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Abstract

Evolutionary change is the change in trait values across generations, and usually occurs in multidimensional trait space
rather than along isolated traits. Genetic covariation influences the magnitude and direction of evolutionary change and can
be statistically summarized by the additive genetic (co)variance matrix, G. While G can affect the response to selection, it is
exposed to evolutionary change by selection and genetic drift, but the magnitude and speed of these changes are poorly
understood. We use comparative G matrix analyses to assess evolution of the shape and orientation of G over longer
timescales in three species of Gomphocerine grasshoppers. We estimate 10 x 10 G matrices for five morphological traits
expressed in both sexes. We find low-to-moderate heritabilities (average 0.36), mostly large cross-sex correlations (average
0.54) and moderate between-trait correlations (average 0.34). G matrices differ significantly among species with wing length
contributing most to these differences. Wing length is the trait that is most divergent among species, suggesting it has been
under selection during species divergence. The more distantly related species, Pseudochorthippus parallelus, was the most
different in the shape of G. Projection of contemporary genetic variation into the divergence space D illustrates that the
major axis of genetic variation in Gomphocerippus rufus is aligned with divergence from Chorthippus biguttulus, while the
major axis of genetic variation in neither of the species is aligned with the divergence between Pseudochorthippus parallelus
and the other two species. Our results demonstrate significant differences in G matrices with a phylogenetic signal in the
differentiation.

Introduction

The efficiency and direction of adaptive evolution are not
only affected by the fitness landscape, but also by the
amount and structure of heritable variation (Lande 1979;
Teplitsky et al. 2014). While the univariate heritability acts
mainly as an efficiency filter of inheritance among genera-
tions, the structure of genetic covariance among traits also
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affects the direction of the response (Lande 1979, 1982;
Lande and Arnold 1983; Blows and McGuigan 2015).
Genetic covariance arises either from pleiotropy or from
linkage disequilibrium (Lynch and Walsh 1998). Since
traits are often genetically coupled by such covariation, and
therefore do not evolve in isolation, only a multi-
dimensional view of trait evolution will capture the
important intricacies of evolutionary dynamics that any
unidimensional analysis will miss (Lande 1980b; Blows
2007; Walsh and Blows 2009). However, despite their
relevance to the efficiency and direction of adaptive evo-
lution, we know comparatively little about how genetic
covariation evolves and how temporally stable genetic
correlations are in natural populations.

The additive genetic variance—covariance matrix G
offers a statistical summary of the amount and shape of
genetic variation within populations and is integral to
understanding multivariate evolution in quantitative traits
(Lande 1979, 1980a). Among other things, G can be used to
predict the evolutionary response to selection. The multi-
variate breeder’s equation Az = Gf represents the predicted
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change in mean trait values Az in multivariate trait space as
the matrix product of the additive genetic
variance—covariance matrix, G with the vector of directional
selection gradients, # (Lande 1979). It is apparent from this
relationship that selection acting on a trait will usually
produce an evolutionary response on traits that are geneti-
cally correlated, even though selection does not act directly
on them. Similarly, the structure of G can constrain adaptive
evolution by reducing the efficiency of adaptive responses
or modifying the direction of response to selection
(Teplitsky et al. 2014). While the mathematics of this
relationship is simple and well worked out, empirical
advance is hampered by the difficulty in estimating multi-
variate inheritance as well as selection in multivariate trait
space (Turelli 1988; Arnold et al. 2008).

The genetic variance—covariance structure can change by
natural selection, since selection in multivariate space is not
solely directional at the level of individual traits, but also
correlational on trait combinations (Lande and Arnold 1983;
Phillips and Arnold 1989; Sinervo and Svensson 2002).
Selection on G can be conceptualized by the analogy of the
adaptive landscape (Arnold et al. 2001). The degree of the
curvature at the hilltop of the multivariate adaptive land-
scape is defined by the strength of stabilizing selection and
the orientation of any ridge by correlational selection. Sta-
bilizing and correlational selection can be summarized in
the y matrix, the matrix of nonlinear selection gradients,
where the diagonal elements contain the coefficients of
stabilizing or disruptive selection y;; and the off-diagonals
of the coefficients of correlational selection y;; (Phillips and
Arnold 1989; Blows and Brooks 2003; Blows 2007). The
effects of stabilizing and correlational selection on G can be
particularly important when the covariances arise mostly
from linkage disequilibrium rather than from pleiotropy
(Arnold 1992). Adaptive changes in the shape of G can be
caused by long-term weak selection or frequent periods of
strong selection, but it is difficult to differentiate empirically
between these processes (Roff 2000).

As well as being shaped by selection, the genetic
variance—covariance matrix may change by random genetic
drift (Roff 2000; Phillips et al. 2001; Steppan et al. 2002).
Drift will mostly result in proportional changes in G
matrix, but drift can also lead to changes in shape and
orientation of G (Phillips et al. 2001). It is difficult to
disentangle the effects of drift and selection as their sig-
natures on the structure of G are very similar (Merild 1999;
Phillips et al. 2001). Furthermore, it is likely that over
extended periods of time both selection and drift contribute
to changes in G and it will thus be difficult to assign
changes to one cause or the other. While it would be
desirable to separate the influence of selection and drift on
G matrices, their joint effect is of relevance to how con-
temporary populations may respond to selection and how
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persistent effects of genetic covariance are in affecting
evolutionary change.

The key issue in the estimation of changes in the genetic
covariance matrix is the small expected effect size and the
substantial sampling variance in empirical quantifications of
G. Comparative quantitative genetic studies offer a solution
to this problem, because they capitalize on the cumulative
change in G across many generations (Schluter 1996;
Steppan et al. 2002). Comparative analyses can also shed
some light on the contribution of selection to changes in G.
Divergence among species is expected to be, at least par-
tially, caused by past selection, hence any alignment
between G and multivariate divergence matrix D (where D
represents the matrix of phenotypic differentiation estimated
as the (co)variance among mean trait values across species)
will suggest an effect of selection (although the effect might
go both ways). Misalignment, however, is suggestive for a
role of genetic drift. Comparative studies thus help to give
empirical answers to the persistent conundrums about the
stability of genetic covariance structure in natural popula-
tions. Surprisingly few studies have used this comparative
option, probably because of the difficulty in estimating G in
multiple species (see below).

An intriguing special case of multivariate evolution is
sexually dimorphic trait expression. Sexual dimorphism is
very widespread and arguably represents the most con-
spicuous form of intraspecific phenotypic diversity. Sexual
dimorphism ultimately arises from sex-specific selection,
but is typically constrained by the shared genetic variation
among females and males that results in intra-locus sexual
conflict if selection is sex specific (Lande 1980b; Lande
1987). Unlike functionally unrelated traits expressed in the
same sex, where we may expect low genetic correlations,
the ancestral genetic correlation among homologous traits in
the two sexes is expected to be large and only reduced by
persistent sexually antagonistic selection (Poissant et al.
2010; Griffin et al. 2013). Such cross-sex genetic correla-
tions cannot be shaped directly by correlational selection on
the same trait expressed in males and in females when the
traits (in gonochorous species) are never co-expressed in
any single individual and correlational selection is thus
absent.

The degree of stability of G matrix has been an enigmatic
question in the evolution of quantitative characters (Steppan
et al. 2002; Arnold et al. 2008). Theory and computer
simulations predict that G can remain stable if the shape of
the fitness surface is stable and the mutational covariance is
neutral with respect to G (Turelli. 1988; Jones et al. 2003).
However, since these conditions are likely to be violated
over longer evolutionary time scale, G is bound to change
(McGuigan. 2006). Among other things, the type of traits
considered affects the stability of G. Fitness components,
for example, are predicted to have unstable G matrices,
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while bilateral traits have a more stable structure of G due to
high correlations between mutational effects and strong
correlational selection on both sides (Jones et al. 2003).
However, there is no general theoretical answer to the sta-
bility of G in natural populations, since factors and condi-
tions that can stabilize or destabilize G are likely to coexist.

Empirical studies allow insights into the evolutionary
dynamics of G. Previous studies report stable G among
populations of the individual species for life history (Spitze
et al. 1991; Delahaie et al. 2017), morphology (Brodie
1993; Delahaie et al. 2017), and behavior (Brodie 1993). In
other cases, G matrices for morphology, life history, and
behavior seem to differ between populations (Shaw et al.
1995; Doroszuk et al. 2008; Careau et al. 2015; Karlsson
Green et al. 2016; Sniegula et al. 2018) or are differentiated
by habitat or ecotype (Calsbeek et al. 2011; Eroukhmanoff
and Svensson 2011). Similarly, longitudinal studies on
single populations of passerine birds have reported either
temporal stability for reproductive traits (Garant et al. 2008)
or remarkable changes as for morphological traits (Bjork-
lund et al. 2013). Furthermore, experimental populations of
inbred lines in Drosophila show divergence for morpholo-
gical G matrices (Phillips et al. 2001). Between-species
comparisons that build on longer divergence times are
rather few. As for within-species comparisons, there is
evidence for stability of G matrices (Bégin and Roff 2003)
as well as evidence for G matrix divergence for morphology
(Paulsen 1996; Roff and Mousseau 1999; McGlothlin et al.
2018) in among-species comparisons. Differences among
studies might reflect differences in traits, ecological context,
population history, etc. Overall, there seems to be sub-
stantial variation in outcomes, a little more evidence for G
matrix divergence on longer timescales, but also some cases
of rather rapid changes.

We measured five morphological traits and performed an
among-species comparison to test empirically for G matrix
stability in a group of grasshoppers. The traits measured are
femur length, wing length, antenna length, eye height, and
lobe height, separately in both the sexes. Specifically, we
studied three species of grasshoppers from the subfamily
Gomphocerinae, a clade of grasshoppers with about
230 species, world-wide distribution (Cigliano et al. 2017)
and with rather conserved general morphology. Though
exact divergence times are unknown, the Gomphocerinae
have started to diversify about 30 Mya (Contreras and
Chapco 2006). Within this clade we selected two closely
related species, Chorthippus biguttulus and Gomphocer-
ippus rufus, that show about 4.8% mitochondrial sequence
divergence (Contreras and Chapco 2006). For comparison,
we chose a more distantly related species, Pseu-
dochorthippus parallelus (Nattier et al. 2011; Vedenina and
Mugue 2011). We predict the genetic (co)variance structure
to be more similar between the two more closely related

species as compared with the more diverged species. Fur-
thermore, we predict an alignment between G and the
divergence matrix D if either selection has acted to align G
with the vector of selection or if G has constrained the
response to selection to be aligned with the main axis of
genetic variation. We expect less alignment if drift has
contributed substantially to G matrix divergence.

We performed a full matrix comparison among the three
species using various matrix comparison tools (Roff et al.
2012). Comparisons advanced in five steps of increasing
complexity. (1) We estimated heritabilities, shared envir-
onmental effects, and permanent environment for all five
morphological traits in both males and females, and com-
pared the contribution of sources of variances to phenotypic
variation among species and sexes. (2) We compared the
multivariate trait covariation among five morphological
traits and compared them among the sexes and among
species. (3) We compared between sex correlations within
species to address the constraint to evolution of sexual
dimorphism. (4) We used four different matrix comparison
methods to assess the overall (dis)similarity in the structure
of genetic (co)variation and how this similarity depends on
phylogenetic relatedness. (5) We assessed whether the
overall genetic variance—covariance structure is aligned
with the phenotypic divergence among the three species.
Our work contributes to the pool of empirical evidence of G
matrix divergence over longer time scale through among-
species comparison of morphological quantitative traits.

Materials and methods
Study organisms

We studied three species of Acridid grasshoppers, Chor-
thippus  biguttulus, Pseudochorthippus parallelus, and
Gomphocerippus rufus (for brevity we refer to them without
the genus name in the following). All of the three species
are sexually dimorphic in morphology: females are gen-
erally bigger than males, but wings are relatively shorter in
females than in males and antennae show significant sexual
dimorphism (Table S1). We collected biguttulus and par-
allelus from in and around Bielefeld, Germany (52°01" N;
08°28" E). These two species prefer different habitats:
biguttulus inhabits dry grasslands, whereas parallelus is
found in lush green meadows. However, both species have
wide ecological amplitude and co-occur in many places.
The third species rufus was collected from Tiibingen, Ger-
many (48°30" N; 09°04’ E), where it occurs on semi-open
slopes with tall grasses and herbs. Only final (fourth) instar
nymphae were caught from the field to ensure virginity.
Nymphae were kept in netted plastic cages and provided
with grass as a food source. Upon emergence as adults,
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virgin males and females were kept separately in large mesh
cages (47.5 x47.5 x 90 cm?).

Breeding design

We set up a paternal half-sib breeding design in the
laboratory at Bielefeld University. Each male was mated to
two virgin females to form paternal half-sib families.
Females were housed and paired separately in mesh cages
(22x16x 16 cm®). Males were swapped between their
assigned female cages every 2-3 days until the male died.
Females that died were replaced by new virgin females if
the male was still alive. Each cage was provided with sand
pots as egg-laying substrate. The sand was sieved once per
week for egg pods (ca. 1 cm long solid structures containing
typically 6-12 eggs, and only occasionally more (Chakra-
barty et al. 2019)). Egg pods were then collected and kept in
petri dishes lined with filter paper. Each pod was kept on a
separate dish and dishes were sprayed regularly to keep the
eggs moist. Egg dishes were kept in refrigerators at 0—10 °C
for a period of at least 3 months starting from October.

F1 animals

Petri dishes with egg pods were taken out of the refrig-
erators in five cohorts between early January and early June.
Upon hatching, individuals from the same egg pod were
kept in the same mesh cage (dimensions: 22 x 16 x 16 cm®)
and were provided with ad libitum food (freshly cut grass
provided in a vial with water). Egg pods produced on
average 6 hatchlings per pod and the mean and SD of
surviving hatchlings per egg pod were: 3.21+2.28 in
biguttulus, 4.13 +2.35 in rufus, and 3.13 £2.10 in paral-
lelus. Hatchlings were kept at a temperature of 25-30 °C
and 35-55% relative humidity. Newly emerged adults were
individually marked with numbered bee tags and transferred
to larger communal cages (dimensions 43.5x43.5x
93 cm®) in groups of ~25 individuals. The number of F1
animals that survived to adulthood were 1237 biguttulus,
897 rufus, and 390 parallelus that hatched from 383 egg
pods in biguttulus, 217 in rufus, and 120 in parallelus. The
total number of full-sib families was 112 in biguttulus, 70 in
rufus, and 66 parallelus. The numbers of half-sib families
were: 73 for biguttulus, 48 rufus, and 51 in parallelus. The
number of males in biguttulus is 656 and number of females
is 581, in rufus is 463 and 434, and in parallelus is 195
and 195.

Morphometrics
Standardized photographs of both males and females (adults
only) from F1 generation were taken after collection or

natural death. Hind legs, forewings (tegmina), and antennae
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were first detached from the main body. Photographs of the
antennae, forewings, and hind legs were taken on a white
background with a scale next to the body parts. For pictures
of pronotal lobes and eyes, the animal was placed on a dish
full of fine-grained sand with a scale next to it. The sand
allowed adjusting the body for plain dorsal and lateral
views. An artificial light source was used for the photo-
graphs, which were all taken by a Fuji camera (FinePix
HS35 EXR). Pictures were analyzed using the software
ImageJ 1.46r (Schneider et al. 2012). We measured post-
femur length, forewing length, length of the antennae,
height of the pronotal lobes, and the vertical diameter of the
eye. We refer to those as femur length, wing length, antenna
length, lobe height, and eye height in the following. All
traits were sexually dimorphic with weakest sexual
dimorphism in eye height (Table S1). Each measurement
was calibrated using a 20 mm scale.

Individuals of two species rufus and biguttulus are all
long-winged, while the wings are short in parallelus. Spe-
cifically, female parallelus shows forewings about half the
length of the abdomen and hindwings that are reduced to
stubs. Male parallelus also shows very narrow, short
hindwings, but slightly longer forewings that cover most of
the abdomen. Both sexes of parallelus are incapable of
flight, which would require developed hindwings. However,
most natural populations harbor individuals with fully
developed fore- and hindwings at low frequencies, and this
wing length polymorphism is apparently environmentally
induced (Harrison 1980; Ritchie et al. 1987). These indi-
viduals with fully developed wings are called macropterous.
While all our founding individuals were short-winged, we
found 13 macropterous individuals (1.8%) from seven dif-
ferent half-sib families among the offspring. Because these
individuals represented outliers with respect to the normal
distribution of wing length in the population (Fig. S1), we
excluded the wing lengths of these individuals from the
analysis of this trait. We also performed an analysis that
excluded macropterous individuals entirely, but this hardly
affected the results (Table S5).

Statistical analyses

All models were fitted in R 3.5.1 (R Core Team 2018) under
a Bayesian framework as implemented in the MCMCglmm
package (Hadfield 2010). We fitted multivariate animal
models and extracted the posterior distribution of G as well
as other (co)variances. For each individual trait the key
components to the model were

y:Xﬂ+Z13+Z2S+Z3i+e (1)

where y is a vector of trait values, f is the vector of fixed
effects, a is the vector of additive genetic effects, s is the
vector of shared environmental effects, i is the vector of
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individual identity effects (individuals have two measure-
ments for each bilateral traits), and e is the vector of residual
errors. The shared environmental effect is the part of the
phenotypic variance originating from individuals sharing
the same egg pod (hence also the same mother) and shared
rearing conditions in the same nymphal cage. The
individual identity effect is the part of the total variance
that is reproducible between sides within individuals (hence
excluding most measurement error and fluctuating asym-
metry) beyond similarity among siblings. The residual
component consists of measurement error and fluctuating
asymmetry between the two sides. Z;, Z,, and Z; are the
respective incidence matrices for three vectors of random
effects (based on pedigree relationships, egg pod identities,
and individual identities, respectively) and X is the design
matrix for the fixed effects. Heritabilities were calculated
with the residual component removed, since we were not
interested in fluctuating asymmetry and the individual
repeatable component is deprived of measurement error and
thus closer to the genetic signal.

We fitted ten-trait models (five morphological traits
expressed in both sexes) for all species in order to estimate
10 x 10 G matrices (and we will refer to the dimension of G
as n in the following). Side was fitted as a fixed effect with
two levels (coded as numeric, left = —0.5 and right=0.5).
For the estimation of individual identity effects, we split the
10 x 10 matrix into two 5 x 5 matrices for males and females,
because within-individual covariation cannot exist between
the sexes. By doing so, individual-specific covariances
between the sexes were effectively constrained to zero. We
estimated the between sex correlations as well as the within
sex between trait correlations from the above models.

We used parameter expanded (half Cauchy) priors for
our model as they are less informative than regularly used
inverse-Wishart priors (Gelman 2006). The reason for using
a weakly informative prior is to ensure that the information
comes chiefly from the data. The degree of belief parameter
v was set to v = 11 for all the random effects except for the
individual identity. We also fitted models with v =9, v =
10, and v = 12 for sensitivity assessment, but the choice of
v had rather little influence on critical measurements (see
Figs. S5-S7). For individual identity, the 10 x 10 matrix
was split into two 5 x 5 matrices, one for males and one for
females with v =6 for each matrix. The v for residual
effects was set to 0.002. The posterior distribution of each
model was estimated from 1,100,000 MCMC iterations
with a thinning interval of 1000 and a burn-in period of
100,000. We ran two independent chains per model yield-
ing a total of 2x 1000 samples form the posterior dis-
tribution for each parameter. Model convergence was
visually inspected using the trace plots and using Gelman
and Rubin diagnostics (Gelman and Rubin 1992).

Matrix comparisons

We used four established matrix comparison methods that
allow exploring different aspects of variance—covariance
matrices with subtly different inferences. The Krzanowski’s
subspace analysis determines whether the subspaces con-
taining maximum genetic variation are similar across spe-
cies. The random skewer analysis allows evaluating
differences in orientation of G matrices. The Flury hier-
archy analysis implements a formal assessment of the
number of shared eigenvectors. The tensor analysis quan-
tifies specifically the differences among variances and
covariances across G matrices.

We compared raw matrices on the original scale, because
trait units were identical and size difference were not
excessive. However, in order to remove size effects, we also
compared matrices after division by the square of trait
means (Houle 1992) to account for allometric scaling with
size. Results for matrix comparisons on mean-standardized
variance—covariances matrices were qualitatively similar to
unstandardized matrices.

Krzanowski’s common subspace analysis

One approach to compare genetic architecture is to identify
the part of G containing most of the genetic variance and to
test whether this part overlaps among species. Krzanowski’s
subspace analysis is a method to evaluate which part of G
contains the maximum variance and whether the eigen-
vectors explaining most of the genetic variance is similar
across species/populations (Krzanowski 1979; Aguirre et al.
2014; Gosden and Chenoweth 2014). The similarity among
subspaces of G matrices that captures the greatest amount of
genetic variance can be tested using this analysis. The
common subspace H among the p = 3 species is given by
(Krzanowski 1979)

P

H=> AA/ (2)
—1

where t=1, ...., p indexes species and A, contains the

subset of k; eigenvectors of G, as columns and k is an
integer smaller than n (the dimensions of G) that is chosen a
priori (see below). These k vectors define the dominant
subspace of the three G matrices and only a k dimensional
comparison is interpretable as adding any further dimension
will make that orthogonal to one of the species subspaces
(k=min (k;), =1, ..., p) (Krzanowski 1979). We chose to
analyze the common subspace using a fixed number of £ =
5 eigenvectors of G following previous studies that used k
equal to half the size of the original G matrix (Aguirre et al.
2014; Gosden and Chenoweth 2014).
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We conducted an eigendecomposition of the H matrix,
where the five eigenvectors h; of H contain the genetic
variation of the linear trait combination that is shared across
the three species. The eigenvalues of H can reach a max-
imum value of p = 3. At the limit, an eigenvector with an
associated eigenvalue of 3 shows that a linear combination
of traits completely explains the genetic variance that is
shared across the three species (Gosden and Chenoweth
2014). A departure of an eigenvalue from this maximum
value of p =3 shows that the trait combination of the cor-
responding eigenvector of H cannot be rebuilt from the k =
5 eigenvectors of G in at least one of the species. This
indicates that the dominant part of the G matrix of at least
one species is not perfectly aligned with the eigenvector of
H (Aguirre et al. 2014; Gosden and Chenoweth 2014).

The difference in alignment can be measured by the
angle §; between each eigenvector of H and the subspaces
of species ¢ (Krzanowski 1979; Gosden and Chenoweth
2014)

o= cos_l{\/hiTAtAtThi} (3)

This comparison when done under a Bayesian frame-
work can use the samples form the posterior distributions of
G matrices, and thus gives a measure of uncertainty in
estimates (Aguirre et al. 2014). In order to test statistically
whether the observed differences among the G matrices of
the three species are caused by sampling variance, we
compared the observed data from the subspace analysis
with a null model where we expect the G matrix differences
are solely due to random sampling. Randomized G matrices
were created from the posterior predictive breeding values
of the observed set of G matrices followed by an estimation
of the covariance of breeding values among traits. p values
were calculated as the proportion of randomized samples
that show equal or smaller values than the original MCMC
samples. The R code for the analysis was adapted from
Aguirre et al. (2014).

Random skewers analysis

Random skewer analysis is a method for comparing the
population-level consequences of matrix differences
(mostly in shape) when a population is exposed to random
linear selection gradients (Cheverud 1996; Cheverud and
Marroig 2007; Roff et al. 2012; Aguirre et al. 2014). This
method primarily compares differences in matrix orienta-
tions. Random skewer analysis builds on the multivariate
breeder’s equation, Az = Gf, where Az is the vector of trait
changes and f is a vector of selection gradients, and makes
use of its biological interpretation. Randomly generated
selection vectors f are projected through the G matrices,
and the predicted response to selection, Az, is calculated.

SPRINGER NATURE

The angle 6 between Az with f quantifies the amount of
deflection and the angle between two Az from different
matrices measures the difference in the direction of
deflection when exposed to the same vector of random
selection gradients.

We generated 1000 random selection vectors sampled
from a multivariate normal distribution with uncorrelated
axes. All 1000 random skewers were projected through
MCMC samples of each G matrix generating a posterior
distribution of response vectors (applying the same
1000 skewers to the two chains). The angle between
response vectors was calculated as

T
1 Viva

_ 4
vivi.viv, )

0 = cos™

where v| and v, are the two vectors to be compared. Since
angle calculations were done on each MCMC sample, we
extracted 2000 angles that together represent the posterior
distribution of the estimate.

Flury hierarchy analysis

Flury hierarchy is an approach of matrix comparison where
a series of models are built and ranked, starting from matrix
inequality to equality (Flury 1988; Arnold and Phillips
1999; Phillips and Arnold 1999; Steppan et al. 2002; Roff
et al. 2012). It is a test of overall similarity of matrices
through a series of hierarchical tests. One of the most
important contributions of Flury hierarchy in comparing G
matrices is the stepwise analysis of matrix similarities and
differences. As matrix comparison is a multivariate exer-
cise, there are several possible states between the extreme
conditions of matrix equality and inequality (Arnold and
Phillips 1999). Besides this broad classification of equal or
unequal, matrices can differ in other characters like differ-
ence in eigenvalue or eigenvector. If the matrices have
similar eigenvectors but their eigenvalues differ by a con-
stant, then the matrices are said to be proportional. Matrices
can also differ in having different eigenvalues but having all
eigenvectors in common. This is tested by the common
principal component model (CPC) that assumes eigenvec-
tors to be identical. Sharing of eigenvectors can also be
partial, which is tested by partial CPC models (Phillips and
Arnold 1999) that allow for 1 to n—2 eigenvectors to be
identical between matrices, where 7 is the dimension of the
G matrices.

An approach for comparing the model fit by Akaike
information criteria (AIC) was described by Flury (Flury
1988; Phillips and Arnold 1999). AIC adjusts the log-
likelihood of a particular model for the number of para-
meters used to fit a particular model. Models with smaller
AIC values are considered better fits. We used the R
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package ‘cpc’ (Pepler 2015) to perform the Flury hier-
archical tests using the model building approach, on the
three species-specific G matrices. We reiterated tests for our
2000 MCMC samples to get a posterior distribution of AIC
values and ranked models by average AIC.

Genetic covariance tensor analysis

Genetic covariance tensor analysis is a method to explore
and determine directions in which divergence in G matrices
occur among populations or species (Hine et al. 2009;
Aguirre et al. 2014). It quantifies the variance in (co)var-
iances across G matrices and thus offers a quantitative
summary of matrix differences. The structure of those
variances in (co)variances can then be analyzed by
eigenanalyses.

In multilinear algebra, covariance tensors are fourth order
arrays that are used to define variation in lower order
variables like vectors (first order tensors) and matrices
(second order tensors). The covariance structure of a set of
traits of a single species as summarized by a two-
dimensional G matrix thus represents a second order ten-
sor with elements indexed by i and j for the 1 to n traits. If
more than one species are concerned, then the covariance
elements of G can be characterized by a four-dimensional
genetic covariance tensor X, which is indexed by i, j, k, and
[ each varying from 1 to n traits in two or more G matrices
(traits indexed i and j in one matrix and k and / in the other).
Elements of X are thus defined by the covariance in (co)
variances of multiple G matrices as (Hine et al. 2009)

> =cov(Gy, Gu) (5)

ikl

The genetic covariance tensor X can also be summarized
by a symmetric matrix S with dimensions m x m, where
m= w The S matrix summarizes X in 2D format (see
Hine et al. 2009 for details).

An eigenanalysis of X can be done in a similar fashion
like an eigenanalysis of a G matrix, except that what
represents an eigenvector in the case of an eigendecompo-
sition of a two-dimensional G is represented by a two-
dimensional eigentensor (a matrix, symbolized by E) in the
case of eigendecomposition of a four-dimensional X. As in
eigenanalysis of G, each eigentensor E is associated with an
eigenvalue that quantifies how much variation among G
matrices is captured by each E (Hine et al. 2009; Careau
et al. 2015). The maximum number of nonzero eigenvalues
of X is @ or (p—1), whichever is smaller, where n is the
dimensions of the G matrices and p the number of G
matrices to be compared (Hine et al. 2009; Aguirre et al.
2014). In our study, this number is p — 1 =2. Further
exploration of the variation among G matrices can be done
using orthogonal linear combination of traits, which portray

the independent changes among G matrices, by eigenana-
lysis of the eigentensor E where the eigenvectors of E are
denoted as e. If the largest eigenvalue of an E is close to 1,
then the change in covariance pattern as defined by the
eigentensor can be attributed to the change in V, for a
particular trait combination.

We used a Bayesian framework, as outlined in Aguirre
et al. (2014), to determine which independent facets of the
genetic covariance structure as described by the tensor show
significant variation among three species of grasshoppers.
We determined S;, the matrix representation of a tensor for
the ith MCMC sample of the set of three G matrices and
extracted the posterior mean of S based on all 2000 MCMC
samples and estimated the variance among G matrices o,
explained by each eigenvector. This enabled us to calculate
the amount of additive genetic variation V, in the direction
of greatest genetic variation among the three species-
specific G matrices (Careau et al. 2015). The posterior
distribution of a; contains the uncertainty in the variance of
the covariance structure as described by each eigentensor E.
This posterior distribution of a; is then compared with the
posterior distribution extracted from the null model, where
the variation among matrices is solely caused by sampling
variation after randomizing breeding values.

Alignment of G with D

We quantified phenotypic divergence in morphospace
among the species as a proxy for the long-term direction of
evolutionary change in the past (Schluter 1996). We con-
structed a species mean trait value variance—covariance
matrix D across all three species and the ten sex-specific
traits. Since subjects were raised in the same environment,
phenotypic means are expected to be representative for
genetic divergences among species. We used eigenanalysis
of the D matrix to quantify the first and second principal
axes of species divergence. This can be done separately by
sex (with five traits in each sex) and for sexes pooled (ten
traits, five in each sex). Both are of interest because the first
one captures sex-specific divergence and the second cap-
tures species-specific divergence. Breeding values estimated
from our MCMCglmm animal model were then projected
into divergence space for display.

Results

Heritabilities

We estimated heritabilities and other variance components
(Fig. 1) for ten sex-specific traits from multivariate animal
models. Heritabilities averaged h*=0.36 (Table 1).

Females tended to show lower heritabilities than males

SPRINGER NATURE



374

A. Chakrabarty and H. Schielzeth
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(0.32 in females vs. 0.39 in males). Though the heritabilities
of the sexes overlapped on a trait-by-trait basis, we find the
same tendency replicated over most traits and species
(Table 1).

Genetic correlations

Genetic correlations between traits within sexes were mod-
erate (average rg = 0.34) with strongest correlations in par-
allelus (average rg = 0.45) and lowest in rufus (average rg =
0.23, Table 2). Correlations tended to be higher in males
(average rg =0.38) than in females (average rg = 0.30) and
in traits that involved femurs, lobes or eyes (rg = 0.35-0.43)
than correlations that involved wings or antennae (rg = 0.24).

We estimated cross-sex genetic correlations ryg between
males and females in all three species. Cross-sex correla-
tions were moderate and positive (average ryg=0.54,
Table 2), were similar across species (lowest in parallelus,
average ryr = 0.48, highest in biguttulus, average ryg=
0.58) and higher for femur, lobes, and eyes (rvr=
0.58-0.66) than for wings and antennae (ryr = 0.40-0.44).
Among-trait correlations across sexes were weaker (average
rg = 0.27) than correlations within traits across sexes and
across-traits within sexes, with correlations involving
femur, lobes, or eyes being higher (rg =0.28-0.36) than
correlations involving wings or antennae (rg = 0.16-0.18)
(Table S3).
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Subspace analysis

We used the first five eigenvectors of G (together explain-
ing 97% of the variance in G in biguttulus and parallelus
and 96% in rufus) to test whether the dominant subspaces A
of G were shared among the three different species.
Eigenvalues were compared with a value of 3 that would
indicate identical subspaces. In order to accommodate
sampling variance, we compared estimated with rando-
mized eigenvalues. The first four eigenvalues of H were
significantly lower than 3, which indicate significant dif-
ferences in orientation among the G matrices of the three
species (Fig. 2). The angle between each eigenvector of H
and each of the k subspaces of G shows only minor dif-
ferences among species (Table S8). If the angles are close to
zero, the specific eigenvector of 4 is closer to the species
subspace and explains the genetic variance better for that
subspace. The overlap of the credibility intervals for the
angles shows that there is little difference in degree of
divergence among the subspaces, though the subspaces
themselves have diverged in orientation.

Random skewer analysis
The random skewer analysis showed marked difference of

genetic covariance matrices across three species. Based on
2000 random skewer projections, the angle of deflection in
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Table 1 Sex-specific additive genetic variances and heritabilities (+SE and 95% CI) of five morphological traits in Chorthippus biguttulus, Gomphocerippus rufus, and Pseudochorthippus

parallelus

Eye

Lobe

Antenna

Wing

Femur

Sex

Species

Additive genetic variance

0.003 £0.001 (0.001-0.007)
0.003 £ 0.002 (0.001-0.010)
0.005 £ 0.001 (0.003-0.008)
0.003 £ 0.002 (0.001-0.009)
0.001 £0.001 (0.000-0.004)
0.005 £ 0.003 (0.000-0.011)

0.006 +0.004 (0.001-0.019)

0.175 +£0.053 (0.086-0.297)
0.075 +0.037 (0.019-0.160)

0.137 £0.096 (0.022-0.427)
0.145+0.091 (0.012-0.372)
0.060 = 0.068 (0.000-0.255)
0.076 = 0.100 (0.000-0.375)
0.364 £0.181 (0.077-0.787)

0.385+0.252 (0.011-0.957)

0.078 £0.047 (0.019-0.222)
0.048 £0.072 (0.000-0.299)
0.080 £ 0.035 (0.025-0.162)
0.159 £0.093 (0.041-0.449)
0.142 £ 0.060 (0.039-0.260)
0.351 £0.188 (0.042-0.689)

Male

C. biguttulus

0.008 +0.008 (0.001-0.035)
0.009 £ 0.003 (0.004-0.015)
0.015 £ 0.008 (0.005-0.039)
0.005 £ 0.005 (0.000-0.017)
0.012£0.010 (0.000-0.032)

Female

Male

0.275+0.111 (0.108-0.542)
0.180+0.090 (0.048-0.395)
0.407 £0.161 (0.120-0.728)
0.175 £ 0.085 (0.012-0.333)

G. rufus

Female

Male

P. parallelus

Female

Heritability

0.355+0.123 (0.158-0.665)
0.348 +£0.181 (0.132-0.911)
0.705 £ 0.140 (0.408-0.954)
0.365+0.182 (0.101-0.857)
0.065 £ 0.078 (0.000-0.275)
0.428 +0.221 (0.032-0.869)

0.230£0.133 (0.032-0.594)
0.279 £ 0.206 (0.053-0.937)
0.678 £0.149 (0.364-0.947)
0.423 £0.178 (0.159-0.919)
0.167 £0.136 (0.001-0.497)
0.367 £0.263 (0.002-0.825)

0.433 £0.112 (0.224-0.662)
0.205 £ 0.094 (0.053-0.413)

0.232£0.141 (0.040-0.615)
0.149 £ 0.088 (0.013-0.363)
0.103 £0.111 (0.000-0.427)

0.066 +0.084 (0.000-0.315)

0.335+0.170 (0.087-0.790)
0.097 £0.132 (0.000-0.546)
0.396 £0.147 (0.138-0.714)
0.245 £0.128 (0.069-0.621)
0.610+0.210 (0.185-0.954)
0.610£0.272 (0.088-0.985)

Male

C. biguttulus

Female

Male

0.511 £0.165 (0.224-0.869)
0.316 £0.138 (0.091-0.625)
0.635+0.201 (0.222-0.967)
0.581 £0.248 (0.042-0.955)

G. rufus

Female

Male

0.450+0.192 (0.107-0.848)
0.379 £0.218 (0.012-0.809)

P. parallelus

Female

All traits were measured in mm

biguttulus was 56.9° = 10 (36.9-75), in rufus it was 57.3° £
10 (35.5-74.8), and in parallelus the angle was 60.2° 9.9
(39-76.4) with no significant differences among them
(Fig. S13). Hence, response vectors were deflected to a
similar magnitude in all species. We also calculated angles
between predicted response vectors of different species to
evaluate if they were deflected in a similar direction. The
mean angles between the response vectors of biguttulus and
rufus was 51.5° £ 19.7 (19.2-93.3), between biguttulus and
parallelus was 53.9°+21.2 (19.1-102.6) and that between
rufus and parallelus was 49.6°+20.2 (17.6-94.3). The
direction of deflection was thus markedly different in all
pairwise comparisons (all >49°). However, the random
skewer analysis was associated with large uncertainties.
Even randomized samples from the posterior distributions
of response vectors produced average angles of 38.3° + 18.1
(12.2-80.8) for biguttulus, 38.1°+18.7 (12.4-83.6) for
rufus, and 37.1° £ 21.6 (10.4-95) for parallelus.

Flury hierarchy analysis

The Flury hierarchy analysis for the three matrices reveal
that the G matrices are not equal or proportional, or share
any CPCs, as the best fitting model is the one of unequality
or heterogeneity. Models with CPCs yielded significantly
worse fits with AIC increasing almost steadily with the
number of CPC being added. Hence, the matrices do not
show stability in terms of the stability of eigenvectors.

Genetic covariance tensor analysis

Genetic covariance tensor analysis estimates (co)variation
among elements of G across species. In our study with three
species-specific G matrices, the maximum possible number
of nonzero eigenvalues of the genetic covariance tensor is 2.
The first eigentensor E; explains 71% of the variation
among G matrices (Fig. 3, Table S9). The 95% CI of the
eigenvalues did not overlap between observed and rando-
mized G matrices for both the eigentensors E; and E,,
illustrating significant variation among matrices. Further,
the eigenanalysis of the eigentensor showed that the first
eigenvector e, of Eq explains 74% and first eigenvector e,
of E, explains 40% of variation in eigentensors. Wing
length loads on both eigenvectors in particular in the mean-
standardized analysis (Table S9). This suggests that wing
length contributes most to the major axis of variation among
G matrices compared with other traits, and that the matrices
must have diverged along wing length. The second eigen-
vector ey, of the second eigentensor E, captures 39% of the
variation in E,. Hence the two eigenvalues of substantial
size suggests that the independent genetic change repre-
sented by E, occurs mainly in two genetically independent
trait combinations (Table S9) (Hine et al. 2009). The

SPRINGER NATURE
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projection of the eigenvectors onto the observed G matrices
showed that the change in genetic variance represented by
e;; and e,; is mostly attributable to parallelus. Though the
credibility intervals overlap, there is a trend especially for
ey (Fig. 3). Hence, along e, there is differentiation among
parallelus on the one hand and the species pair biguttulus/

TT=7I+7 I

20

® Observed
© Randomised

Eigenvalues of H
P

0.5

0.0{ P=0.030 P=0.014 P=0.005 P=0.016 P=0.060

h1 h2 h3 h4 hs
Eigenvectors of H

Fig. 2 Krzanowski’s subspace H for the comparison of G matrices
among three species of grasshoppers. The x-axis denotes the five
eigenvectors h;—hs of the H matrix and the y-axis denotes the eigen-
values of H. Filled symbols show empirical estimates with 95% CI and
open symbols show randomized values. P values denote the proportion
of randomized values that show equal or lower values than empirical
estimates (incorporating variability in both empirical and randomized
values)

Fig. 3 Genetic covariance tensor A

rufus on the other, and this change in V4 probably bears the
signature of divergence of parallelus from the latter two.

Divergence analysis

Species divergence can be summarized by the divergence
matrix D in mean trait values (Table S6). We used eigen-
analysis of D to summarize the main axes of divergence.
The first two eigenvalues of D explained the majority of
species divergence (93% and 7%, respectively). Wing
length loaded heavily on the divergence axis 1 and antenna
and femur on the axis 2 (Table S7). We projected con-
temporary genetic variation as summarized by G into the
main axes of historical divergence space (Fig. 4). Rufus is
most strongly aligned with the second principle component
axis that captures mostly the differences rufus/biguttulus,
whereas biguttulus has a less pronounced alignment with
least structure, which is indicative of the weak genetic
correlations. Contemporary genetic variation in parallelus is
oriented away from divergence axis 1, but the breeding
value ellipse illustrates high genetic correlations.

Discussion

We estimated and compared the genetic (co)variance
structure of 10 x 10 G matrices consisting of five morpho-
logical traits expressed in both sexes in three grasshopper
species. The subspace analysis shows significant difference
in dominant subspaces among G matrices. The random

B

analysis. a Variance in variation 1.5
among G matrices as explained
by the two eigentensors E; and
E, of the covariance tensor X
along with credibility intervals.
Observed values (filled symbols)
were compared with values after
randomization (open symbols). 1.0
Eigenanalysis of each E
identifies the major axis of
genetic variation among G
matrices. Figures show the
amount of additive genetic
variance in each species along b
the major axes e;; of E; and ¢ 0.5
the major axis e, of E;
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Divergence axis 2 (Femur,Antenna)

6 -4 2 0 2 4
Divergence axis 1 (Wing)

—C. biguttulus—~G. rufus—P. parallelus

Fig. 4 Contemporary genetic variation projected into divergence space
among the three species of grasshoppers. The axes show the first two
principal components of the species divergence matrix D (Table S7).
Breeding values of the three species are plotted onto the same plane.
Ellipses around breeding values show 95% confidence level. Lines
indicated the main direction of divergence as they connect the center of
the more closely related Chorthippus biguttulus and Gomphocerippus
rufus as well as the midpoint of these two species to the center of
Pseudochorthippus parallelus

skewer analysis also suggests marked differences in
deflection angles, although this is accompanied by large
uncertainties. In line with this, the Flury analysis identifies
no shared principle components. The tensor analysis indi-
cates difference in shape and orientation of G matrices with
most standing genetic variation in the direction of G matrix
divergence in Pseudochorthippus parallelus. It also identi-
fies wing length as the most influential trait. The same
pattern is also seen in the divergence analysis. Furthermore,
the divergence analysis illustrates that the main axis of
species divergence is only partly aligned with genetic var-
iation within species. It is mostly Gomphocerippus rufus
that clearly shows most genetic variation in the direction of
divergence from Chorthippus biguttulus, while genetic
variation in parallelus is oriented away from the direction of
divergences from the other two species. Overall, these
matrix comparisons illustrate rather substantial differences
in G matrices. The comparisons reveal a phylogenetic sig-
nal that related species are more similar in their G matrices,
that alignment with the main axis of divergence is promi-
nent only in the youngest species pair, and finally they
identify wing length as a key trait that contributes sub-
stantially to matrix differences.

The motivation for the comparative analysis builds on
the assumption that the divergence axis is an indicator of
past selection (Schluter 1996). Under these conditions, the
comparison of species divergence and standing genetic (co)
variation allow insights into the alignment of the main axis
of G with the direction of selection. There are three reasons
why the main axis of genetic variation, gp.., might be
aligned with the main axis of selection. First, divergence
might be faster and more efficient in the direction of g,
and that the divergence axis therefore represents a com-
promise between the forces of selection and the influence of

SPRINGER NATURE

genetic covariance (axis of least genetic resistance hypoth-
esis, (Schluter 1996)). Second, the genetic covariance
structure might be shaped by correlational selection to align
with the dominant direction of selection (Lande and Arnold
1983; Phillips and Arnold 1989; Sinervo and Svensson
2002). Finally, the axis might be aligned by chance.

Despite these reasons for alignment, our observation
does not support this. Instead, the results suggest that any
alignment is a matter of temporal scale. There is some
indication for alignment between rufus and biguttulus, in
particular in the genetic covariance structure of rufus. On a
larger temporal scale, the more distantly related G matrix of
parallelus is poorly aligned. This is expected for example if
the direction of selection might have fluctuated since the
split between species and we do not know if it is the more
recent history of selection that dominates the shape of G or
the average long-term pattern of selection (Steppan et al.
2002; McGuigan 2006; Careau et al. 2015). Previous stu-
dies on within-species comparisons that illustrate differ-
ences in G (see ‘Introduction' section) suggest that changes
in G can be strongly affected by the recent past. On the
other hand, there are also studies on congeneric species that
suggest alignment over longer timescales (Schluter 1996).
Only additional empirical results on different species will
allow a better understanding of which trends predominate
and how the peculiarities of every individual system affect
the outcome.

We found evidence for a phylogenetic signal in the G
matrix divergence among species, such that the G matrix for
the most distantly related species is the least similar. Such a
phylogenetic signal is not always observed in comparative
G matrix analyses. The G matrices of crickets, for example,
do not diverge according to phylogenetic relatedness and
are overall rather similar (Bégin and Roff 2004). Specifi-
cally, we found alignment with the main axis of divergence
only in the youngest species pair, but not with respect to a
more distantly related species. Previous studies have
reported an alignment of the divergence with the genetic
variation in deeply diverged sets of Anolis lizards
(McGlothlin et al. 2018) as well as in a much younger
radiation of ecotypes in plants (Walter et al. 2018). Overall,
there is still little data on whether G matrix similarity
reflects phylogenetic relatedness, but there is some evidence
for alignment of divergence with genetic covariation. Our
data suggests that both G matrix shape and alignment with
the axis of divergence are a matter of temporal scale.

Wing length turned out to be a particularly influential
trait in our analyses. It is one of the longest structures that
we have included in our study (Table S1) and it might seem
intuitive to assume that the size itself is causing the dom-
inance on G matrix divergence. However, the same patterns
are also present in the mean-standardized analysis, illus-
trating that its influence is not only due to the scaling of the



Comparative analysis of the multivariate genetic architecture of morphological traits in three species... 379

variance with the mean (Houle 1992), but that variation in
wing length is large even when accounted for its size. The
length of the wings is among the most variable characters of
grasshoppers, with long wings in some species (such as
biguttulus, but also others with even longer wings) and
wings significantly reduced in others (such as parallelus).
Wing length is also highly variable within species, and
tends to show substantial sexual dimorphism. Males typi-
cally have longer wings and they use their forewings for
stridulation (Uvarov 1966). Females do not produce
advertisement songs and their wing length is often reduced
compared with males. Finally, wing length is sometimes
polymorphic within populations independent of sex
(Harrison 1980; Roff 1986a; Roff and Fairbairn 2007),
further illustrating that it varies independent of other mor-
phological traits. Wing length thus seems to respond
quickly to selection and is genetically decoupled from other
morphological traits.

We used four formal matrix comparison methods and
projection into divergence space to compare matrices.
Although other methods exist (Roff et al. 2012; Teplitsky
et al. 2014), our analysis represents a very comprehensive
exploitation of matrix comparison methods. Overall, results
were consistent across methods, but there are also relevant
differences. The random skewer analysis was indicative of
differences among G matrices, but was accompanied by
large sampling variation suggesting relatively low power.
Low power of the random skewer analysis has also been
reported in simulation studies (Teplitsky et al. 2014). On the
other hand, the Flury analysis seems to indicate rather
substantial differences in the covariance structure of the
matrices, with none of the matrices having any CPCs. It
seems possible that the Flury analysis overemphasizes dif-
ferences between matrices. The subspace and the tensor
analysis seem to be most nuanced, illustrating significant
differences without dismissing the similarities that do exist
among matrices. Both methods also suggest that parallelus
contributes most to these differences. The tensor analysis
furthermore identifies the traits contributing most to dif-
ferences among G matrices.

Our analysis is one of the first of its kind to show the
distribution of breeding values in divergence space (but see
(McGlothlin et al. 2018)). Phylogenetically, biguttulus is
more closely related to rufus than parallelus (Vedenina and
Mugue 2011). Using average trait values of the more clo-
sely related species pairs implicitly applies an ancestral state
reconstruction that may be very simple, but offers a point of
comparison for the more distantly related species. The
divergence analysis shows that the two ellipses for rufus
and biguttulus are aligned in the same direction, compared
with parallelus, which is oriented away from the divergence
axis. Phenotypic divergence is used as a surrogate for past
selection (Schluter 1996), although it is evidently the

consequence of selection and drift and also influenced by
the (unknown) ancestral shape of G.

Conclusions about G matrix similarities are also influ-
enced by the choice of traits. In our analysis, we treated
traits in females and males as sex-specific traits. As
expected, correlations among traits expressed in the two
sexes produce rather strong cross-sex genetic correlations
and hence structure in G that is similar across species. The
decision to treat traits as sex specific thus influences the
amount of structure in G and the similarity in comparisons.
Furthermore, our analysis is focused on bilateral traits. We
treated the two sides as replicate observations that were
effectively averaged for the same trait as a tool to reduce
measurement error. However, we could have treated left and
right sides as distinct traits which would have created strong
structure in G, since genetic integration almost certainly
produces strong genetic correlations among sides and again
this structure would be shared among species. The choice to
either treat sides as distinct or the same trait most likely
influences the outcome of G matrix comparisons.

Statistical power is always a concern when estimating
genetic covariation. We here report G matrices based on
decent sample sizes of around 900-1100 for two of the
species, but clearly less for the third species. However, our
results also illustrate that it is not only the sample size that
determines the outcome. We describe biologically expected
patterns in the structure of the G matrix that are unlikely to
be produced with insufficient data. In particular, we find a
ranking of genetic correlations being highest for the same
traits expressed in the two sexes, lower for genetic corre-
lations among traits within sexes and lowest for correlations
among traits among sexes. Furthermore, we show that the
magnitude and precision of estimates depend on the mag-
nitude of both heritabilities and of genetic covariation
(Figs. S8 and S9, Table S11). Hence the structure of genetic
variation partly determines the precision of estimates inde-
pendent of sample size. The structure of genetic variation is
not under the experimenter’s control, making it difficult to
perform power analysis if the magnitude of genetic (co)
variation is unknown.

Of special interest in G matrix analyses are the cross-sex
genetic correlations, since they are relevant to the evolution
of sexual dimorphism. Low cross-sex correlation in
homologous traits suggests that sex-specific selection is at
work to a certain degree (Chenoweth and Blows 2004; Day
and Bonduriansky 2004; Bonduriansky and Rowe 2005).
This helps the sexes to achieve their sex-specific optima
(Bonduriansky and Chenoweth 2009). A review of cross-
sex correlations reported a mean ryg of 0.80 for morpho-
logical traits predicted when there is no sexual dimorphism
(Poissant et al. 2010). Our study shows that the evolution of
sexual dimorphism might be somewhat impeded by cov-
ariation, although the constraint is not absolute as is
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illustrated by the non-perfect correlations (average 0.54)
and the existence of sexual dimorphism in all traits. Wing
length and antenna length are the two traits with lowest ryg
(average 0.44 and 0.40, respectively). Wings are involved in
sound production in grasshoppers and show marked sexual
dimorphism in many species (Roff 1986a; Gide 2002;
Rosetti and Remis 2018) including some crickets and bush
crickets (Roff 1986b; Roff and Fairbairn 1993; Heidinger
et al. 2018). The antennae are also involved in courtship
display in particular in rufus (Riede 1986). Both traits are
thus likely to be the target of sex-specific selection and even
tend to show reverse sexual dimorphism by being larger in
otherwise smaller males (Table S1).

Besides genetic variation, we find substantial amounts of
individual identity effects illustrating a large amount of
phenotypic flexibility. This is not too surprising for grass-
hoppers that often show strong developmental plasticity, for
example in temperature-dependent variation in overall body
size and life-history traits (Hinks and Erlandson 1994;
Willott and Hassall 1998). Despite the common garden
situation, there is always some heterogeneity in conditions
such as local temperature, food quality, and competition that
might affect the development. Idiosyncratic effects might
arise in particular if particular environmental stages are
sensitive to have a disproportional effect on final body size.
The first nymphal stages in particular seem to be quite
variable in molting times, activities, and growth, possibly
representing a critical stage during development.

An auxiliary finding of our study is the spontaneous
occurrence of macropterous parallelus in a population of
exclusively short-winged adults. Phenotypic plasticity in
wing length is well documented in grasshoppers (Roff and
Fairbairn 2007; Forsman 2015). The fact that macropterous
individuals were neither clustered in genetic families nor in
rearing cages suggests that neither a simple genetic
mechanism nor any strong environmental trigger produces
macropterous individuals. Crowding has been implicated in
macropterism in a number of Orthopterans (Harrison 1980).
Although not designed for this purpose, our data does not
suggest a role of crowding in wing dimorphism of
parallelus.

Overall, the structure of genetic variation is remarkably
variable among the three species. Notably, however, the G
matrices of biguttulus and rufus, the more recently diverged
species pair, are better aligned to the direction of divergence
in morphology, while the more distantly related parallelus
is not. Wing length is contributing most to these differences
and wing length is also the trait that is most variable
between and within species, including variability among the
sexes. It is thus the trait that is most affected by both
population-specific and sex-specific selection. This might
indicate a role of selection shaping G matrix differences.
Our analysis thus illustrates that the structure of the G
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matrix can be variable when assessed over longer evolu-
tionary timescales even for largely conserved morphologi-
cal traits.

Data archiving

Data available from the Dryad Digital Repository: https://
doi.org/10.5061/dryad.rjdfn2z5x.

Acknowledgements We are grateful to Amy Backhouse, Julia Teck-
entrup, Pablo Valverde, Philipp van Kronenberg, and Niko Tolio-
poulos for their enormous help with field work, setting up of breeding
experiments, and taking photographs. The project was funded by the
Emmy Noether grant from DFG (SCHI 1188/1-1).

Compliance with ethical standards

Conflict of interest The authors declare that they have no conflict of
interest.

Publisher’'s note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

References

Aguirre J, Hine E, McGuigan K, Blows M (2014) Comparing G:
multivariate analysis of genetic variation in multiple populations.
Heredity 112:21-29

Arnold SJ (1992) Constraints on phenotypic evolution. Am Nat 140:
S85-S107

Arnold SJ, Biirger R, Hohenlohe PA, Ajie BC, Jones AG (2008)
Understanding the evolution and stability of the G-matrix. Evo-
lution 62:2451-2461

Arnold SJ, Pfrender ME, Jones AG (2001) The adaptive landscape as a
conceptual bridge between micro- and macroevolution. Genetica
112:9-32

Arnold SJ, Phillips PC (1999) Hierarchical comparison of genetic
variance-covariance matrices. II. Coast-inland divergence garter
snake, Thamnophis elegans. Evolution 53:1516-1527

Bégin M, Roff DA (2003) The constancy of the G matrix through
species divergence and the effects of quantitative genetic con-
straints on phenotypic evolution: a case study in crickets. Evo-
lution 57:1107-1120

Bégin M, Roff DA (2004) From micro to macroevolution through
quantitative genetic variation: positive evidence from field
crickets. Evolution 58:2287-2304

Bjorklund M, Husby A, Gustafsson L (2013) Rapid and unpredictable
changes of the G-matrix in a natural bird population over 25
years. J Evol Biol 26:1-13

Blows MW (2007) A tale of two matrices: multivariate approaches in
evolutionary biology. J Evol Biol 20:1-8

Blows MW, Brooks R (2003) Measuring nonlinear selection. Am Nat
162:815-820

Blows MW, McGuigan K (2015) The distribution of genetic variance
across phenotypic space and the response to selection. Mol Ecol
24:2056-2072

Bonduriansky R, Chenoweth SF (2009) Intralocus sexual conflict.
Trends Ecol Evol 24:280-288

Bonduriansky R, Rowe L (2005) Intralocus sexual conflict and the
genetic architecture of sexually dimorphic traits in Prochyliza
xanthostoma (Diptera: Piophilidae). Evolution 59:1965-1975


https://doi.org/10.5061/dryad.rjdfn2z5x
https://doi.org/10.5061/dryad.rjdfn2z5x

Comparative analysis of the multivariate genetic architecture of morphological traits in three species... 381

Brodie ED, III (1993) Homogeneity of the genetic variance-covariance
matrix for antipredator traits in two natural populations of the
garter snake Thamnophis ordinoides. Evolution 47:844-854

Calsbeek B, Lavergne S, Patel M, Molofsky J (2011) Comparing the
genetic architecture and potential response to selection of inva-
sive and native populations of reed canary grass. Evolut Appl
4:726-735

Careau V, Wolak ME, Carter PA, Garland T, Jr (2015) Evolution of
the additive genetic variance-covariance matrix under continuous
directional selection on a complex behavioural phenotype Proc R
Soc B 282:20151119

Chakrabarty A, van Kronenberg P, Toliopoulos N, Schielzeth H
(2019) Direct and indirect genetic effects on reproductive
investment in a grasshopper. J Evol Biol 32:331-342

Chenoweth SF, Blows MW (2004) Contrasting mutual sexual selec-
tion on homologous signal traits in Drosophila serrata. Am Nat
165:281-289

Cheverud J (1996) Quantitative genetic analysis of cranial morphology
in the cotton-top (Saguinus oedipus) and saddle-back (S. fusci-
collis) tamarins. J Evol Biol 9:5-42

Cheverud JM, Marroig G (2007) Comparing covariance matrices:
random skewers method compared to the common principal
components model. Genet Mol Biol 30:461-469

Cigliano MM, Braun H, Eades DC, Otte D (2017) Orthoptera Species
File (Version 5.0/5.0). http://Orthoptera.SpeciesFile.org

Contreras D, Chapco W (2006) Molecular phylogenetic evidence for
multiple dispersal events in gomphocerine grasshoppers. J
Orthoptera Res 15:91-98

Day T, Bonduriansky R (2004) Intralocus sexual conflict can drive the
evolution of genomic imprinting. Genetics 167:1537-1546

Delahaie B, Charmantier A, Chantepie S, Garant D, Porlier M,
Teplitsky C (2017) Conserved G-matrices of morphological and
life-history traits among continental and island blue tit popula-
tions. Heredity 119:76-87

Doroszuk A, Wojewodzic MW, Gort G, Kammenga JE (2008) Rapid
divergence of genetic variance-covariance matrix within a natural
population. Am Nat 171:291-304

Eroukhmanoff F, Svensson E (2011) Evolution and stability of the G-
matrix during the colonization of a novel environment. J Evol
Biol 24:1363-1373

Flury B (1988) Common principal components & related multivariate
models. John Wiley & Sons, Inc.

Forsman A (2015) Rethinking phenotypic plasticity and its con-
sequences for individuals, populations and species. Heredity
115:276

Gide G (2002) Sexual dimorphism in the pyrgomorphid grasshopper
Phymateus morbillosus: from wing morphometry and flight
behaviour to flight physiology and endocrinology. Physiol
Entomol 27:51-57

Garant D, Hadfield JD, Kruuk LE, Sheldon BC (2008) Stability of
genetic variance and covariance for reproductive characters in the
face of climate change in a wild bird population. Mol Ecol
17:179-188

Gelman A (2006) Prior distributions for variance parameters in hier-
archical models (Comment on an Article by Browne and Draper).
Bayesian Anal 1:515-533

Gelman A, Rubin DB (1992) Inference from iterative simulation using
multiple sequences. Stat Sci 7:457-472

Gosden TP, Chenoweth SF (2014) The evolutionary stability of cross-
sex, cross-trait genetic covariances. Evolution 68:1687-1697

Griffin RM, Dean R, Grace JL, Ryden P, Friberg U (2013) The shared
genome is a pervasive constraint on the evolution of sex-biased
gene expression. Mol Biol Evol 30:2168-2176

Hadfield JD (2010) MCMC methods for multi-response generalized
linear mixed models: the MCMCglmm R package. J Stat Softw
33:1-22

Harrison RG (1980) Dispersal polymorphisms in insects. Annu Rev
Ecol Syst 11:95-118

Heidinger IMM, Hein S, Feldhaar H, Poethke H-J (2018) Biased
dispersal of Metrioptera bicolor, a wing dimorphic bush-cricket.
Insect Sci 25:297-308

Hine E, Chenoweth SF, Rundle HD, Blows MW (2009) Characteriz-
ing the evolution of genetic variance using genetic covariance
tensors. Philos Trans R Soc B 364:1567-1578

Hinks C, Erlandson M (1994) Rearing grasshoppers and locusts:
review, rationale and update. J Orthoptera Res 3:1-10

Houle D (1992) Comparing evolvability and variability of quantitative
traits. Genetics 130:195-204

Jones AG, Arnold SJ, Biirger R, Houle D (2003) Stability of the G-
matrix in a population experiencing pleiotropic mutation, stabi-
lizing selection, and genetic drift. Evolution 57:1747-1760

Karlsson Green K, Eroukhmanoff F, Harris S, Pettersson LB, Svens-
son EI (2016) Rapid changes in genetic architecture of beha-
vioural syndromes following colonization of a novel
environment. J Evol Biol 29:144-152

Krzanowski W (1979) Between-groups comparison of principal
components. J] Am Stat Assoc 74:703-707

Lande R (1979) Quantitative genetic analysis of multivariate evolu-
tion, applied to brain: body size allometry. Evolution 33:402-416

Lande R (1980a) The genetic covariance between characters main-
tained by pleiotropic mutations. Genetics 94:203-215

Lande R (1980b) Sexual dimorphism, sexual selection, and adaptation
in polygenic characters. Evolution 34:292-305

Lande R (1982) A quantitative genetic theory of life history evolution.
Ecology 63:607-615

Lande R (1987) Genetic correlations between the sexes in the evolu-
tion of sexual dimorphism and mating preferences. In: Bradbury
JW, Andersson MB, Heisler L (ed) Sexual selection: testing the
alternatives. Wiley, Chichester, p 83-94

Lande R, Arnold SJ (1983) The measurement of selection on corre-
lated characters. Evolution 37:1210-1226

Lynch M, Walsh B (1998) Genetics and analysis of quantitative traits.
Sinauer, Sunderland, MA

McGlothlin JW, Kobiela ME, Wright HV, Mahler DL, Kolbe JJ,
Losos JB et al. (2018) Adaptive radiation along a deeply con-
served genetic line of least resistance in Anolis lizards. Evolution
Lett 2:310-322

McGuigan K (2006) Studying phenotypic evolution using multivariate
quantitative genetics. Mol Ecol 15:883-896

Merild Bjorklund (1999) Population divergence and morphometric
integration in the greenfinch (Carduelis chloris) — evolution
against the trajectory of least resistance? J Evol Biol 12:103-112

Nattier R, Robillard T, Amedegnato C, Couloux A, Cruaud C,
Desutter-Grandcolas L (2011) Evolution of acoustic commu-
nication in the Gomphocerinae (Orthoptera: Caelifera: Acridi-
dae). Zool Scr 40:479-497

Paulsen SM (1996) Quantitative genetics of the wing color pattern in
the buckeye butterfly (Precis coenia and Precis evarete): evi-
dence against the constancy of G. Evolution 50:1585-1597

Pepler T (2015) cpc: common principal component (CPC) Analysis
and applications. R package version 0:1-5

Phillips PC, Arnold SJ (1989) Visualizing multivariate selection.
Evolution 43:1209-1222

Phillips PC, Arnold SJ (1999) Hierarchical comparison of genetic
variance-covariance matrices. I. Using the Flury hierarchy. Evo-
lution 53:1506-1515

Phillips PC, Whitlock MC, Fowler K (2001) Inbreeding changes the
shape of the genetic covariance matrix in Drosophila melano-
gaster. Genetics 158:1137-1145

Poissant J, Wilson AJ, Coltman DW (2010) Sex-specific genetic
variance and the evolution of sexual dimorphism: a systematic
review of cross-sex genetic correlations. Evolution 64:97-107

SPRINGER NATURE


http://Orthoptera.SpeciesFile.org

382

A. Chakrabarty and H. Schielzeth

R Core Team (2018) R: a language and environment for statistical
computing. R Foundation for Statistical Computing, Vienna,
Austria. https://www.R-project.org/

Riede K (1986) Modification of the courtship song by visual stimuli in
the grasshopper Gomphocerus rufus (Acrididae). Physiol Ento-
mol 11:61-74

Ritchie M, Butlin R, Hewitt G (1987) Causation, fitness effects and
morphology of macropterism in Chorthippus parallelus
(Orthoptera: Acrididae). Ecol Entomol 12:209-218

Roff D (2000) The evolution of the G matrix: selection or drift?
Heredity 84:135-142

Roff D, Mousseau T (1999) Does natural selection alter genetic
architecture? An evaluation of quantitative genetic variation
among populations of Allenomobius socius and A. fasciatus. J
Evol Biol 12:361-369

Roff DA (1986a) The evolution of wing dimorphism. Evolution
40:1009-1020

Roff DA (1986b) The genetic basis of wing dimorphism in the sand
cricket, Gryllus firmus and its relevance to the evolution of wing
dimorphisms in insects. Heredity 57:221-231

Roff DA, Fairbairn DJ (1993) The evolution of alternate morpholo-
gies: fitness and wing morphology in male sand crickets. Evo-
lution 47:1572-1584

Roff DA, Fairbairn DJ (2007) The evolution and genetics of migration
in insects. Bioscience 57:155-164

Roff DA, Prokkola JM, Krams I, Rantala MJ (2012) There is more
than one way to skin a G matrix. J Evol Biol 25:1113-1126

Rosetti N, Remis MI (2018) Spatial variation in body size and wing
dimorphism correlates with environmental conditions in the
grasshopper Dichroplus vittatus (Orthoptera: Acrididae). Environ
Entomol 47:519-526

Schluter D (1996) Adaptive radiation along genetic lines of least
resistance. Evolution 50:1766-1774

Schneider CA, Rasband WS, Eliceiri KW (2012) NIH Image to
Imagel: 25 years of image analysis. Nat Methods 9:671-675

SPRINGER NATURE

Shaw FH, Shaw RG, Wilkinson GS, Turelli M (1995) Changes in
genetic variances and covariances: G whiz! Evolution
49:1260-1267

Sinervo B, Svensson E (2002) Correlational selection and the evolu-
tion of genomic architecture. Heredity 89:329-338

Sniegula S, Golab MJ, Drobniak SM, Johansson F (2018) The genetic
variance but not the genetic covariance of life-history traits
changes towards the north in a time-constrained insect. J Evol
Biol 31:853-865

Spitze K, Burnson J, Lynch M (1991) The covariance structure of life-
history characters in Daphnia dulex. Evolution 45:1081-1090

Steppan SJ, Phillips PC, Houle D (2002) Comparative quantitative
genetics: evolution of the G matrix. Trends Ecol Evol
17:320-327

Teplitsky C, Tarka M, Mgller AP, Nakagawa S, Balbontin J, Burke
TA et al. (2014) Assessing multivariate constraints to evolution
across ten long-term avian studies. PLoS One 9:¢90444

Turelli M (1988) Phenotypic evolution, constant covariances, and the
maintenance of additive variance. Evolution 42:1342-1347

Uvarov BP (1966) Grasshoppers and locusts: anatomy, physiology,
development, phase polymorphism, introduction to taxonomy,
Vol 1. Cambridge UP. Published for the Anti-Locust Research
Centre

Vedenina V, Mugue N (2011) Speciation in gomphocerine grass-
hoppers: molecular phylogeny versus bioacoustics and courtship
behavior. J Orthoptera Res 20:109-125

Walsh B, Blows MW (2009) Abundant genetic variation+ strong
selection= multivariate genetic constraints: a geometric view of
adaptation. Annu Rev Ecol Evol Syst 40:41-59

Walter GM, Aguirre JD, Blows MW, Ortiz-Barrientos D (2018)
Evolution of genetic variance during adaptive radiation. Am Nat
191:E108-E128

Willott S, Hassall M (1998) Life-history responses of British grass-
hoppers (Orthoptera: Acrididae) to temperature change. Funct
Ecol 12:232-241


https://www.R-project.org/

	Comparative analysis of the multivariate genetic architecture of morphological traits in three species of Gomphocerine grasshoppers
	Abstract
	Introduction
	Materials and methods
	Study organisms
	Breeding design
	F1 animals
	Morphometrics
	Statistical analyses
	Matrix comparisons
	Krzanowski&#x02019;s common subspace analysis
	Random skewers analysis
	Flury hierarchy analysis
	Genetic covariance tensor analysis
	Alignment of G with D

	Results
	Heritabilities
	Genetic correlations
	Subspace analysis
	Random skewer analysis
	Flury hierarchy analysis
	Genetic covariance tensor analysis
	Divergence analysis

	Discussion
	Data archiving
	Compliance with ethical standards

	ACKNOWLEDGMENTS
	References




