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Expanding the genetic spectrum of choroideremia
in an Australian cohort: report of five novel CHM
variants

Terri L. McLaren'?, John N. De Roach'?, Jennifer A. Thompson', Fred K. Chen'****, David A. Mackey®'?",
Ling Hoffmann', Isabella R. Urwin' and Tina M. Lamey'~

Abstract

Choroideremia is an X-linked chorioretinal dystrophy caused by mutations in the CHM gene. Several CHM gene
replacement clinical trials are in advanced stages. In this study, we report the molecular confirmation of choroideremia
in 14 Australian families sourced from the Australian Inherited Retinal Disease Registry and DNA Bank. Sixteen males
(14 symptomatic) and 18 females (4 symptomatic; 14 obligate carriers) were identified for analysis. Participants’ DNA
was analyzed for disease-causing CHM variants by Sanger sequencing, TagMan gPCR and targeted NGS. We report
phenotypic and genotypic data for the 14 symptomatic males and four females manifesting disease symptoms. A
pathogenic or likely pathogenic CHM variant was detected in all families. Eight variants were previously reported, and
five were novel. Two de novo variants were identified. We previously reported the molecular confirmation of
choroideremia in 11 Australian families. This study expands the CHM genetically confirmed Australian cohort to 32

males and four affected carrier females.

Introduction

Choroideremia (CHM, OMIM: 303100) is a chorior-
etinal dystrophy inherited in an X-linked recessive man-
ner with an incidence between 1:50,000' and 1:100,000>.
It is characterized by progressive degeneration of the
retinal pigment epithelium (RPE), photoreceptors, and
choroid®. Individuals with choroideremia usually present
with a distinctive fundus appearance, featuring a scalloped
choroid due to atrophy of the choroidal vessels®.

Choroideremia is caused by mutations in the CHM gene
(OMIM: 300390), which is located at Xq21.2 and com-
prises 15 exons® encoding Rab escort protein 1 (REP-1).
Currently, 293 disease-causing variants in the CHM gene
are listed in the Human Genome Mutation Database®.
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Due to the monogenic nature and distinctive phenotype
of this disease, direct sequencing of the CHM gene, with
follow-up deletion/duplication analysis where required,
has been highly effective for genetic confirmation of
clinically =~ diagnosed individuals’. However, next-
generation sequencing (NGS) has sometimes unexpect-
edly identified CHM mutations in male and female indi-
viduals with an alternative clinical diagnosis, such as
retinitis pigmentosa (RP)*™'°. Thus, choroideremia may
have a variable phenotype, leading to underreporting®'.

Clinical trials for therapeutic gene replacement of the
CHM gene are at an advanced stage. Following the first of
these trials (NCT01461213)"?, further phase 1/2 trials are
complete or underway. A phase 3 trial (NCT03496012) is
underway for 140 participants across clinical sites in the
United States, Canada, Europe, and the United King-
dom'. No CHM gene therapy trials are underway in
Australia.

The Australian Inherited Retinal Disease Registry and
DNA Bank (AIRDR) previously genetically confirmed
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choroideremia in individuals from 11 Australian families’.
The primary aim of the present study was to genetically
characterize recently recruited pedigrees to update the
spectrum and prevalence of CHM mutations in Australian
families and to further consolidate potential candidates
for future gene-specific clinical trials or treatments. Here,
we identified 16 additional males with genetically con-
firmed choroideremia, two of whom are currently
asymptomatic, and 14 asymptomatic carrier females
sourced from 14 families. We also identified four female
carriers with a vision-threatening phenotype. Such female
patients are also relevant to gene-specific clinical trials or
treatments but tend to be overlooked.

In the cohort described in our previous study, we
genetically confirmed 16 affected males and 12 asympto-
matic carrier females sourced from 11 families. Here, we
present the combined mutation spectrum, which includes
five novel CHM mutations, for all 32 genetically con-
firmed males from 25 Australian families.

Methods
Research participants

Participants were identified from the AIRDR'. Inter-
rogation of the registry identified nine pedigrees not
previously reported with at least one individual clinically
diagnosed with choroideremia. Three additional pedi-
grees, each containing one participant clinically diagnosed
with RP, were included in this study where previous
analyses revealed potentially disease-causing CHM var-
iants. Two families were added after testing negative for
the X-linked RP genes RP2 and RPGR, resulting in a
suspected diagnosis of choroideremia. In all, 34 partici-
pants from 14 families were included in this present study.
They comprised 14 symptomatic males, two asympto-
matic males, four affected females of varying clinical
severity and 14 unaffected, suspected carrier females. For
10 out of 14 families, the proband was a male with clinical
features consistent with choroideremia. For two families,
there were no consenting affected male participants in the
registry. These families are identified here by the numbers
12-25 to distinguish them from families 1 to 11 in our
previously published study’.

Genetic analyses

DNA samples were collected, processed, and stored, as
previously described'***,

Proband DNA was analyzed using various methods
(Table 1).

Proband DNA was analyzed by Sanger sequencing of all
15 exons and flanking intronic regions of the CHM gene
(Molecular Vision Laboratory (MVL), Oregon, or Aus-
tralian Genome Research Facility (AGRF), Perth). Where
a candidate disease variant was not detected, the possi-
bility of a large deletion/duplication was investigated by
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TaqMan quantitative PCR (qPCR) (MVL or Casey Eye
Institute (CEI), Oregon). Targeted Sanger sequencing was
used to verify detected variants, where required, and for
testing familial variants in family members.

RefSeq Accession NM_000390.2/3 was used in genetic
analyses. Nucleotide 1 corresponds to the A of the ATG
translation initiation codon. Sequence variant nomen-
clature is reported in accordance with the recommenda-
tions of the Human Genome Variation Society'®.

Classification of variant pathogenicity

The pathogenicity of detected CHM variants was
ascertained by interrogation of the scientific literature and
disease- and locus-specific databases and by in silico
analysis, as detailed previously'”. Variant pathogenicity
was classified in accordance with recommendations of the
American College of Medical Genetics and Genomics and
the Association for Molecular Pathology (ACMG)".
Splice site variants at consensus dinucleotides (+ 1/2)
were automatically assigned a pathogenic status'®*’.

Results
Phenotypic data

As the AIRDR is a national registry containing infor-
mation from participants throughout Australia, pheno-
typic data such as imaging or electrophysiology results
contained in the registry are often incomplete or self-
reported. Nevertheless, we report here those phenotypic
data that were available.

Male participants

At the time of this study, the age range of the 14 affected
males was 8—60 years. Their reported ages of onset ranged
from 3 to 28 years. All symptomatic males reported night
blindness as a presenting feature, with six reporting
constricted fields at this time. One male also reported
photophobia as a presenting symptom (Table 2).

Self-reported presenting symptoms were similar among
the four families containing more than one symptomatic
male (Families 13, 14, 15, and 20), as was age of onset
within three families. One exception was Family 14, where
self-reported ages of onset differed by nine years (Table 2).
This disparity may relate to the generational gap between
the proband and his maternal uncle, with the uncle’s
existing diagnosis possibly alerting the family to the pos-
sibility of disease in the proband.

For each of the two families, family testing revealed the
presence of the familial CHM mutation in an asympto-
matic male with retinal features consistent with
choroideremia.

Female participants
Fourteen of 18 females in this study were asymptomatic.
Four females had reported symptoms of varying severity
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(Table 2). The ages of onset were in the third (#=1) or
sixth (n = 3) decade, with night blindness reported as the
presenting symptom in all cases, with or without photo-
phobia and/or visual field constriction. Since onset, wor-
sening symptoms have significantly affected their quality
of life.

Genetic results

A pathogenic or likely pathogenic CHM variant was
identified in all 14 families analyzed (Table 3). All males
(14 affected and two asymptomatic) and 16 out of 18
females were hemizygous and heterozygous, respectively,
for the detected familial CHM variant.

The mothers of two affected males did not possess the
familial CHM variant, suggesting de novo events. The
apparent de novo variants identified in unrelated, isolated
males (17-1 and 22-1) are expected to result in premature
termination codons (PTCs): the nonsense variant ¢.715 C
>T, p.(Arg239*) has frequently been described in the
literature, while the frameshifting duplication c.589dup,
p-(Ser197Lysfs*2) is one of 5 novel variants identified in
this study.

The frameshift variants ¢.589dup, p.(Ser197Lysfs*2),
c.767_768del, p.(Glu256Valfs*2), ¢.999_1000insT, p.
(GIn334Serfs*84) and ¢.1010_1015delinsCA, p.(Val337A-
lafs*6) are predicted to result in protein truncation and
nonsense-mediated decay (NMD), with abolition of the
protein. Accordingly, these variants have been classified as
pathogenic.

The novel splice variant ¢.820-1 G > A is expected to be
pathogenic because it occurs within a canonical splice site.
This variant was heterozygous in an affected female pro-
band (16-1) with no known family history of choroider-
emia. Other pathogenic nucleotide substitutions at this
splice acceptor site have been described>*~>%. Notably, a
similar CHM mutation (c.820-1 G > C) was reported in a
female carrier who displayed a highly abnormal RPE
without atrophy, with severe loss of visual acuity sec-
ondary to a presumed neovascular membrane®. In view
of the absence of an affected male in Family 16 and this
variant not previously described in the literature, we
conservatively assessed ¢.820-1 G > C as likely pathogenic.

Overall, four nonsense, five frameshift and two cano-
nical splice site mutations were detected in 11 families.
Gross deletions were identified in the remaining three
families, including an entire gene deletion in one family
and deletion of exon 15 in two families. Although
breakpoints were not identified for the exon 15 deletions,
for the purpose of this paper, we have classified them as a
single variant. Thus, 13 different causative variants
were identified among the 14 families included in this
present study.

A genetic diagnosis of choroideremia was therefore
confirmed for all nine families with a clinical diagnosis of
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choroideremia, as well as for the five families with a
clinical diagnosis of RP at recruitment, for which no other
candidate variants had been detected by previous genetic
testing. A clinical re-evaluation of the diagnosis has been
made for three of these RP families and is being sought for
the other two.

Discussion
Present study

In this study, 13 different CHM variants classified as
pathogenic or likely pathogenic were identified in 14
Australian families. Five variants were novel, and two
were de novo, including one novel variant.

As in other studies®"**, we identified a predominance of
causative point mutations. Two gross deletions and one
entire gene deletion were detected. Once considered rare,
gross deletions now reportedly comprise approximately
20% of disease-causing CHM variants®. With the identi-
fication of an entire gene deletion or deletions of exon 15
among three families, gross deletions now comprise 12%
of our combined Australian cohort. Although an exon 15
deletion has been previously reported*’, the two cases
presented in this study are the first reported in an Aus-
tralian cohort. It is not known whether these families
carry the same or distinct nucleotide deletions, as break-
points were not determined. Similarly, owing to the
absence of breakpoint data, it is not known whether
the entire CHM gene deletion identified in this study is
the same as those reported previously.

Entire gene deletions have been reported involving the
CHM gene alone**>?° or in various combinations with
other genes, which can result in complex syndromic
choroideremia phenotypes'"***’. In the absence of
breakpoint data for these gross deletions, we cannot
establish if they encompass only the CHM region or
regions and/or regulatory elements of other genes. As
associated medical conditions were self-reported as
absent in all cases, it is likely that these deletions do not
affect the function of other genes.

The clinical features and reported symptoms of carrier
females in this study are consistent with the view that
females are typically unaffected. Nevertheless, four female
participants did show symptoms of varying severity. An
underrepresentation of the contribution of CHM muta-
tions to disease in affected carrier females may contribute
to a diagnosis of RP with autosomal dominant transmis-
sion. It is important that severely affected female carriers
of X-linked disease be included in considerations
regarding inclusion in gene-specific clinical trials or
treatments.

Notably, over one-third of the choroideremia-affected
pedigrees in the present study were not initially clinically
diagnosed with choroideremia. This finding supports the
view that choroideremia is underdiagnosed and
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Table 4 Demographic information for CHV mutation carriers in the combined studies.

Symptomatic males

Asymptomatic males

Symptomatic females Asymptomatic females

Number 30 2
Average current age 37 20
Age range 8-82 14-26
0-10
11-20
21-30
31-40
41-50
51-60
61-70
71-80
81-90
91-100
Deceased 1

o

- = = W O w O b

O O O O O O O O — —

4 26
71 55
60-91 12-91
0 0
0 1

0 3
0 1

0 4
0 8
2 3

1 4
0 1

1 1

0 0

sometimes misdiagnosed as RP owing to the overlapping
clinical features and presenting symptoms of these related
conditions and, in some cases, also owing to atypical
fundus features or severe phenotype in a female®”. This
highlights the value of nonhypothesis genetic diagnostic
testing for suspected RP-affected individuals*'**>°,

Combined studies

The age distribution of the participants in the combined
studies, classified by gender and affectation status, is
shown in Table 4.

Self-reported phenotypic data for individuals with
disease-causing CHM variants in the combined studies for
males and symptomatic females are shown in Supple-
mentary Table 1. One affected male (7-2) was added to
our previous study.

The sequence variants established in this study com-
bined with our previous study are detailed in Supple-
mentary Table 2.

In this combined study, we identified a predominance of
causative point mutations, including frameshift, nonsense
and canonical splice site mutations, with an absence of
missense mutations, which is well documented for this
gene®' 72*?%31 Gross deletions were also reported in this
study. The preponderance of such mutations suggests that
most of the familial variants identified within this updated
Australian cohort are likely to be null mutations, as found
in other studies****3!,

Only one mutation, ¢.1584._1587del (p. Val529Hisfs*7),
was detected in both studies. This frameshift variant is
thought to occur at a mutation hotspot frequently
reported in apparently unrelated pedigrees”>>*¢2%3273%,

Of interest, all six nonsense mutations detected across
the combined choroideremia cohort of 25 pedigrees are C
>T transitions (24% of pedigrees). Five of these are
recurrent disease-causing CHM variants located at CpG

Official journal of the Japan Society of Human Genetics

dinucleotides, known mutational hotspots®>*°, Two were
detected in the present study (de novo ¢.715C>T;
¢.799C>T), and three were detected in our previous
study (c.757 C > T; c.808 C > T; ¢.877 C > T). These results
reflect the hypermutability for C>T transitions at CpG
dinucleotides that occur at these five arginine residues
(CGA), resulting in their conversion to a stop codon
(TGA), as reported by others!12%2837:38

These results indicate that Sanger sequencing of the
CHM gene in probands with a clinical diagnosis of
choroideremia remains an efficient tool in the molecular
diagnostic pipeline. In the three families in which a
mutation was not detected by Sanger sequencing, follow-
up qPCR analysis identified gross deletions in CHM. In
addition to these reported Australian families, other
undiagnosed, untested or unborn male family members
may prove to be candidates for future gene therapy.

This Australian cohort now consists of 25 genetically
confirmed choroideremia-affected families, with a total of
23 different CHM mutations identified.
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