

Utility of urinary sodium-to-potassium ratio for identifying individuals at elevated risk of heart failure

Keisuke Narita^{1,2} · Satoshi Hoshide¹ · Kazuomi Kario¹

Keyword Hypertension · Urin test · Heart failure · Blood pressure · Preventive cardiovascular medicine

Received: 27 June 2025 / Accepted: 8 July 2025 / Published online: 1 August 2025
© The Author(s), under exclusive licence to The Japanese Society of Hypertension 2025

Comment on original articles, Muroya and Satoh et al.'s "Association between Urinary Sodium-to-Potassium Ratio and BNP in a General Population without Antihypertensive Treatment and Cardiovascular Diseases: The Ohasama Study"

Heart failure (HF) is an increasingly prevalent cause of hospitalization and mortality worldwide. Many cases are attributable to lifestyle-related factors, including hypertension, diabetes, and obesity [1–4]. Early detection of the preclinical stage is critical for preventing progression to symptomatic HF [5, 6]. If non-invasively, low-cost tests could reliably detect individuals who are in the preclinical phase of HF or at elevated risk of developing symptomatic HF among community-dwelling populations, these tests could help prevent the development of symptomatic HF.

Muroya, Satoh and colleagues conducted a cross-sectional study aimed to examine the association between the urinary sodium-to-potassium ratio and the cardiac biomarker B-type natriuretic peptide (BNP) among community-dwelling Japanese adults (mean age 65 years) [7]. The clinical practice guideline on the diagnosis and management of HF has defined asymptomatic Stage B HF, which is characterized by evidence of structural heart disease such as left ventricular dysfunction or hypertrophy without overt clinical signs or symptoms of HF [5]. The Heart Failure Society of America, the Heart Failure Association of the European Society of Cardiology, and the Japanese Heart Failure Society have proposed a universal definition and classification of HF [8].

In this proposal, an individual with an elevation in cardiac biomarkers, including $BNP \geq 35 \text{ pg/mL}$, is classified as having early asymptomatic Stage B HF [8]. In Muroya, et al.'s study, although the correlation between the urinary sodium-to-potassium ratio and BNP was modest ($r = 0.17$), participants in the highest tertile of the urinary sodium-to-potassium ratio had an approximately two-fold higher prevalence of $BNP \geq 35 \text{ pg/mL}$ compared with those in the lowest tertile. These findings suggest that a higher urinary sodium-to-potassium ratio is associated with a greater prevalence of asymptomatic Stage B HF, i.e., the preclinical phase of HF.

In hypertension management, assessing an individual's risk of cardiovascular disease, including the development of symptomatic HF, is important [3, 9–11]. High BP and hypertension are well-established risk factors for HF incidence, and several systematic reviews and meta-analyses have reported that elevated BP and hypertension are associated with an increased risk for development of symptomatic HF [3, 11–15]. Further, several observational studies have reported associations of office and out-of-office BP levels with BNP [16, 17]. A urine sodium test is preferable to evaluate individual salt intake, and it is recommended, along with out-of-office BP monitoring, in the management of hypertension [10]. In 2023, the American Heart Association released a new equation for predicting cardiovascular risk, the Predicting Risk of cardiovascular disease EVENTS (PREVENT) model, which can calculate an individual's future risk of developing symptomatic HF [9, 18]. Adding non-invasive, cost effective assessments, e.g., urine tests, out-of-office BP monitoring, to established prediction models may improve accuracy of predicting development of symptomatic HF or identifying individuals who are in the preclinical stage of HF (Fig. 1).

In conclusion, the study by Muroya and Satoh, et al. provides novel evidence of a relationship between the urinary sodium-to-potassium ratio obtained from a spot urine sample and the validated cardiac biomarker BNP.

✉ Keisuke Narita
m06073kn@jichi.ac.jp

¹ Division of Cardiovascular Medicine, Department of Medicine, Jichi Medical University School of Medicine, Tochigi, Japan

² Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA

Fig. 1 Efficient screening pathway using non-invasive, cost-effective assessments. Non-invasive, low-cost tests may help identify individuals at elevated risk of cardiovascular disease, including heart failure. In the initial step for routine health checks or in primary care, urine sodium-to-potassium ratio, out-of-office blood pressure monitoring, and others can be applied to flag people who are potentially at high

cardiovascular risk. In the subsequent step, individuals flagged as elevated risk undergo confirmatory testing in a clinical setting. Urinary sodium-to-potassium ratio may serve as an efficient primary screening tool for detecting individuals at elevated risk of cardiovascular disease including failure

Disparities in access to care persist, and challenges remain in the early detection and prevention of HF [1, 4]. However, the urinary sodium-to-potassium ratio may have practical advantages: it is inexpensive and non-invasive, and may be useful for identifying individuals in the preclinical phase of HF among community-dwelling populations. Incorporating this metric into routine health examinations could therefore facilitate the large-scale identification of individuals with preclinical HF and enable timely preventive strategies.

Compliance with ethical standards

Conflict of interest K. Narita has received a grant from the International Medical Research Foundation. K. Kario has received research funding from Omron Healthcare Co., Fukuda Denshi, and A&D Co. S. Hoshide has no relationships relevant to the contents of this paper to disclose.

Publisher's note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References

1. Bozkurt B, Ahmad T, Alexander KM, Baker WL, Bosak K, Breathett K, et al. Heart failure epidemiology and outcomes statistics: a report of the Heart Failure Society of America. *J Card Fail.* 2023;29:1412–51.
2. GBD 2017 Disease and Injury Incidence and Prevalence Collaborators. Global, regional, and national incidence, prevalence, and years lived with disability for 354 diseases and injuries for 195 countries and territories, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017. *Lancet.* 2018;392:1789–858.
3. Baffour PK, Jahangiry L, Jain S, Sen A, Aune D. Blood pressure, hypertension, and the risk of heart failure: a systematic review and meta-analysis of cohort studies. *Eur J Prev Cardiol.* 2024;31:529–56.
4. Roger VL. Epidemiology of heart failure: a contemporary perspective. *Circ Res.* 2021;128:1421–34.
5. Writing Committee Members; ACC/AHA Joint Committee Members. 2022 AHA/ACC/HFSA Guideline for the Management of Heart Failure. *J Card Fail.* 2022;28:e1–e167.
6. Heidenreich PA, Bozkurt B, Aguilar D, Allen LA, Byun JJ, Colvin MM, et al. 2022 AHA/ACC/HFSA Guideline for the Management of Heart Failure: A Report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. *Circulation.* 2022;145:e895–e1032.
7. Muroya T, Satoh M, Metoki H, Nakayama S, Hirose T, Murakami T, et al. Association between urinary sodium-to-potassium ratio and BNP in a general population without antihypertensive treatment and cardiovascular diseases: the Ohasama study. *Hypertens Res.* 2025; <https://doi.org/10.1038/s41440-025-02266-0>.
8. Bozkurt B, Coats AJS, Tsutsui H, Abdelhamid M, Adamopoulos S, Albert N, et al. Universal Definition and Classification of Heart Failure: A Report of the Heart Failure Society of America, Heart Failure Association of the European Society of Cardiology, Japanese Heart Failure Society and Writing Committee of the Universal Definition of Heart Failure. *J Card Fail.* 2021;27:387–413.
9. Khan SS, Breathett K, Braun LT, Chow SL, Gupta DK, Lekavich C, et al. Risk-Based Primary Prevention of Heart Failure: A Scientific Statement From the American Heart Association. *Circulation.* 2025;151:e1006–e26.
10. Umemura S, Arima H, Arima S, Asayama K, Dohi Y, Hirooka Y, et al. The Japanese Society of Hypertension Guidelines for the Management of Hypertension (JSH 2019). *Hypertens Res.* 2019;42:1235–481.
11. Ettehad D, Emdin CA, Kiran A, Anderson SG, Callender T, Emberson J, et al. Blood pressure lowering for prevention of cardiovascular disease and death: a systematic review and meta-analysis. *Lancet.* 2016;387:957–67.

12. Kario K, Hoshide S, Mizuno H, Kabutoya T, Nishizawa M, Yoshida T, et al. Nighttime Blood Pressure Phenotype and Cardiovascular Prognosis: Practitioner-Based Nationwide JAMP Study. *Circulation*. 2020;142:1810–20.
13. Seidu S, Lawson CA, Kunutsor SK, Khunti K, Rosano GMC. Blood pressure levels and adverse cardiovascular outcomes in heart failure: A systematic review and meta-analysis. *Eur J Heart Fail*. 2024;26:1111–24.
14. Kario K, Okawara Y, Kanegae H, Hoshide S. Potential Long-Term Benefit of Home Systolic Blood Pressure Below 125 mm Hg for Cardiovascular Risk Reduction: The J-HOP Study Extended. *Hypertension*. 2024;81:282–90.
15. Kaneko H, Yano Y, Itoh H, Morita K, Kiriyama H, Kamon T, et al. Association of Blood Pressure Classification Using the 2017 American College of Cardiology/American Heart Association Blood Pressure Guideline With Risk of Heart Failure and Atrial Fibrillation. *Circulation*. 2021;143:2244–53.
16. Kanda H, Kita Y, Okamura T, Kadokawa T, Yoshida Y, Nakamura Y, et al. What factors are associated with high plasma B-type natriuretic peptide levels in a general Japanese population? *J Hum Hypertens*. 2005;19:165–72.
17. Narita K, Hoshide S, Kario K. Relationships of Office, Ambulatory, and Self-measured Blood Pressure With Cardiac, Renal, and Atherosclerotic Biomarkers. *Am J Hypertens*. 2024;37:769–76.
18. Khan SS, Coresh J, Pencina MJ, Ndumele CE, Rangaswami J, Chow SL, et al. Novel Prediction Equations for Absolute Risk Assessment of Total Cardiovascular Disease Incorporating Cardiovascular-Kidney-Metabolic Health: A Scientific Statement From the American Heart Association. *Circulation*. 2023;148:1982–2004.