detection method. g, h Conducting similar analyses on an independent cohort of 239 breast cancer patients
showed that of 66 pathogenic variants in the raw variant callset, only 58 (87.9%, 95% CI: 77.5–94.6) pathogenic variants were considered
“high-quality” by GATK-JG while 8 (12.1%, 95% CI: 5.4–22.5) variants went undetected by one or both computational runs. i–l Representative
example of pathogenic cancer-risk variants that went undetected by one or both of GATK-JG runs.
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variants in their corresponding raw genomic data, we utilized GATK
HaplotypeCaller-generated raw genomic files (BAM) to validate
these variants after the tool assembled haplotypes and locally
realigned reads (Figure S3A–D).
Similarly, our analysis of the germline ES data of 239 breast cancer

patients identified 66 pathogenic variants in cancer-predisposition
and ACMG gene sets that were present in the unfiltered variant
callset. However, only 58 (87.9%, 95% CI: 77.5–94.6) of these
pathogenic variants were considered high quality by GATK-JG while
8 (12.1%, 95% CI: 5.4–22.5) variants went undetected by one or both
computational runs (Fig. 3g, h). Germline variants that were only
detected by one computational run included a well established
pathogenic frameshift in BRCA2 (p.Ile605AsnfsTer11) (Fig. 3i) and a
known pathogenic variant in NBN (p.Lys219AsnfsTer16) that leads to
premature termination and nonsense mediated decay of the protein
transcript (Fig. 3j). In addition, several pathogenic cancer predis-
position variants went undetected by both GATK-JG runs including a
truncating pathogenic variant in BRCA2 (p.Ser1982ArgfsTer22)
(Fig. 3k) and a pathogenic founder frameshift variant in BRCA1
(p.Gln1777ProfsTer74) that is prevalent in Ashkenazi Jewish popula-
tion20 (Fig. 3l), which also escaped detection in the testicular cancer
cohort (Fig. 3c).
Notably, germline pathogenic variants in the cancer predisposi-

tion and ACMG gene sets that were missed by one or both
computational runs in the testicular cancer cohort included one
SNV and three indel variants while those pathogenic variants
missed by one or both computational analyses in the breast
cancer cohort included three SNVs and five indels.

Detection of pLOF variants in 5,197 clinically relevant Mendelian
genes
Next, we sought to assess the impact of concurrent genotyping of
multiple cohorts on identifying autosomal recessive and low
penetrant autosomal dominant pLOF variants across 5,197
clinically relevant genes in our cancer cohorts (Supplementary
Methods) (Table S1). Of 1,964 rare pLOF variants in the raw variant
callset in the testicular cancer cohort (n= 239), only 69.7% (n=
1369, 95% CI: 67.7–71.7) variants were detected by both analysis
runs while 8.2% (n= 162, 95% CI: 7.1–9.6) pLOF variants were only
detected in one analysis run but not the other one (Fig. 4a),
demonstrating instability in GATK-JG performance for identifying
rare truncating variants that are of potential clinical interest.
Furthermore, 433 (22.0%, 95% CI: 20.2–23.9) pLOF variants were
considered low-quality variants or artifacts and were thus filtered
out in both analyses despite having sufficient sequencing
coverage (median: 49 reads, IQR: 18–78) and a VAF consistent
with the germline heterozygous state (median: 43%, IQR: 35–57).
To explore if germline variants that were filtered out in both
analysis runs represent high-quality calls that were erroneously
filtered out by GATK-JG, we randomly selected 100 variants for
manual evaluation using the Integrative Genomic Viewer (IGV)
(Supplementary Methods).18 Of these variants, 39% (95% CI:
29.4–49.3) were validated in raw genomic data files including
germline pLOF variants in MPO (p.Met519ProfsTer21) and LIPT1
(p.Lys123AsnfsTer8) (Fig. 4b, c), suggesting a nontrivial false-
negative rate (8.6%; 95% CI: 7.4–9.9) of GATK-JG for rare germline
pLOF variants that should be prioritized for further evaluation of
pathogenicity and disease association. In addition, confirmed the
presence of these variants in the raw genomic files (BAM files)
generated by GATK HaplotypeCaller (Figure S3E, F).
Using the same analysis approach, we systematically surveyed the

pLOF variants in 5,197 clinically relevant genes in the independently
sequenced 239 germline exomes of breast cancer patients. Of 1,223
pLOF variants that were discovered in this cohort, only 696 (56.9%;
95% CI: 54.1–59.7) pLOF variants were detected in both computa-
tional runs while 36 (2.9%; 95% CI: 2.1–4.1) pLOF variants were only
detected in one of the analysis runs (Fig. 4d). Similarly, a large

fraction of the pLOF (n= 491; 40.1%; 95% CI: 37.4–43.0) variants in
the breast cancer cohort were filtered out by both computational
runs despite having a VAF suggestive of a germline heterozygous
state (median: 38%, IQR: 33–46) and sufficient sequencing coverage
(median: 57 reads, IQR: 26–127) (Fig. 4e, f). To explore if some of
these variants exist in the raw genomic data of the breast cancer
cohort, we randomly selected 100 pLOF that were filtered out in
both computational runs for manual evaluation. Again, our analysis
showed that 50% (95% CI: 39.8–60.2) of the manually evaluated
pLOF variants were present in the raw genomic data of these
patients, suggesting a missingness rate of 24.1% (95% CI: 16.1–33.7)
for rare germline pLOF variants.
Similar to pathogenic variants in the cancer-predisposition and

ACMG gene sets, germline pLOF variants in the OMIM genes that
were missed by one or both computational runs in the testicular
cancer cohort included 132 (22.2%, 95% CI: 18.9–25.7) SNVs and
463 (77.8%, 95% CI: 74.3–81.1) indels while those pathogenic
variants missed by one or both computational analyses in the
breast cancer cohort included 315 (59.8%, 95% CI: 55.4–64.0) SNVs
and 212 (40.2%, 95% CI: 36.0–44.6) indels.

Detection of pLOF variants in 12 commonly used clinical
multigene panels
Finally, we evaluated the effect of concurrently analyzing
additional genomic data sets on the molecular diagnostic yield
of 12 commonly used phenotype-specific multigene panels
(MGPs) (Supplementary Methods) (Table S2). Overall, more rare
pLOF variants were identified in the testicular cancer cohort when
GATK-JG concurrently analyzed an additional set of 100 exomes
compared with when GATK-JG was run on the original testicular
cancer cohort (n= 239) alone (9 MGPs, 75%, 95% CI: 42.8–94.5 vs.
2 MGPs, 16.7%, 95% CI: 2.1–48.4 respectively, with similar
performance in one MGP, 8.3%, 95% CI: 0.2–38.5) (Fig. 5a).
Notably, of the evaluated 1,911 pLOF variants, 150 (7.8, 95% CI:
6.7–9.1) pLOF variants were only identified in one of the analysis
runs (median: 5 pLOF per gene panel, IQR: 3–20) while 365 (19.1,
95% CI: 17.4–20.9) pLOF variants were filtered out in both analysis
runs (median: 15 pLOF per gene panel, IQR: 10–28) (Fig. 5a).
However, performing the same analysis on germline data of the

breast cancer cohort (n= 239) showed a clear tendency to detect
more pLOF in the MGPs when this data set is analyzed by GATK-JG
in the absence of the additional 100 exome data set (7 MGPs,
58.3%, 95% CI: 27.7–84.8 with similar performance in 5 MGP,
41.7%, 95% CI: 15.2–72.3) (Fig. 5b), suggesting a stochastic nature
of GATK-JG performance when additional genomic data sets are
included. Finally, similar to the testicular cancer analysis, 21 (1.9%;
95% CI: 1.2–2.9) and 489 (44.2%; 95% CI: 41.3–47.2) of 1,106 pLOF
variants present in the raw germline callset went undetected by
one and both computational runs, respectively (Fig. 5b).

Detection of germline genetic variants using 50 vs. 100 additional
germline exomes
To investigate whether the observed higher detection rate of
GATK-JG when concurrently analyzing additional samples has an
additive effect, we compared the number of high quality
heterozygous germline variants detected in the breast cancer
cohort (n= 239) when no additional samples, 50 additional
germline samples, and 100 additional germline samples were
used for joint genotyping (Supplementary Methods). Our analysis
showed that although 67,326 additional heterozygous germline
variants were detected in this cohort when concurrently analyzed
with 100 additional germline exomes compared with when no
additional cohort is used (3,873,154 vs. 3,805,828 respectively),
analyzing germline data of 239 breast cancer patients with 50
additional germline exomes unexpectedly detected 107,058 fewer
high quality heterozygous variants than when no additional
samples were concurrently characterized (3,698,770 vs. 3,805,828
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Fig. 4 Detection of rare germline pLOF variants in cancer patients using GATK-JG. a Evaluating rare germline truncating variants in clinically
relevant genes (n = 5197), detected by GATK-JG in the testicular cancer cohort (n = 239) in the presence and absence of the 100 additional
germline WES samples, showed a substantial discrepancy of the final germline callsets between the two computational runs. b, c Two
representative examples of pLOF variants that were filtered out by GATK-JG in both analysis runs (due to low GATK-generated Quality Tranches)
but existed in the raw genomic data (Binary Alignment Map [BAM] file) of testicular cancer patients. The observed 14bp deletion in MPO
(c.1555_1568del) is a known pathogenic variant that has been reported previously by clinical laboratories in several patients with
myeloperoxidase deficiency (OMIM: 254600), an autosomal recessive condition associated with a higher risk of disseminated candidiasis. Similarly,
LIPT1:c.369del is a known likely pathogenic variant that has been seen in patients with Lipoyltransferase 1 deficiency, another autosomal
recessive condition associated with delayed psychomotor development, cerebellar atrophy, bradycardia, and liver dysfunction. d Performing an
exome-wide analysis of germline pLOF variants in an independently sequenced 239 breast cancer patients showed similarly substantial cohort
size-driven variability in the ability to detect these potentially relevant germline alterations. e, f Two representative examples of pLOF variants that
were filtered out by GATK-JG in both computational runs but existed in the raw germline genomic data of breast cancer patients.
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respectively) (Figure S4A). Importantly, this variability of the
number of identified germline variants in the breast cancer cohort
was seen across all autosomal and sex chromosomes (Figure S4B,
C), highlighting a systematic exome-wide stochastic effect that
does not seem to be limited to particular genes or genomic
regions.

DISCUSSION
Collectively, our analysis of GATK-JG, the standard germline
variant detection method commonly used for clinical and research
studies, highlighted a substantial impact of concurrently analyzing
additional genomic data sets on the detection of rare and
common germline variants in any particular sample. In the
testicular cancer cohort, additional rare pathogenic and pLOF
germline variants were detected in the analyzed 239 germline
exomes of these patients when additional genomic data sets were
included in the joint genotyping step. However, analyzing an
independent cohort of 239 patients with breast cancer showed
that GATK-JG detected more pathogenic and pLOF variants when
this patient cohort was genotyped without any additional
genomic data set, suggesting a stochastic nature of GATK-JG
sensitivity when additional data sets are concurrently analyzed.

This stochastic nature of GATK-JG performance was also seen
when exploring the effect of performing germline variant
detection in the presence of an additional cohort of different
sizes, where while using 100 additional exomes resulted in
detecting more high-quality variants than baseline (i.e., when no
additional samples are used), using 50 additional exomes resulted
in detecting fewer high-quality germline variants, resulting in a
lower detection rate than baseline.
Collectively, our analysis of two independent cohorts of cancer

patients suggests that GATK-JG’s ability to detect rare pathogenic
and pLOF variants in any particular germline sample is signifi-
cantly influenced by the number of samples that are being
concurrently analyzed, resulting in substantially variable sensitivity
and detection rate for these clinically informative variants. Such
variable performance can result in missing clinically actionable
pathogenic variants in a nontrivial fraction of patients who
undergo clinical germline genetic testing. Indeed, our analysis of
the cancer-predisposition and ACMG gene sets showed that 4
of 239 (1.67%, 95% CI: 0.46–4.23) testicular cancer patients and 8
of 239 (3.35%, 95% CI: 1.46–6.49) breast cancer patients had
clinically actionable pathogenic variants that went undetected in
one or both computational analyses. Furthermore, this variable
performance, along with the arbitrary user-defined filter cutoffs
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that GATK-JG uses, can greatly limit the ability to reproduce large
germline analyses even when the raw genomic data are accessible.
Such issues can be potentially mitigated by adopting a sample-
based analysis approach that leverages deep learning and other
related algorithms that have shown promising results for superior
variant detection performance in the Genome in a Bottle ground
truth set.23–25 However, until sample-based deep learning
approaches are fully adopted, detection of rare clinically relevant
germline variants using GATK should utilize internal or publicly
available genomic data sets that may improve the molecular
diagnostic yield of joint genotyping–based variant detection.

DATA AND SOFTWARE AVAILABILITY
The raw sequence data for all cohorts utilized in this study can be obtained through
dbGaP (https://www.ncbi.nlm.nih.gov/gap) or as described in their original papers
(See methods). All software tools used in this study are publicly available.

Received: 24 April 2020; Revised: 8 December 2020; Accepted: 15
December 2020;
Published online: 2 February 2021

REFERENCES
1. AlDubayan S. H. Leveraging Clinical Tumor-Profiling Programs to Achieve Com-

prehensive Germline-Inclusive Precision Cancer Medicine. JCO Precision Oncology.
3, 1–3 (2019).

2. Bergin, J. DNA sequencing market: size, trends, share & research report 2023.
https://www.bccresearch.com/market-research/biotechnology/dna-sequencing-
emerging-tech-applications-report.html (2019).

3. The Genome Analysis Toolkit (GATK) team of the Data Sciences Platform at the
Broad Institute. Best practices for variant calling GATK. Github. https://github.
com/broadinstitute/gatk-docs.

4. 1000 Genomes Project Consortium et al. A global reference for human genetic
variation. Nature. 526, 68–74 (2015).

5. Sherry, S. T., Ward, M. & Sirotkin, K. dbSNP—database for single nucleotide
polymorphisms and other classes of minor genetic variation. Genome Res. 9,
677–679 (1999).

6. DePristo, M. A. et al. A framework for variation discovery and genotyping
using next-generation DNA sequencing data. Nat. Genet. 43, 491–498 (2011).

7. Bohannan, Z. S. & Mitrofanova, A. Calling variants in the clinic: informed variant
calling decisions based on biological, clinical, and laboratory variables. Comput.
Struct. Biotechnol. J. 17, 561–569 (2019).

8. Lek, M. et al. Analysis of protein-coding genetic variation in 60,706 humans.
Nature. 536, 285–291 (2016).

9. Tennessen, J. A. et al. Evolution and functional impact of rare coding variation
from deep sequencing of human exomes. Science. 337, 64–69 (2012).

10. Van der Auwera, G. A. Calling variants on cohorts of samples using the Haplotype-
Caller in GVCF mode. https://gatkforums.broadinstitute.org/gatk/discussion/3893/
calling-variants-on-cohorts-of-samples-using-the-haplotypecaller-in-gvcf-mode (2014).

11. Van der Auwera, G. A. et al. From FastQ data to high-confidence variant calls: the
Genome Analysis Toolkit Best Practices Pipeline. Curr. Protoc. Bioinformatics. 43,
11.10.1–11.10.33 (2013). https://doi.org/10.1002/0471250953.bi1110s43

12. Taylor-Weiner, A. et al. Genomic evolution and chemoresistance in germ-cell
tumours. Nature. 540, 114–118 (2016).

13. AlDubayan, S. H. et al. Association of inherited pathogenic variants in checkpoint
kinase 2 (CHEK2) with susceptibility to testicular germ cell tumors. JAMA Oncol. 5,
514–522 (2019).

14. Litchfield, K. et al. Whole-exome sequencing reveals the mutational spectrum of
testicular germ cell tumours. Nat. Commun. 6, 5973 (2015).

15. Mills, R. E. et al. Natural genetic variation caused by small insertions and deletions
in the human genome. Genome Res. 21, 830–839 (2011). https://doi.org/10.1101/
gr.115907.110

16. Richards, S. et al. Standards and guidelines for the interpretation of sequence
variants: a joint consensus recommendation of the American College of Medical
Genetics and Genomics and the Association for Molecular Pathology. Genet. Med.
17, 405–423 (2015).https://doi.org/10.1038/gim.2015.30

17. Robinson, J. T., Thorvaldsdóttir, H., Wenger, A. M., Zehir, A. & Mesirov, J. P. Variant
review with the Integrative Genomics Viewer. Cancer Res. 77, e31–e34. (2017).

18. Robinson, J. T. et al. Integrative genomics viewer. Nat. Biotechnol. 29, 24–26 (2011).
19. Karczewski, K. J. et al. The mutational constraint spectrum quantified from var-

iation in 141,456 humans. Nature. 581, 434–443 (2020).

20. Abeliovich, D. et al. The founder mutations 185delAG and 5382insC in BRCA1 and
6174delT in BRCA2 appear in 60% of ovarian cancer and 30% of early-onset
breast cancer patients among Ashkenazi women. Am. J. Hum. Genet. 60, 505–514
(1997).

21. NCBI. VCV000052738.1. https://www.ncbi.nlm.nih.gov/clinvar/variation/52738/
(2019).

22. NCBI. VCV000003196.6. https://www.ncbi.nlm.nih.gov/clinvar/variation/3196/
(2019).

23. Poplin, R. et al. A universal SNP and small-indel variant caller using deep neural
networks. Nat. Biotechnol. 36, 983–987 (2018).

24. Broad Institute. Train a CNN model for filtering variants. https://software.
broadinstitute.org/gatk/documentation/tooldocs/4.0.4.0/org_broadinstitute_
hellbender_tools_walkers_vqsr_CNNVariantTrain.php (2019).

25. AlDubayan, S. H. et al. Detection of Pathogenic Variants With Germline Genetic
Testing Using Deep Learning vs Standard Methods in Patients With Prostate
Cancer and Melanoma. JAMA 324, 1957–1969 (2020).

ACKNOWLEDGEMENTS
We thank all individuals who participated in this study. S.H.A. and E.V.A. had full
access to all the data in the study and take responsibility for the integrity of the data
and the accuracy of the data analysis. This work was supported by American Society
of Clinical Oncology (ASCO) Conquer Cancer Foundation Career Development Award
(CCF CDA) CDA#13167 (S.H.A.), the Prostate Cancer Foundation Young Investigator
Award YIA#18YOUN02 (S.H.A), the PCF-V Foundation Challenge Award (E.M.V.), the
National Institutes of Health R37CA222574 (E.M.V.), R01 CA227388 (E.M.V.), and King
Abdulaziz City for Science and Technology grant 12-MED2226–46 (M.A.). The funding
organizations were not responsible for the design and conduct of the study;
collection, management, analysis, and interpretation of the data; preparation, review,
or approval of the manuscript; and decision to submit the manuscript for publication.
The results published here are in part based upon data generated by the Cancer
Genome Atlas managed by the National Cancer Institute (NCI) and National Human
Genome Research Institute (NHGRI). Information about TCGA can be found at http://
cancergenome.nih.gov.

AUTHOR CONTRIBUTIONS
S.Y.C., E.K., B.R., N.M., E.M.V., A.T.W., S.H.A. generated the germline variant callsets and
performed genomic analysis of sequencing data. S.H.A. performed germline variant
pathogenicity assessment. S.H.A., A.M.A., M.A., A.K.A. performed analysis of clinical
characteristics. S.H.A., E.M.V., S.Y.C., wrote the manuscript. S.H.A., S.Y.C. prepared the
main and supplementary figures. All authors reviewed and edited the manuscript.

ETHICS DECLARATION
All individuals in this study consented to institutional review board–approved
protocols that allowed for comprehensive genetic analysis of germline samples
(methods). This study conforms to the Declaration of Helsinki.

COMPETING INTERESTS
E.V.A. has the following disclosures; advisory and/or consulting for Tango
Therapeutics, Genome Medical, Invitae, Illumina, and Ervaxx; research support from
Novartis and BMS; equity in Tango Therapeutics, Genome Medical, Syapse, Ervaxx,
and Microsoft; travel reimbursement from Roche and Genentech; and institutional
patents (ERCC2 mutations and chemotherapy response, chromatin mutations and
immunotherapy response, and methods for clinical interpretation). The other authors
declare no competing interests.

ADDITIONAL INFORMATION
The online version of this article (https://doi.org/10.1038/s41436-020-01074-w)
contains supplementary material, which is available to authorized users.

Correspondence and requests for materials should be addressed to A.T.-W. or S.H.A.

Reprints and permission information is available at http://www.nature.com/
reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims
in published maps and institutional affiliations.

S.Y. Camp et al.

926

Genetics in Medicine (2021) 23:918 – 926

https://www.bccresearch.com/market-research/biotechnology/dna-sequencing-emerging-tech-applications-report.html
https://www.bccresearch.com/market-research/biotechnology/dna-sequencing-emerging-tech-applications-report.html
https://github.com/broadinstitute/gatk-docs
https://github.com/broadinstitute/gatk-docs
https://gatkforums.broadinstitute.org/gatk/discussion/3893/calling-variants-on-cohorts-of-samples-using-the-haplotypecaller-in-gvcf-mode
https://gatkforums.broadinstitute.org/gatk/discussion/3893/calling-variants-on-cohorts-of-samples-using-the-haplotypecaller-in-gvcf-mode
https://doi.org/10.1002/0471250953.bi1110s43
https://doi.org/10.1101/gr.115907.110
https://doi.org/10.1101/gr.115907.110
https://doi.org/10.1038/gim.2015.30
https://www.ncbi.nlm.nih.gov/clinvar/variation/52738/
https://www.ncbi.nlm.nih.gov/clinvar/variation/3196/
https://software.broadinstitute.org/gatk/documentation/tooldocs/4.0.4.0/org_broadinstitute_hellbender_tools_walkers_vqsr_CNNVariantTrain.php
https://software.broadinstitute.org/gatk/documentation/tooldocs/4.0.4.0/org_broadinstitute_hellbender_tools_walkers_vqsr_CNNVariantTrain.php
https://software.broadinstitute.org/gatk/documentation/tooldocs/4.0.4.0/org_broadinstitute_hellbender_tools_walkers_vqsr_CNNVariantTrain.php
http://cancergenome.nih.gov
http://cancergenome.nih.gov
https://doi.org/10.1038/s41436-020-01074-w
http://www.nature.com/reprints
http://www.nature.com/reprints

	Evaluating the molecular diagnostic yield of joint genotyping–nobreakbased approach for detecting rare germline pathogenic and putative loss-of-function variants
	INTRODUCTION
	MATERIALS AND METHODS
	Patient cohorts and genomic data collection
	Testicular cancer cohort (discovery analysis)
	Breast cancer cohort (replication analysis)

	Sequencing platform, capture kits, and alignment
	Testicular cancer cohort analysis
	Breast cancer cohort analysis

	Detection of germline variants
	Selection of Mendelian gene sets
	Germline variant pathogenicity evaluation
	Validation of detected germline variants
	Statistical analysis

	RESULTS
	Overall germline variant detection
	Characterization of filtered variants in well-covered genomic regions
	Impact of concurrently analyzing multiple cohorts on the detection of clinically actionable pathogenic variants
	Detection of pLOF variants in 5,197 clinically relevant Mendelian genes
	Detection of pLOF variants in 12 commonly used clinical multigene panels
	Detection of germline genetic variants using 50 vs. 100 additional germline exomes

	DISCUSSION
	References
	References
	Acknowledgements
	Author contributions
	Ethics declaration
	Competing interests
	ADDITIONAL INFORMATION




