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Many endangered species live in fragmented and isolated populations with low genetic variability, signs of inbreeding, and small
effective population sizes - all features elevating their extinction risk. The flat-headed loach (Oreonectes platycephalus), a small
noemacheilid fish, is widely across southern China, but only in the headwaters of hillstreams; as a result, they are spatially isolated
from conspecific populations. We surveyed single nucleotide polymorphisms in 16 Hong Kong populations of O. platycephalus to
determine whether loach populations from different streams were genetically isolated from each other, showed low levels of
genetic diversity, signs of inbreeding, and had small contemporary effective population sizes. Estimates of average observed
heterozygosity (HO= 0.0473), average weighted nucleotide diversity (πw= 0.0546) and contemporary effective population sizes
(Ne= 10.2 ~ 129.8) were very low, and several populations showed clear signs of inbreeding as judged from relatedness estimates.
The degree of genetic differentiation among populations was very high (average FST= 0.668), even over short geographic distances
(<1.5 km), with clear patterns of isolation by distance. These results suggest that Hong Kong populations of O. platycephalus have
experienced strong genetic drift and loss of genetic variability because sea-level rise after the last glaciation reduced
connectedness among paleodrainages, isolating populations in headwaters. All this, together with the fact that the levels of genetic
diversity and contemporary effective population sizes within O. platycephalus populations are lower than most other freshwater
fishes, suggests that they face high local extinction risk and have limited capacity for future adaptation.
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INTRODUCTION
Changing climatic conditions pose severe challenges for local
populations of many organisms and threaten their existence
(Albano et al. 2021). Species with high dispersal ability can shift
their ranges to include more thermally suitable habitats, leading to
the redistribution of global biodiversity (Pecl et al. 2017). For
instance, it has been predicted that, by 2070, the climatic niches of
around 30% of birds and mammals will include countries where
they have never lived previously (Titley et al. 2021). However,
migration to new areas is not an option for many non-vagile species
in isolated habitat patches, such as lakes and mountaintops.
Phenotypic plasticity may provide means for them to acclimate to
warmer temperatures (Gienapp et al. 2008) but it is unlikely that
such responses will allow populations to keep pace with rising
temperatures indefinitely (Cerini et al. 2023). Furthermore, evolu-
tionary adaptation to new environmental conditions is possible only
if there is sufficient genetic variation in the population to allow
response to natural selection (Lynch and Walsh 1998).
Genetic diversity is the fuel that natural selection needs to allow

organismal adaptation to changing environmental conditions.
Whether adaptation to changing environmental conditions will
occur depends critically on populations’ access to genetic
variation in the traits influencing fitness. The likelihood of
adaptation is the function of effective population size: larger

populations harbor more genetic variation than smaller ones, and
natural selection is more efficient in the former (Lanfear et al.
2014; Saccheri and Hanski 2006). However, large populations are
also larger targets for new mutations and are therefore expected
to be burdened with relatively high loads of deleterious recessive
mutations (Grossen et al. 2020; Saccheri and Hanski 2006).
Furthermore, once the size of formerly large populations becomes
reduced – for instance due to climate change-imposed fitness loss
– there is a risk that segregating deleterious mutations will
become expressed through inbreeding causing significant mala-
daptation (Fraimout et al. 2023; Grossen et al. 2020; Robinson et al.
2019).
The flat-headed loach (Oreonectes platycephalus: Noemacheili-

dae; Fig. 1) is a small freshwater fish that lives in the headwaters of
hillstreams in Hong Kong and southern China (Du et al. 2008;
Dudgeon 2003). The species’ wide distribution and confinement
to the top parts of hillstreams suggest that it colonized its current
habitats post-glacially. Since then, many previously connected
streams have become isolated from each other due to ca. 150m
sea level rise after the final glacial maximum at 12,000 years BP
(Fyfe et al. 2000). As a result, most populations of this loach in
Hong Kong are isolated from each other and hence can be
expected to have been subject to attrition of genetic diversity due
to genetic drift and inbreeding. Furthermore, given that post-
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glacially formed habitats of coastal southeast China are young
(Fyfe et al. 1999), there has been little time to restore any lost
genetic variation through mutations, because mutation rates in
fish are low (Bergeron et al. 2023; Zhang et al. 2023).
Many freshwater systems can be considered to be metapo-

pulations whose evolutionary and genetic dynamics are strongly
influenced by river or lake network complexity, as well as by
steep physical gradients over short geographic distances
(Labonne et al. 2008; Paz‐Vinas and Blanchet 2015). The
dendritic connectivity of Hong Kong hillstreams is low, and
many hillstreams are short, discharging directly to the sea,
meaning that the loaches and other freshwater species in
different hillstreams are effectively isolated from each other
(Tsang et al. 2016; Wong et al. 2017). This isolation traces back to
the Pleistocene when the sea levels were 150 m lower and the
exposed landmass that extended over 120 km south from the
modern coastline (Fyfe et al. 2000). During this time, the
hillstreams did not discharge directly to the sea, but joined to
several paleodrainages (Fig. 1) allowing connectivity between
now isolated loach populations. After these connections were
lost, loach populations in different streams would have evolved
independently without opportunities for evolutionary or genetic
rescue through gene flow (Bell 2017; Whiteley et al. 2015).
This study represents the first step towards understanding

the history, population structure, and evolutionary potential of
O. platycephalus by conducting a population genomic survey of

genetic diversity and differentiation across the territory of Hong
Kong. Given what little is known about the biology of this
species (mostly its feeding behavior; Dudgeon 1991; 1993), we
expected to find a strong population structure attributable to
strong genetic drift and lack of gene flow among drainages. We
further expected to find low levels of genetic diversity, signs of
inbreeding, and hence, reduced adaptive potential in the face
of changing environmental conditions. We also assessed the
phylogeographic history of the study populations with the aid
of the reconstructed geological history of drainage systems in
Hong Kong, as well as their contemporary effective
population sizes.

MATERIALS AND METHODS
Sample collection and DNA extractions
A total of 282 flat-headed loaches were collected from 16 sites in Hong
Kong: four sites from East New Territories, six sites from West New
Territories, three sites on Hong Kong Island and three sites on Lantau
Island, with an average sample size of 18 individuals per population
(n= 5–20; Fig. 1, Tables 1 and Supplementary Table S1). The sampling was
conducted in January–March 2022 with dip-nets at night when flat-headed
loaches are most active. All specimens were euthanized with MS-222 in the
field and stored in 95% ethanol maintained at room temperature until
genomic DNA was extracted from the pectoral fins using the DNeasy Blood
and Tissue Kit (Qiagen, Germany) following the manufacturer’s recommen-
dations. The DNA concentration for each sample was assessed by
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Fig. 1 Study populations of flat-headed loaches. Map of the study area showing the sampled hillstreams in the territory of Hong Kong with
different palaeo-drainages indicated in color (green: Tai Mo Shan drainage - TMS; pink: West New Territories drainage - NTW; blue: South
Lantau drainage - LTS; purple: Hong Kong Island drainage - HKI; orange: East New Territories drainage - NTE; gray: Other paleodrainages not
included in this study) redrawn from Fyfe et al. (2000). Light blue depicts the current marine area. Fish insert at the top (left) depicts the study
species, the flat-headed loach. For locality abbreviations, see Supplementary Table S1 (Photo courtesy: Chi Kit Yeung).
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NanoDrop One spectrophotometer (Thermo Fisher, US) and diluted to
50 ng/μL for reduced representation library preparations and sequencing.

DarT sequencing
The 282 loach DNA samples were sequenced at Diversity Arrays
Technology Pty Ltd, Australia with DArTseq™ (Diversity Arrays Technology
Sequencing Technology) for medium-density sequencing which combines
genome complexity reduction methods with next-generation sequencing
(Kilian et al. 2012). Libraries were constructed using the DArTseq™
complexity reduction method described here in brief: (i) genomic DNA
was digested with two restriction enzymes (PstI and MseI); (ii) DNA
fragments were ligated to the barcoded adapters; after which (iii) adapter-
ligated fragments were amplified with PCR. DNA libraries were sequenced
using Single-Read sequencing runs for 77 cycles (Egea et al. 2017). High-
throughput sequencing was implemented with the Illumina HiSeq2500
machine (Illumina, USA) and DArTseq™ marker scoring was performed
using DArTsoft (Kilian et al. 2012). Single-nucleotide polymorphisms
(SNPs) were scored as “0”= reference allele homozygote, “1”= alternative
allele homozygote and “2”= heterozygote (Uba et al. 2021).

SNP filtering
SNPs called from DArTseq™ were analyzed in R v4.2.1 using package dartR
v2.7.2 (Gruber et al. 2018; Mijangos et al. 2022) which was developed to
access and explore SNP data obtained with DArTseq™. Approximately
20 Gb of DArTseq data (466.78 million raw reads) were generated and
calling of sequence variants generated a total of 56,416 SNPs.
The following filtering criteria were applied to exclude SNPs in the given

order (steps “i” to “vi” are default settings for SNPs quality controls; details
of filtering setting can be found in Supplemental Material): (i) reproduci-
bility <0.99; (ii) coverage <5X or >50X (coverage automatically calculated
by dartR); (iii) SNPs with sequence tag length <20 or >69; (iv) SNP position
outside the trimmed sequence tag; (v) secondary SNPs; (vi) pairwise
Hamming distance between sequence tags <0.2; (vii) call rate <0.7; (viii)
minor allele count (MAC) < 3. After these filtering steps, 7045 SNPs were
kept for downstream analyses.

Genetic diversity and population dynamics
The observed heterozygosity (HO), expected heterozygosity (HE), allelic
richness (Ar), inbreeding coefficient (FIS) and 95% CI for FIS (1000 bootstrap
replicates) for each population were calculated with R package hierfstat
v0.5-11 (Goudet 2005). The nucleotide diversity (π) for each locus in each
population was estimated by vcftools v0.1.17 (--site-pi) (Danecek et al.

2011). The average weighted nucleotide diversity (πw) of each population
was calculated following Konopiński (2023) as:

πw ¼ ΣNlociπ

N
(1)

where Nloci is the number of loci that do not have all missing data in a
population; N is the number of SNPs in this study (N= 7045).
A relatedness statistic of individuals within each population was also

calculated by vcftools v0.1.17 based on the KING (Kinship-based INference for
Genome-wide association studies) inference (Manichaikul et al. 2010) and the
results were plotted by R package pheatmap v1.0.12 (Kolde 2019). According
to the KING tutorial, an estimated kinship coefficient range >0.354, (0.177,
0.354], (0.088, 0.177] and (0.044, 0.088] corresponds to duplicate/twin, first-
degree, second-degree, and third-degree relationships, respectively (Man-
ichaikul et al. 2010). Analysis of variance (ANOVA) of relatedness among the 16
populations was conducted in R with p-value adjusted using the FDR method
with the package agricolae v1.3-7 (Mendiburu 2019). The contemporary
effective population size (Ne) of each population was estimated by
NeEstimator v2.1 based on the Linkage Disequilibrium method with singletons
removed (Do et al. 2014). Linear mix-models assessing the effects of
geographical factors (altitude, summed length of streams) and relatedness of
individuals within each population on π and Ne, were estimated with R
package MCMCglmm v.2.35 (Hadfield 2010) with phylogenetic correlation
matrix (converted from neighbor‐joining tree generated by dartR with default
setting; NJ) as a random effect (model: list(G= list(G1= list(V= 1, nu= 1,
alpha.mu= 0, alpha.V= 1000)), R= list(V= 1, nu= 0.002)); nitt= 1001000,
thin= 1000, burnin= 10000). The demographic history of each population
was estimated with Stairway Plot v2.1.1 (Liu and Fu 2020), based on the folded
site-frequency spectrum (SFS) calculated using dartR, with a mutation rate of
0.562e-8 mutations/site/generation (estimated for common carp reported by
Bergeron et al. 2023) and a generation time of two years. In the existing fish
mutation rate studies (Zhang et al. 2023), common carp is the species with the
closest phylogenetic relationship to O. platycephalus. Since mutation rates in
fish are not highly variable (Zhang et al. 2023) it is reasonable to assume that
the common carp estimate is a good proxy for O. platycephalusmutation rate.
As the generation time of O. platycephalus is unknown, inferred generation
time of Nemacheilus triangularis (2.2 years; https://fishbase.mnhn.fr/summary/
Nemacheilus-triangularis), a closely related species from the same subfamily
(Nemacheilidae), was used.

Population structure
Pairwise FST values between populations were estimated with dartR based
on the implementation in the StAMPP package (Pembleton et al. 2013) with

Table 1. Estimates of genetic diversity of the 16 flat-headed loach populations.

Population Paleodrainage system NIND HO HE Ar πw FIS FIS 95%CI Low FIS 95%CI High

YSO NTE 5 0.0344 0.0425 1.0398 0.0368 0.1906a 0.1170 0.2057

TKO NTE 18 0.0558 0.0628 1.0618 0.0595 0.1115a 0.0785 0.1294

TPK NTE 19 0.0381 0.0446 1.0436 0.0416 0.1457a 0.1058 0.1654

WCC NTE 19 0.0392 0.0430 1.0423 0.0396 0.0884a 0.0542 0.1037

PKA LTS 19 0.0345 0.0380 1.0375 0.0361 0.0921a 0.0524 0.1094

MKN LTS 19 0.0334 0.0349 1.0345 0.0331 0.0430a 0.0061 0.0633

SHW NTW 15 0.0019 0.0022 1.0020 0.0018 0.1364 −0.1572 0.3088

LTR NTW 19 0.0627 0.0763 1.0752 0.0745 0.1782a 0.1536 0.1917

TMN NTW 20 0.0804 0.1072 1.1060 0.1061 0.2500a 0.2314 0.2658

TLC TMS 19 0.0656 0.0859 1.0849 0.0846 0.2363a 0.2156 0.2551

KLG TMS 19 0.0521 0.0618 1.0609 0.0600 0.1570a 0.1293 0.1753

TM2 TMS 18 0.0626 0.0782 1.0770 0.0767 0.1995a 0.1743 0.2169

TM1 HKI 19 0.0469 0.0602 1.0584 0.0579 0.2209a 0.1858 0.2386

LFS HKI 19 0.0536 0.0613 1.0604 0.0591 0.1256a 0.0975 0.1418

GFN HKI 18 0.0435 0.0483 1.0472 0.0464 0.0994a 0.0641 0.1234

PFL HKI 17 0.0519 0.0616 1.0608 0.0603 0.1575a 0.1318 0.1764

NIND Number of individuals, HO Observed Heterozygosity, HE Expected Heterozygosity, Ar Allelic richness, πw Average weighted nucleotide diversity, FIS
Inbreeding Coefficient, estimated as FIS= 1− (HO/HE).
aIndicates statistically significant inbreeding.
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1000 bootstrap replicates and a heatmap showing pairwise FST results was
plotted with an R package pheatmap. To see whether levels of
differentiation as measured by FST differed within and among each
paleodrainage, we compared mean FST values using t-tests. The neighbor‐
joining (NJ) tree was constructed based on FST values obtained with dartR
using default settings. Population structure was also assessed using a
maximum likelihood estimation of individual ancestries by ADMIXTURE
v1.3.0 (Alexander et al. 2009). Assuming K ranging from 1 to 20, cross-
validation information of each K was collected and the K with the lowest
cross-validation error was chosen to plot population ancestries. Principal
Component Analysis (PCA) was conducted by dartR (nfactors= 2) to assess
population structure. A map of loach sampling localities with PCA results
was drawn by Adobe Illustrator 2022 (Adobe Inc., US). Isolation by distance
(IBD) analyses (geographic distance calculated by coordinates and by
shortest possible waterway) based on the Mantel test were performed with
dartR using pairwise FST values with Rousset’s correction (Rousset 1997) as
genetic distances. The shortest possible waterway between each popula-
tion pair was estimated based on the map of paleodrainage systems (Fig.
1). If the populations were within the same drainage, the length of the
stream connecting the two populations was measured. If the populations
were in different drainage systems, the shortest waterway through the sea
was measured as a proxy of “paleodistance”. The latter measure was
adopted as paleodrainage reconstructions were not possible for all
drainages (and between drainages) because reconstructions did not
extend to cover all relevant areas (cf. Fig. 1).
To compare the level of genetic differentiation among loach populations to

that of other freshwater fishes, we compiled data from recent (2013–2023; see
Supplementary Table S6 and Supplementary Material) studies which have
estimated FST among freshwater fish populations using reduced-representation
genome sequencing approaches. We found a total of 27 studies (See
Supplementary Table S7 and Supplementary Material for details) and extracted
the mean pairwise FST estimate from each of them. We further estimated the
geographic coverage in each of these studies by measuring the area (in km2)
their sampling covered (i.e. the area contained within the perimeter drawn
around furthest sampling localities). Plotting the mean FST from each study as a
function of the geographic extent of sampling allowed us to explore how the
loach FST value compared to other fishes. Linear models assessing FST as a
function of (log) geographic extent of sampling were fitted with R v4.2.1.

RESULTS
Genetic diversity and effective population size
Expected heterozygosity (HE) ranged from 0.0022 (SHW) to 0.1072
(TMN) with an average of 0.0568 (Table 1), whereas observed
heterozygosity (HO) ranged from low values in SHW (0.0019), MKN
(0.0334), and YSO (0.0344) to somewhat higher (but still low) values
in LTR (0.0627), TLC (0.0656), and TMN (0.0804; Table 1). The highest
average weighted nucleotide diversity (πw) was found in population
TMN (0.1061) while the lowest nucleotide diversity was found in
SHW (0.0018) with an average of 0.0546 (Table 1). Similarly to
average weighted nucleotide diversity, allelic richness (Ar) values
were very low (Table 1). The highest allelic richness (Ar) was found in
TMN (1.1060) while the lowest was found in SHW (1.0020) with an
average of 1.0558 (Table 1). The inbreeding coefficient (FIS) was
significantly positive in every population, except in SHW where the
lower 95% CI was negative, indicating that nearly all of the
populations were inbred (Table 1).
Kinship analyses further corroborated the results of genetic

diversity analyses: there were significant differences in average
relatedness among populations (ANOVA, F15,2423= 136.7, p < 2e−16;
Fig. 2; Supplementary Table S2 and Supplementary Fig. S1) and
mean relatedness of individuals within each population correlated
negatively with nucleotide diversity (Posterior mean=−0.293,
pMCMC < 0.001) according to the mixed linear model (Supplemen-
tary Table S3). The SHW population had the highest mean
relatedness with every individual being related to each other (and
mostly sharing ~50% of their genetic information; Fig. 2), whereas all
individuals in TM1 and YSO populations were unrelated (Fig. 2).
The contemporary effective population size (Ne) estimates were

obtained for 15 populations ranging from 10.2 (GFN) to 129.8
(TM1) while estimation for YSO failed likely due to limited

sampling size (NIND= 5; Fig. 3). In addition, for SHW, NeEstimator
failed to obtain the upper limit of 95% Parametric CI possibly
because of the limited number of non-singleton loci (Nns= 84)
used in the estimation (Fig. 3 and Supplementary Table S4). A
linear mixed-model was fitted to assess the effects of several
variables on Ne, which revealed that the altitude of the study site
was positively associated with Ne (Posterior mean= 0.101,
pMCMC= 0.042, see in Supplementary Table S3).

Demographic history
We used a folded SNP frequency spectrum (SFS) model in the
Stairway Plot to infer the demographic histories of the 16
populations. Almost every population (except SHW) appeared to
have experienced at least one population size contraction before
the first glaciation event inferred from the local sedimentary
record (Fig. 4). During and after glaciation, only populations (PKA
and MKN) at south Lantau drainage expanded after being
bottlenecked while most (10 out of 16) of the populations
continued to decline or appeared to have remained stable (Fig. 4).

Genetic population structure
Pairwise FST among 16 populations ranged from 0.110 (MKN - PKA)
to 0.942 (YSO - SHW; Fig. 5A, Supplementary Table S5) with an
average of 0.668. All pairwise estimates were highly significant
(p < 0.001; Supplementary Table S5). Population SHW showed the
highest genetic differentiation from other populations, with an
average FST of 0.825, followed by WCC with an average FST of 0.743.
Population TMN exhibited the least genetic differentiation with an
average FST of 0.372 to the other populations (Fig. 5A). There was
nonetheless a clear, albeit relatively weak, pattern of isolation by
distance (p < 0.05; Fig. 6). t-tests of FST within and among each
paleodrainage system showed that populations originating from
New Territories (NTW and NTE drainages) show equal level of
differentiation within and among drainage systems while those
from other drainages were more similar within the same drainage
system (Supplementary Fig. S2). Admixture analyses corroborated
the high FST values at K= 16 (Fig. 5B and Supplementary Fig. S3),
none of the clusters exhibited evidence of among population
admixture, except that PKA and MKN clustered together (Fig. 5B).
Moreover, TKO consisted of two components, indicating that it
could be a mixture of two ancestral populations (Fig. 5B).
Plotting the FST across the 27 studies (excluding the current

study) against geographic extent of sampling shows that the
degree of population differentiation increases as a function of
geographic area sampled (Fig. 8; linear model: F1,25= 4.538,
p= 0.043). However, when the current study was included to the
linear model, the relationship was no longer significant
(F1,26= 1.054, p= 0.314; See Supplementary Table S7 and
Supplemental Material for details), indicating that the mean FST
value of O. platycephalus was an outlier (Fig. 8).
Principal component analysis revealed the clearest distinction at

Axis 1 between the two southern Lantau populations (PKA and MKN)
and the rest of the populations (Fig. 7). Axis 2 further separated the
East New Territories populations (TPK, TKO, WCC and YSO) from the
rest (Fig. 7). There was also a clear pattern for populations from the
same paleodrainage systems (Fig. 1) to cluster together: Tai Mo Shan
system (TMS) - TM2, KLG and TLC; West New Territories system (NTW)
- SHW, LTR and TMN; Hong Kong Island system (HKI) - PFL, GFN and
LFS; South Lantau system (LTS) - PKA and MKN; East New Territories
system (NTE) - TKO, TPK, WCC and YSO (Fig. 7; see Supplementary
Fig. S4 for PCA plot excluding PKA and MKN populations). However,
TM1 clustered with NTW populations although it was indicated to be
part of the HKI drainage system (Fig. 1).

DISCUSSION
As we expected, O. platycephalus populations were genetically highly
structured, low in genetic diversity and exhibited very low
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contemporary effective population sizes. Not surprisingly, all popula-
tions displayed positive inbreeding coefficients, and many showed
signs of inbreeding as indicated by high relatedness estimators.
Hence, all populations may be at risk of losing their adaptive
potential, since Ne for populations to retain evolutionary potential is
estimated to range from 500 to 1000 (Franklin and Frankham 1998;
Frankham et al. 2014b), and estimates of less than 50 indicate that
populations are in immediate danger (Hoban et al. 2020).
Low level of within-population genetic diversity is typical of

freshwater fishes (DeWoody and Avise 2000; Martinez et al. 2018;
Ward et al. 1994), and different measures of genetic diversity
indicated low, but not exceptionally low genetic diversity within O.
platycephalus populations. For instance, nucleotide diversities in
isolated populations of three-spined stickleback (Gasterosteus
aculeatus; Coll-Costa et al. 2024) and nine-spined sticklebacks
(Pungitius pungitius; Kivikoski et al. 2023) are typically much lower
than recorded for O. platycephalus. However, some caution is
needed as different methods and filtering criteria have been used
in different studies so genetic diversity estimates may not be
strictly comparable (Korunes and Samuk 2021; Konopiński 2023).
Nevertheless, loach average weighted nucleotide diversity (mean
πw= 0.0546) was slightly lower than that of an isolated and near-
threatened wels catfish (Silurus glanis; π= 0.0690) population
(Palm et al. 2019; Littmann 2022) and a highly genetically
structured salmonid fish (Salvelinus fontinalis; π= 0.065; Ferchaud
et al. 2020). Likewise, nucleotide diversity in Achondrostoma
salmantinum, an endangered freshwater cyprinid endemic to
Spain, was much higher (π range= 0.133–0.250; Corral-Lou et al.
2021) than in O. platycephalus. In the same vein, Teleogramma, a
small clade of rheophilic cichlids from the Congo River showed
similarly high levels of genetic diversity (mean π for each species
ranging from 0.067 to 0.155; Alter et al. 2017). All this suggests
comparably low levels of genetic diversity in O. playtcephalus and
this inference is backed up by the extremely low estimates of
loach effective population sizes. Direct comparisons to earlier
genetic studies of Hong Kong freshwater fishes are difficult
because they were based on mitochondrial DNA (Wong et al.
2017; Wong et al. 2019; Wu et al. 2019) which has ¼ of Ne of that
of nuclear markers (Birky et al. 1983), or a handful of microsatellite
markers (Wu et al. 2016) which have higher mutation rates than
nuclear single nucleotide polymorphisms.
Effective population size is a fundamental parameter in the

conservation context as its magnitude indicates the amount of
genetic drift and inbreeding taking place (Charlesworth 2009). O.
platycephalus populations with extremely low contemporary
effective population sizes (cf. estimates in Palstra and Fraser
2012; Palstra and Ruzzante 2008) are thereby exposed to further
erosion of genetic variability and greater risk of fixation of
deleterious mutations. With contemporary effective population
sizes below 50, it is likely that selection against deleterious
mutations will be ineffective (Brandvain and Wright 2016; Lynch
et al. 1995; Robinson et al. 2023) allowing even highly detrimental
mutations to become fixed in loach populations. Unfortunately,
there is no reference genome for O. platycephalus and due to the
nature of the reduced representation approach used in this study,
we cannot estimate the loads of detrimental mutations in the
loach populations. Hence, an obvious and interesting question for
follow-up studies would be to characterize the putative deleter-
ious variation in these populations to assess the genomic
consequences of prolonged population declines once genomic
resources for this become available.
Another important consequence of low contemporary effective

population size of O. platycephalus populations is their compro-
mised ability to adapt to changing environmental conditions.
Although our understanding of likelihood of adaptation to climate
change is still limited (Merilä and Hendry 2014; Merilä and Lv
2024), low levels of genetic variability and low effective sizes of O.
platycephalus populations suggest that they would have limited
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potential to adapt to sudden changes in conditions within their
current range-limited habitats. In the context of a warming
climate, these fishes are confined to their current habitats with no
refuges to occupy further upstream. Interestingly, we found that
populations at higher altitudes had larger contemporary effective
population sizes than those from lower altitudes. This may be a
reflection of the fact that the species is better adapted to lower-
order upstream habitats of hillstreams and has been able to
sustain larger effective sizes in these locations than in higher-
order reaches further downstream. Such adaptation might be
related to both abiotic (e.g. lower temperature) and biotic factors
(e.g. a lack of competition with other fish species), but further
studies would be needed to resolve this matter.
Given the clear footprint of strong genetic drift in O.

platycephalus populations, it was not surprising that the degree
of genetic differentiation among them was high with an average
FST of 0.668. Although freshwater fish populations are typically
more genetically structured than their marine counterparts (Ward
et al. 1994), to the best of our knowledge, strong population
structuring comparable to that observed in O. platycephalus has
not been reported for any freshwater fish species from such a
small geographic area (Fig. 8 and Supplementary Table S6).
However, high levels of population differentiation have been
reported among pond populations of nine-spined sticklebacks
(Pungitius pungitius) which are characterized by strict isolation,
with average FST= 0.49 (Shikano et al. 2010) comparable to - but
slightly lower than - O. platycephalus. Similarly, two populations of

a landlocked goby Rhinogobius sp. in Japan had an FST of 0.53
(Ohara et al. 2005). However, both these studies were based on
microsatellite markers. We compiled data from published studies
that used genome sequencing approaches and found that the
degree of genetic differentiation among O. platycephalus popula-
tions was indeed exceptionally high given the limited geographic
extent of sampling within Hong Kong.
Relatively high FST values have also been reported for two other

Hong Kong loaches that inhabit larger streams than O. plathyce-
phalus, although these estimates are not directly comparable as
they were based on variation in mitochondrial control region
(average FST= 0.66 in Schistura fasciolata and FST= 0.88 in
Pseudogastromyzon myersi; Wong et al. 2017). Similarly, Wu et al.
(2016) reported FST= 0.57 estimated using five microsatellite
markers in the Hong Kong goby Rhinogobius duospilus indicating
that, as has been noted for shrimps in the same habitats (Tsang
et al. 2016; Yam and Dudgeon 2005), the limited connectivity of
Hong Kong streams has contributed to high genetic divergence in
their inhabitants.
Our reconstructions of historical demography revealed that

nearly all O. platycephalus populations experienced population
size declines before and during the last glaciation. Most but not all
populations had also experienced continued population declines
since then. These patterns accord with the likelihood that the local
populations became isolated following the post-glacial sea level
rise (Wong et al. 2017; Wu et al. 2016). The fact that some
populations did not exhibit clear downward trends might be
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ascribable to methodological problems: the approaches used in
historical demography reconstructions tend to lose resolution in
modern times especially if sample sizes are low as in our study (Li
and Durbin 2011; Liu and Fu 2015; Nadachowska‐Brzyska et al.
2022). Some support for this conjecture is provided by the
observation that the three populations that did not show
downward trends were among those with the smallest con-
temporary effective population sizes. Assuming an Ne/NC ratio of
10% (Frankham 1995; Hoban et al. 2020), our data suggests that

contemporary population sizes (NC) of O. platycephalus range from
ca. 100 to 1300 individuals. These are very small numbers when
compared to many other species (cf. Palstra and Fraser 2012).
Given the findings of this study, what is the outlook for loach

populations in Hong Kong hillstreams? Given that most popula-
tions have been subject to strong genetic drift and loss of genetic
diversity, as well as the predicted further loss of diversity and
increased risk of inbreeding depression in populations comprising
fewer than 50 individuals (Franklin and Frankham 1998; Hoban

Fig. 7 Results of principal component analysis (PCA) of allele frequencies projected onto the map of study area. Note that PCA Axis 2 is
depicted on the x-axis.
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et al. 2020), most (10/16) of the study populations can be
expected undergo further loss of variability. Perhaps more
seriously, none of the study populations appear to have an
effective size large enough to permit adaptation to climate
warming or other environmental changes: even the two popula-
tions with the highest contemporary Ne are far from the Ne= 500
mark considered necessary to preserve evolutionary potential, and
much smaller than the more conservative Ne= 1000 benchmark
(Frankham et al. 2014a). From this perspective, O. platycephalus
populations in Hong Kong are at high risk of local extinctions, and
may even represent an existing extinction debt.
It is interesting to speculate that extinctions have already taken

place in hillstreams that we visited for this study where we were
unable to find any loaches. Future studies might be able to
address this possibility by analyzing environmental DNA from
stream sediment cores (e.g. Nelson‐Chorney et al. 2019). Possible
conservation measures for declining populations might also
consider the reciprocal translocation of loaches between streams
to enhance genetic diversity, reduce the negative consequences
of inbreeding and enhance their adaptive potential in the face of
future environmental changes. The two populations (MKN and
PKA) in southern Lantau, which are the sole representatives of
populations from the South Lantau drainage, should be prioritized
for conservation due to their very small contemporary effective
population sizes (≤20) and genetic distinctiveness from all other
studied populations. Secondary priorities would be populations on
Hong Kong Island (e.g. GFN and PFL) followed by those in the East
New Territories (e.g. TKO and TPK).
In conclusion, the picture emerging from our analyses is that

local flat-headed loach populations of Hong Kong became
isolated after post-glacial sea level rise and have been subject to
strong genetic drift in the subsequent absence of connectivity at
the metapopulation level, i.e. a natural consequence of epoch
rollover. As a consequence, the local populations have experi-
enced loss of genetic diversity and increased genetic differentia-
tion as manifested in extremely high FST estimates even over very
short geographical distances. The low estimates of contemporary
Ne suggest that local populations have severely compromised
ability to remain viable with lowered evolutionary potential to
meet the demands of a changing environment. Future studies
based on whole genome resequencing data can refine this picture
and give deeper insights into the levels (e.g. Robinson et al. 2019)

and consequences (e.g. Keller and Waller 2002) of inbreeding in
these populations. We further suggest that the O. platycephalus
populations in Hong Kong can provide an excellent study system
to document whether lowered genetic diversity is associated with
increased extinction rate or not - a topic still controversial in
conservation genetics (García-Dorado and Caballero 2021;
DeWoody et al. 2021; Teixeira and Huber 2021; Willi et al. 2022).

DATA AVAILABILITY
DArT-seq SNP genotyping datasets (SNPs report and vcf files) are openly available
from Figshare (https://doi.org/10.6084/m9.figshare.24792567).
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