
Hypertension Research
https://doi.org/10.1038/s41440-025-02470-y

REVIEW ARTICLE

Accelerated epigenetic age in hypertension: a systematic review and
meta-analysis

C. Dollin1,2
● M. Ward2

● M. Y. C. Stafford1
● E. Krason-Kidzinska1 ● Lauren Crawford1,2

● H. McNulty2 ● Frank Barry3 ●

M. Murphy3 ● D. J. Lees-Murdock1

Received: 4 June 2025 / Revised: 11 October 2025 / Accepted: 7 November 2025
© The Author(s) 2026. This article is published with open access, modified publication 2026

Abstract
Chronological age is a well-established risk factor for Hypertension (HTN), yet while biological ageing markers such as
epigenetic age acceleration (EAA), have been associated with HTN, findings are inconsistent. This study aimed to conduct a
systematic review and meta-analysis to evaluate the association between EAA, HTN and blood pressure (BP) to provide an
understanding of the role of EAA in HTN development and progression. Six databases were searched, and studies which
reported associations between DNA and HTN, and/or BP were included. Functional enrichment analysis was conducted using
DAVID and STRING to elucidate underlying molecular pathways. From 4334 studies, 165 met the inclusion criteria.
Qualitative analysis indicated that 17.0% of studies reporting global methylation and 49.1% of studies reporting gene-specific
methylation demonstrated significant associations with HTN and/or BP. A random effects meta-analysis of 16,136 participants
from 8 studies using three epigenetic clock algorithms demonstrated that HTN was associated with increased EAA (β: 0.29,
95%Cl: 0.15–0.43; P < 0.0001). All three individual epigenetic clocks demonstrated a positive association between clinically
measured HTN and EAA (Horvath β: 0.33, 95%Cl: 0.08–0.58, P= 0.010; Hannum β: 0.64, 95%Cl: 0.09–1.20; PhenoAge β:
1.21, 95%Cl: 0.56–1.86), whereas this relationship was not clear when using self-reported HTN. This study is the first to
systematically demonstrate that HTN is associated with EAA. We recommend the use of clinically measured over self-reported
HTN in appropriately powered studies of epigenetic age to obtain an accurate understanding of BP regulation/HTN on the
epigenome, supporting pathways to translation and development of novel therapeutic targets for HTN.
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Introduction

Hypertension (HTN) is the leading modifiable risk factor for
cardiovascular disease (CVD), a highly prevalent worldwide
contributor to mortality, responsible for 8.5 million deaths

annually [1]. While advancements in diagnosis and treatment
have been observed in high- and middle-income countries,
HTN remains highly prevalent, affecting 31% of adults
worldwide. From 1990 to 2019, the global prevalence of
HTN has doubled and more than 50% of HTN cases remain
undiagnosed [2, 3]. Despite the availability of medical and
lifestyle interventions to improve cardiovascular outcomes,
HTN control rates remain poor, with only 24% of women and
20% of men worldwide achieving target BP [3, 4].

Hundreds of common single-nucleotide polymorphisms
(SNPs) have been identified for HTN, a heritable complex
polygenic trait. Genetic variants, however, do not fully
explain HTN heritability suggesting the involvement of
additional mechanisms [5–7]. Epigenetic modifications,
such as DNA methylation, have been implicated in HTN,
BP and stroke [8–10]. DNA methylation is responsive to
environmental factors, such as diet and nutritional status,
and may mediate the interaction between genetic predis-
position and development and progression of HTN [11–14].
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Specific subsets of CpG sites undergo programmed
methylation changes which have informed the development of
biological clock algorithms to provide estimates of epigenetic
age [15]. The difference between chronological and epigenetic
age provides a measure of EAA where higher epigenetic age
than chronological age indicates accelerated epigenetic age,
and vice versa. Various epigenetic clocks, including the Hor-
vath and Hannum algorithms, have been developed to predict
epigenetic age and its association with disease states [16–18].
Second-generation clock algorithms, such as DNAmGrimAge
and DNAmPhenoAge, incorporate age-related biomarkers to
improve accuracy in assessing biological ageing and estimating
all-cause mortality risk [18–20]. Recently, epigenetic clocks
such as Horvath, Hannum and PhenoAge have demonstrated
clinical utility, in patients with chronic kidney disease who
exhibited increased EAA, an effect mitigated by transplantation
but not dialysis [21].

Despite growing interest in this area, current evidence
linking epigenetic age and BP or HTN remains conflicting.
Several studies have reported significant associations
between epigenetic clock algorithms, such as Horvath and
HTN as well as systolic and diastolic BP [22, 23]. In con-
trast, other studies have reported no such associations
[24, 25]. This inconsistency extends to studies investigating
HTN and/or BP using more targeted DNA methylation
assessment methods, including global, gene-specific and
epigenome-wide approaches [26–29]. Consequently,
despite increasing evidence supporting the involvement of
DNA methylation in HTN [8, 10], there is are a lack of
systematic analysis and evaluation of the existing evidence
linking various measures of DNA methylation (global,
gene-specific, epigenome-wide), epigenetic age and HTN.

The aim of this study was to conduct a systematic review
to investigate the association between DNA methylation
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Graphical Abstract

Hypertension and accelerated epigenetic age: a systematic review and 
meta-analysis of DNA methylation and blood pressure

Introduction and Aims Methods Conclusions
• Epigenetic age acceleration

(EAA) is linked to hypertension
(HTN), but findings are
inconsistent

• Aim: to conduct a systematic
review and meta-analysis to
evaluate the association
between EAA, HTN and blood
pressure (BP)

Results

• Six databases searched
• Studies investigating an

association between DNA
methylation and HTN and/or BP
in adults were included.

• Random effects meta-analysis
conducted to investigate an
association between HTN and
EAA.

• First study to systematically 
demonstrate an association 
between HTN and EAA.

• We recommend the use of 
clinically measured HTN over 
self-reported HTN in 
appropriately powered studies 
of epigenetic age.

• Meta-analysis of 16,136 participants across 8 studies
demonstrate a positive association between HTN and EAA

• All 3 individual epigenetic clocks demonstrate a positive
association between clinically measured HTN and EAA.

Figure 2. Epigenetic Age and Hypertension across the Life course. Purple curve
conceptually represents the average trajectory of epigenetic age across the life
course. Individuals above the curve exhibit positive EAA which is associated with
HTN via meta-analysis and vice versa. This figure is intended for illustrative purposes
only and is not based on empirical data

Figure 1: Random effects meta-analysis investigating an
association between HTN and EAA



and HTN and/or BP in adults. Furthermore, we performed a
comprehensive meta-analysis of studies in adults reporting
epigenetic age performed using various clock algorithms to
determine the association between HTN and EAA. Finally,
functional enrichment analysis was conducted to explore the
relationship between epigenome-wide DNA methylation
and biological pathways in HTN.

Methods

This review was conducted in accordance with the Preferred
Reporting Items for Systematic Reviews and Meta-analyses
(PRISMA) guidelines. Screening of eligible studies, full-
text assessment, data extraction, and quality assessment of
studies were independently carried out by two authors. Any
discrepancies were discussed and resolved by consensus.
Studies were selected in line with the PICOS (Population,
Intervention, Comparison, Outcomes, Study Type) criteria
outlined in Table S1.

Search strategy and study selection

Systematic searches were performed in 6 bibliographic
databases (Medline (Ovid), Embase, Cumulative Index to
Nursing and Allied Health Literature (CINAHL), Cochrane
Library, Web of Science and Scopus). The search covered the
period from January 1st 2000 to 14th October 2024 (date of
last search). The search strategy combined terms related to
DNA methylation (e.g., global, gene-specific, epigenome-
wide) and BP (e.g., systolic, diastolic, HTN, high BP).
Medical subject headings and keyword searches were con-
ducted in databases where a thesaurus was available
(Embase, Medline, CINAHL, Cochrane Library), while
keyword searches were performed in other databases (Web of
Science, Scopus). Only full text studies involving humans,
published in English were included. Detailed search terms
and search strategies are provided in Table S2. Retrieved
records from databases were exported to the systematic
review manager Rayyan [30] for the removal of duplicates.
Full-text studies selected for inclusion were further imported
into an additional systematic review manager, Covidence
(www.covidence.org), where studies were further assessed
for full-text eligibility and data extraction.

Inclusion and exclusion criteria

Studies were deemed eligible for inclusion in this review if
they were original, peer-reviewed, full-text articles pub-
lished in English and met all defined inclusion criteria.
These criteria included studies that: (1) assessed DNA
methylation, specifically 5-methylcytosine (5mC) (global,
gene-specific and epigenome-wide); (2) measured or

recorded data on HTN and/or BP; (3) were conducted in
adult humans aged >18 years; and (4) investigated an
association between DNA methylation and HTN and/or BP.
HTN status was defined to the European Society of
Hypertension/European Society of Cardiology guidelines
(HTN defined as systolic blood pressure (SBP) ≥140 mmHg
and/or diastolic blood pressure (DBP) ≥90 mmHg and/or
anti-HTN usage) [31] and the American College of Cardi-
ology/American Heart Association Task Force guidelines
(HTN defined as SBP ≥ 130 mmHg and/or DBP ≥ 80 mmHg
and/or anti-HTN usage [32]. Additionally, we included
studies that defined HTN as self-reported and studies which
provided a diagnosis of HTN from medical history. No
restrictions were imposed regarding the tissue in which
DNA methylation was assessed allowing for a compre-
hensive analysis of the current landscape of studies. Animal
studies, studies involving pregnant women and children, or
in vitro studies using human or animal cell lines were
excluded from this review (Table S1).

Risk of bias assessment

Bias within each included study was assessed using the
Newcastle-Ottawa Scale [33] a semi-quantitative scale
designed to evaluate the quality of non-randomised studies.
Study quality was assessed based on the selection criteria of
participants, comparability and exposure and outcome
assessment. Studies that received a score of 9 stars were
considered to have a low risk of bias, and those that scored
7–8 stars were considered to have a medium risk of bias;
and those that scored less than 7 were considered to have a
high risk of bias.

Data extraction and analysis

A predesigned data collection form was created within
Covidence to extract the relevant information from the
included studies, including the first author, study design,
percentage of male participants, age range, sample size and
location where possible. Additionally, a description of the
cohorts, such as the names of large prospective cohorts or
the diseased population (e.g., patients with HTN), was
included. Furthermore, information regarding the type of
tissue, molecular technique and outcomes related to DNA
methylation was extracted.

A qualitative analysis was presented for associations
between DNA methylation (global methylation, gene-spe-
cific, and epigenome-wide) and HTN and/or BP, however,
due to considerable heterogeneity in study aims, meta-
analysis was not appropriate for these measures. Instead, a
meta-analysis was conducted to examine the association
between HTN and EAA which employed 3 different epi-
genetic clock algorithms; Horvath, Hannum and PhenoAge.

Accelerated epigenetic age in hypertension: a systematic review and meta-analysis
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Meta-analysis

We conducted a random-effects meta-analysis to examine the
effect of HTN on EAA. The meta-analysis included studies
that investigated the association between HTN and EAA,
where EAA was reported as an outcome. Studies eligible for
inclusion in the meta-analysis measured at least one of the
definitions of EAA. Only studies reporting HTN were
included rather than other measures of BP due to the low
number of studies reporting statistically comparable out-
comes for BP. All eligible studies for meta-analysis, defined
HTN as SBP > 140 or DBP > 90 and/or use of anti-
hypertensive medication or separately as self-reported HTN.

Subgroup analysis was performed to determine the effect
of HTN on each epigenetic clock algorithm, both inde-
pendently and as a combined effect of the 3 algorithms.
While first-generation epigenetic clocks are derived by a
linear regression algorithm that trains chronological age
against a select set of CpGs [16–18] more recent clocks
have included additional parameters, such as the inclusion
of 9 biomarkers in PhenoAge [18]. Studies using GrimAge
[19] were ineligible for inclusion in meta-analysis due to
incompatible statistical reporting, such as reporting EAA as
a predictor variable, which limited comparability with other
studies included for meta-analysis. Furthermore to account
for variability in HTN definitions, subgroup analysis was
utilised to examine the association between HTN and EAA
based on whether HTN was defined by European clinical
guidelines [31] or by self-report.

Statistical analysis

Review Manager Version 5.3 software was used to perform
a random-effects meta-analysis [34]. We employed a
random-effects model to account for expected heterogeneity
in effect sizes across clocks and studies. The random-effects
model estimates between-study variance, allowing for the
assignment of weight to individual studies when calculating
an overall pooled effect that reflects this variability. Beta
effect estimations and standard errors were extracted from
included studies that investigated epigenetic age as an
outcome. In studies where standard errors were absent, the
standard error was estimated from 95% confidence intervals
using Cochrane formulas. Results were expressed as beta
effect estimates and 95% confidence intervals, in addition to
the overall effect Z value. Pre-specified subgroup analysis,
grouped by epigenetic clock and by clinically measured vs
self-reported HTN was performed.

Publication bias for studies included in the meta-analysis
was assessed through visual inspection of funnel plots,
Egger’s regression test and the trim-and-fill procedure using
the metafor package within the statistical software platform
R (Version 4.1.2) [35, 36].

Heterogeneity was assessed using chi-squared testing (χ
value), heterogeneity index (I2) statistics and corresponding P
value. Heterogeneity thresholds were predefined according to
Cochrane guidelines, which stated that an I2 value between
0% and 40% indicates low heterogeneity, between 30% and
60% represents moderate heterogeneity, between 50% and
90% represents substantial heterogeneity, and between 75%
and 100% indicates considerable heterogeneity. Sensitivity
analysis was performed by conducting the meta-analysis
excluding one study at a time to determine stability of the
overall pooled effect across the 3 clock algorithms.

Functional analysis

Functional analysis was conducted separately for previously
identified CpG sites associated with BP and/or HTN within
epigenome-wide association studies using the DAVID
Bioinformatics Resource and the Search Tool for the
Retrieval of Interacting Genes/Proteins (STRING), which
allowed for the formation of protein-protein interaction
networks [37, 38]. Clustering within STRING analysis was
performed using the Markov Clustering Algorithm. Over-
lapping differentially methylated regions (DMR) were
determined using the GenomicRanges package (Version
1.46.1) with R (Version 4.1.2) to identify DMRs with the
same genomic region prior to visualisation. CpG sites and
DMRs associated with BP traits were visualised individu-
ally using the InteractiVenn software [39].

Results

Overall, 4334 potentially relevant records were identified
through a systematic search of 6 databases. Based on the
title and abstract, 584 articles were identified for detailed
evaluation. After full-text assessment, 165 studies met the
predefined eligibility criteria and were included in this
review. Detailed screening, eligibility and selection pro-
cesses are outlined in Fig. 1.

Characteristics of included studies

Overall, 165 studies were included that involved adults aged
18–99 years, ranging in size from 6 to 17,010 participants.
Individuals were recruited from 34 different countries, with
the most prevalent being China (29.1%), the USA (24.2%)
and Spain (6.1%). DNA methylation was assessed in a
gene-specific manner in 45.8% of studies, while 20.9%
investigated epigenetic age, 19.8% of studies investigated
epigenome-wide methylation, and 14.1% investigated glo-
bal methylation (Fig. 2A). DNA methylation was pre-
dominantly examined in blood (91.1% of studies), followed
by tissue (7.1%), saliva (1.8%), plasma (1.2%), and serum
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(0.6%). DNA methylation was examined in multiple tissues
within 2.4% of studies. A total of 24 different techniques
were used for DNA methylation analysis, with the majority
employing Infinium HumanMethylation 450 K BeadChip
microarray (Illumina, San Diego, CA) (23.6%), pyr-
osequencing (22.4%), Infinium MethylationEPIC BeadChip
microarray (Illumina, San Diego, CA) (18.8%) and
methylation-specific PCR (10.9%). Seven studies reported
the use of more than one method. Detailed participant
characteristics for each of the 165 studies within this review
were stratified by global methylation (Table 1), gene-
specific methylation (Table 2), epigenome-wide methyla-
tion (Table 3) and epigenetic age (Table 4).

Outcome assessment

Studies were included if they investigated an association
between DNA methylation and either HTN or BP, resulting
in outcomes being reported separately as either a diagnosis
of HTN (38.8%), a measure of BP (34.8%), or both (26.4%)
(Tables 1–4). HTN was defined by European guidelines in
64.7% of 116 studies reporting HTN, while 9.5% of studies
defined HTN according to American guidelines. In addition,
8.6% of studies reported HTN based on medical history, a
further 9.5% based on self-reported HTN, and 0.9% defined
HTN as SBP ≥ 160 mmHg and/or DBP ≥ 100 mmHg. Fur-
thermore, 0.9% of studies reported HTN as a binary yes/no

answer without further definition, while another 0.9% of
studies did not indicate HTN definition and 1.7% of studies
reported HTN as solely antihypertensive medication usage.
Additionally, 3.4% of studies reported multiple definitions
of HTN. Regarding BP measurement, 61.5% of 109 studies
reporting BP measured BP in a standardised manner (after a
period of rest, seated with multiple measurements taken),
6.4% of studies reported BP levels from medical history,
0.9% measured BP over a 24 h period, 2.8% report multiple
BP measurement methods and 28.4% provided an indica-
tion of BP measurement without further definition.

Risk of Bias assessment

A case-control design was used in 32.1% of studies, while
the majority of studies (55.8%) used a cross-sectional
approach. Most of the included studies (54.5%) achieved a
moderate rating of 5-6 stars, suggesting moderate metho-
dological quality. A substantial number of studies (43.0%)
attained a higher rating of 7-9 stars, indicating good meth-
odological quality, while only 2.4% of studies were rated
below 4 stars, indicating lower quality (Table S3).

Global methylation

Global DNA methylation was investigated in 25 publica-
tions, including 4 studies within large prospective cohorts

Flow diagram of study selec�on for systema�c review and meta-analysis

1Seven publica�ons reported both global and gene-specific methyla�on. 2Five publica�ons reported both gene-specific and epigenome-wide methyla�on. 3One 
publica�on reported epigenome-wide methyla�on and epigene�c age.
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No DNAm information: n=39
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Fig. 1 Flow diagram of study selection for systematic review and
meta-analysis. aSeven publications reported both global and gene-
specific methylation. bFive publications reported both gene-specific

and epigenome-wide methylation. cOne publication reported
epigenome-wide methylation and epigenetic age
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and 21 original study cohorts (Table 1). Global DNA
methylation analysis was performed in healthy individuals
in 16.0% of studies and was investigated in several disease
state cohorts, such as HTN (20.0% of studies) and diabetes
(16.0% of studies). The majority of studies investigating
global methylation, focused on repeat sequences and
transposable elements as a proxy, which have been shown
to correlate with total genomic content [40, 41]. The
remaining studies investigating global methylation assessed
DNA methylation as a level of 5 mC or as a percentage of
total cytosine (MC/C ratio).

Several studies report conflicting findings in regard to the
association between SBP and LINE-1 methylation, with
varying directions of association (Fig. 2B) [42, 43]. Three
studies report a negative association between DBP and
LINE-1 methylation [26, 43, 44]. Furthermore, a single
study also reports a negative association between HTN and
LINE-1 methylation [45].

Alu methylation was associated with both SBP and DBP
with negative and positive associations [26, 46, 47]. Alu
methylation was negatively associated with HTN [47] and
positively associated with pre-HTN [48]. Additionally, 5mC
was negatively associated with HTN [49, 50]. No significant
associations were reported between BP traits andMC/C ratio.

Gene-specific DNA methylation

Gene-specific DNA methylation of 138 candidate genes
was examined utilising data from 81 distinct studies

(Table 2). Significant associations with either BP or HTN
were reported for a total of 88 candidate genes. Most studies
were conducted in original cohorts comprising individuals
with diverse characteristics, including healthy individuals
(9.9% of studies), those with HTN (38.3%), and obese
individuals (6.2%), in addition to other disease states.

Twenty-five studies reported associations between SBP
and DNA methylation examining a total of 45 genes. The
most commonly reported genes included Tumour Necrosis
Factor Alpha (TNF-a), Glucocorticoid receptor gene (GR)
and Interleukin-6 (IL-6), all of which demonstrated con-
flicting directions of association between methylation and
SBP (Fig. 2C) [51–54]. Similarly, among the 26 studies
reporting an association between DNA methylation and
DBP, the most commonly reported genes also included
TNF-a, GR and IL-6, along with Toll-like receptor 2 (TLR2)
methylation, which exhibited both positive and negative
associations with DBP (Fig. 2b) [54, 55].

Angiotensin II Receptor Type 1 (AGTR1) methylation
was the most frequently studied gene in relation to HTN,
with studies again reporting both positive and negative
associations (Fig. 2C) [56–58]. Cystathionine Beta Syn-
thase (CBS) methylation was positively associated with
HTN [59, 60], while ADD1 methylation was negatively
associated with HTN [61, 62]. MTHFR methylation was
positively associated with HTN, in addition to other genes
involved in folate and one-carbon metabolism, such as
dihydrofolate reductase (DHFR) and methylenetetrahy-
drofolate dehydrogenase (MTHFD1) [29, 63, 64].
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Epigenome-wide methylation

Epigenome-wide methylation was investigated in 35 studies,
resulting in the identification of 1003 CpG sites associated
with various BP traits (Fig. 3A). The most commonly reported
CpG sites included cg19693031 and cg18120259 which were
reported in 5 publications (Table S4). The top genes annotated
to these CpGs included Thioredoxin Interaction Protein
(TXNIP) and a long intergenic non-protein coding RNA
(LOC100132354). In total, CpG sites were annotated to 569
genes, with 61 genes reported in >1 publication. 1391 DMRs
were associated with various BP traits (Fig. 3B). Eight DMRs
were reported in >1 publication (Table S5).

Functional enrichment analysis of genes annotated from
CpG sites significantly associated with any BP trait indicated
several highly enriched disease terms, including systemic
lupus erythematosus (PFDR= 1.84E-17), schizophrenia
(PFDR= 0.001), HTN (PFDR= 0.002), and SBP (PFDR=
0.005) (Table S6). Functional enrichment of the genes anno-
tated from DMRs significantly associated with any BP trait
identified biological processes such as regulation of tran-
scription by RNA polymerase II (PFDR= 0.0003), cartilage
development (PFDR= 0.0004) and intracellular signal trans-
duction (PFDR= 0.009) (Table S7). Regarding cellular com-
ponents, significantly associated terms included chromatin
(PFDR= 1.59E-07), nucleoplasm (PFDR= 0.0002), post
synaptic density (PFDR= 0.003), cell surface (PFDR= 0.032),
focal adhesion (PFDR= 0.032), synapse (PFDR= 0.049), and
axon (PFDR= 0.049). (Table S7). In terms of molecular
function, protein binding was found to be statistically

significant (PFDR= 0.0001), in addition to RNA polymerase
II-specific DNA-binding transcription factor activity (PFDR=
0.0003), metal ion binding (PFDR= 0.0003), zinc ion binding
(PFDR= 0.011), sequence-specific double-stranded DNA
binding (PFDR= 0.013), and identical protein binding
(PFDR= 0.034) (Table S7). STRING analysis with the con-
fidence setting ‘high’ revealed significant evidence for protein-
protein interactions between the products of genes annotated to
CpG sites associated with BP (P= 1.46E-07) (Fig. 4). The
average node degree was 0.83, while the average local clus-
tering coefficient was 0.27.

Epigenetic age

Fourteen DNA methylation algorithms were implemented
across 37 studies investigating epigenetic age (Table 4).
Most studies calculated epigenetic age using more than one
algorithm, with the Horvath (Pan-tissue) clock being the
most frequently used (73.0% of studies). Epigenetic age
was most commonly reported as EAA; however, 6 studies
additionally reported Delta Age (ΔAge), DiffAge, PCAge,
changing rate of age acceleration (ΔAA), and ageing rate
[20, 65–69]. The majority of studies within this review
demonstrate a very high correlation between epigenetic age
and chronological age (r= 0.7–0.9), which is representative
of the function of these algorithms, however, some indivi-
dual studies did report lower correlations between epige-
netic and chronological age [70].

Six studies reported positive associations between
AgeAccelHorvath and SBP [22, 69–71]. Four studies

A BDBP
(679)

MAP
(14)

SBP
(525)

HTN
(39)

PP
(6)

DBP
(589)

SBP
(850)

HTN
(11)

PP
(33)

MAP
(137)

Fig. 3 A CpG sites and (B) Differentially methylated regions (DMRs) associated with blood pressure (BP) traits. Systolic blood pressure (SBP),
Diastolic blood pressure (DBP), Hypertension (HTN), Pulse Pressure (PP), Mean arterial pressure (MAP)
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reported positive associations between AgeAccelHannum
and SBP [22, 70, 72, 73]. Similarly, 4 studies reported a
positive association between PhenoAgeAccel and SBP
[18, 22, 72, 73]. GrimAgeAccel was positively associated
with SBP in 4 separate studies, while a further study
reported a negative association [19, 20, 72, 74, 75].

Four studies reported a positive association between
AgeAccelHorvath and DBP [20, 70, 75, 76]. AgeAccel-
Hannum was associated with DBP in 1 study [70], while a
positive association between GrimAgeAccel and DBP was
reported in 2 studies [72, 74]. No significant associations
were reported between DBP and PhenoAgeAccel.

Meta-analysis

A meta-analysis was conducted to examine the association
between HTN and EAA. Data from a total of 16,136 indi-
viduals across 8 studies were included in the analysis. Beta
coefficients and standard errors (or calculated standard
errors from published 95% confidence intervals) were
obtained from each study. The majority of studies assessed
DNA methylation in blood, while 1 study used saliva.

The meta-analysis, using a random-effects model
(Fig. 5), demonstrated a significant positive association

between HTN and EAA across the three epigenetic clock
algorithms (β= 0.29, P < 0.001; 95% Cl: 0.15–0.43,
P < 0.0001). Subgroup analysis further revealed that clini-
cally measured HTN as determined by European guidelines
[31], was associated with each epigenetic clock individually
(Horvath: β= 0.33, 95% Cl: 0.08–0.58, P= 0.010; Han-
num: β= 0.64, 95% Cl: 0.09–1.20, P= 0.02; PhenoAge:
β= 1.21, 95% Cl: 0.56–1.86, P= 0.0003). Further sub-
group analysis based on self-reported HTN status demon-
strated no significant association with AgeAccelHorvath
(β= 0.09, P= 0.09, 95% Cl: −0.01 to 0.20); however, a
significant association with AgeAccelHannum (β= 0.17,
P= 0.003, 95% Cl: 0.06–0.28) was observed. Hetero-
geneity was observed in the overall meta-analysis across the
three epigenetic clock algorithms (I2= 64%, P= 0.001) and
for AgeAccelHannum in individuals who reported HTN
according to European guidelines (I2= 78%, P= 0.001).
No significant heterogeneity was observed in either the
AgeAccelHorvath subgroup, when HTN was either clini-
cally measured or self-reported (I2= 0%, P= 0.87;
I2= 32%, P= 0.22), or the AgeAccelHannum subgroup
when HTN was self-reported (I2= 0%, P= 0.48), or Phe-
noAgeAccel (I2= 0%, P= 0.61) when HTN was clinically
measured.

Fig. 4 Network analysis of genes annotated to CpG sites associated with any BP outcome using STRING-db; genes without connections are
hidden
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Publication bias and Sensitivity analysis

Visual assessment of publication bias by funnel plot
(Figure S1) determined significant asymmetry which was
further confirmed by a significant Egger’s regression test
(P= 0.0002). The small number of studies included in the
meta-analysis or heterogeneity among these studies may
have influenced the results of Egger’s regression test and
observed asymmetry, introducing potential variability and

making limiting the ability to draw definitive conclusions
regarding publication bias. Trim-and-fill analysis esti-
mated three missing studies (Figure S2), with the overall
association measure based on this analysis remaining
significant (β= 0.260, P= 0.0005; I2= 65.18%,
P < 0.0001). Given the observed heterogeneity, we per-
formed a sensitivity analysis of the eight included studies.
The overall effect remained consistent overall effect after
sequential exclusion of each individual study, (Figure S3)

Fig. 5 Random effects meta-analysis of the association of HTN with
epigenetic age acceleration subgrouped by epigenetic clock algorithm
and clinically-defined v self-report of hypertension. Horizontal lines
represent the 95% confidence interval (CI) for each study. Diamonds
indicate pooled effect and 95%CI for each subgroup and overall effect

(Z). χ 2 chi-squared test assesses whether observed difference in results
are compatible with chance alone; I2 heterogeneity index (0%–100%);
SD, standard deviation; IV, Random, a random effects meta-analysis is
applied with weights based on inverse variances
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indicating that the findings are stable and not driven by
one particular study.

Discussion

This study is the first to demonstrate that HTN is sig-
nificantly associated with accelerated epigenetic age by
systematically evaluating current evidence, highlighting an
important role for DNA methylation in the development and
pathophysiology of HTN in adults. Furthermore, each epi-
genetic clock algorithm individually demonstrated that
clinically measured HTN was significantly associated with
increased EAA.

In our meta-analysis of 16,136 individuals, we demon-
strated a significant association between HTN and increased
EAA combining three main epigenetic clock algorithms.
Accelerated epigenetic ageing was observed in individuals
with clinically measured HTN in subgroup analysis using
the Horvath clock, despite none of the included studies
individually reaching statistical significance
[17, 18, 68, 77, 78], perhaps due to a lack of statistical
power within individual studies. Similarly, a small meta-
analysis using the Horvath clock previously reported
accelerated biological ageing in >5600 participants with
clinically defined HTN across three pooled studies in which
no significant effect was observed in each individual cohort
[72]. While results are generally consistent for clinically
measured hypertension, there appears to be a disparity in
using self-reported HTN which may prevent identification
of positive associations between epigenetic age and HTN,
introducing potential misclassification bias. Self-reporting is
considerably reliable for ruling out HTN, however, the
probability of correctly identifying patients with HTN
through self-reporting is only mildly sensitive, correctly
identifying individuals with HTN in approximately 37% of
cases, indicating that a large number of hypertensive indi-
viduals remain undiagnosed [79]. In accordance, one well-
powered study within our meta-analysis reported no sig-
nificant association between Horvath EAA and self-reported
HTN in >5100 participants; perhaps attributable to the use
of self-reported HTN rather than more discriminatory clin-
ical measurement [80]. Subgroup analysis, employing
Hannum and PhenoAge clocks, also demonstrated acceler-
ated epigenetic ageing in individuals with both clinically
and self-reported HTN despite a lack of consistent evidence
across individual studies. Increased EAA was also con-
sistently associated with BP traits, such as SBP and DBP,
within studies that were ineligible for meta-analysis
(Table 4).

The overall association between HTN and EAA was
observed despite each clock using different CpG sites and
parameters in the algorithms used to calculate epigenetic

age, therefore, it is not surprising that heterogeneity was
observed in the meta-analysis. The heterogeneity observed
in the overall meta-analysis may reflect differences in study
design across the limited number of studies, including
variation in study design, epigenetic clock algorithm, par-
ticipant characteristics and levels of covariate adjustment.
The observed heterogeneity likely reflects the biological and
methodological diversity inherent to epigenetic ageing
measures. The pooled estimate is therefore interpreted with
caution, as an overall summary of the association between
EAA and HTN rather than a precise effect size. Although
the meta-analysis was limited by the small number of stu-
dies, the overall positive effect of the meta-analysis
remained robust following sensitivity analysis indicating
that the pooled result is not driven by one study (Figure S3).
Lack of overlap in genomic locations used in epigenetic
clock algorithms suggests that each clock investigates a
separate measure of biological age, drawing methylation
markers from entirely different regions of the genome [81].
Notably GrimAgeAccel was not represented among eligible
studies for meta-analysis, however, the overall association
of HTN and EAA using three first- and second- generation
clocks, suggests wide-ranging perturbations across the
epigenome.

The causal relationship between EAA and hypertension
remains an area of active investigation. Longitudinal studies
have suggested that individuals with higher baseline EAA
are at increased risk of developing incident hypertension
[82], supporting the hypothesis that accelerated epigenetic
aging may predispose to hypertension. Conversely, other
evidence indicates that established hypertension may itself
contribute to EAA through mechanisms such as vascular
remodelling, chronic low-grade inflammation, oxidative
stress, and endothelial injury, which are known to influence
DNA methylation patterns [68, 78]. These mechanisms
highlight the potential for a feedback loop where increasing
EAA and HTN mutually reinforce each other, and it cur-
rently remains unclear whether epigenetic alterations pre-
cede adverse cardiovascular remodelling events in HTN
[83]. It is plausible that epigenetic age acceleration is cor-
related with HTN but may not lie along the causal pathway
of incident HTN. Future research directed towards dissect-
ing molecular mechanisms connecting EAA and HTN may
help elucidate the mechanism underlying hypertension
physiology. Furthermore, studies investigating whether
epigenetic aging influences gene expression at the tran-
scriptomic or proteomic level and development of models to
identify key physiological pathways in HTN will be valu-
able in answering these important questions.

There is currently immense interest in epigenome-wide
methylation and epigenetic age investigations. In the sys-
tematic review a diverse range of experimental design was
observed in included studies (Fig. 2A). Large cohorts such as
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the Women’s Health Initiative (WHI) have employed the
450K array which has proved very useful and has been
extensively used over the past decade [18, 19, 23, 70, 84, 85].
Moving forward studies should take advantage of assays
providing more epigenomic coverage e.g., the Generation
Scotland Family Health Study utilises the IlluminaMethyla-
tionEPIC array which covers over 850 CpG sites [80, 86, 87].
DNA repetitive element methylation, however, is not directly
analysed in commonly used methylation arrays and are
therefore reported separately. Repeat elements LINE-1 and Alu
were the most commonly reported markers of global methy-
lation within this review (Table 1). Global methylation is
inversely associated with BP traits in the majority of studies
reporting significant outcomes (Fig. 2B) consistent with pre-
vious findings [8, 10].

The most frequently reported candidate gene was AGTR1
(Fig. 2C), methylation of which has been inversely asso-
ciated with HTN [88], while SNPs in AGTR1 result in
decreased expression and increased HTN risk [89]. MTHFR
methylation was also reported to be associated with HTN
(Fig. 2C). Common polymorphisms in MTHFR, resulting in
the 677TT genotype yields an increased risk of HTN [90].
Hypermethylation of MTHFR is observed in individuals
with the TT genotype, blood pressure is also higher com-
pared to CC counterparts. Significant reduction in MTHFR
methylation was observed in TT adults following inter-
vention with the enzyme co-factor riboflavin [11].

We identified 246 differentially methylated CpG sites
which were associated with both SBP and DBP (Fig. 3A).
Only three CpG sites were identified to be associated with
SBP, DBP and HTN, which may be due to the paucity of
epigenome-wide methylation studies investigating HTN as an
outcome. Three additional CpG sites were reported in five
publications (Table S4), including cg19693031 annotated to
the gene TXNIP [23, 28, 91–93]. Overexpression of TXNIP
has been associated with increased oxidative stress and
excessive ROS [94]. Seven studies report 1,391 DMRs to be
significantly associated with various BP traits, with 56 of these
common to both SBP and DBP (Fig. 3B). Eight DMRs were
reported in more than one publication (Table S5).

Network analysis of genes annotated from CpG sites
highlighted a protein cluster significantly enriched in bio-
logical processes associated with circadian rhythm (Fig. 4).
Variations in BP occur naturally with circadian rhythm, and
polymorphisms in genes associated with these proteins have
been associated with both circadian phenotype and myo-
cardial infarction [95–97]. Interestingly, functional analysis
of all CpGs associated with BP traits highlights chromatin
as the most significantly enriched cellular component
(PFDR= 1.59E-07) (Table S6) strengthening the evidence
for the role of epigenetic modifications in HTN [97, 98].

Taken together, our results demonstrate that HTN is asso-
ciated with accelerated epigenetic ageing indicating that EAA

is higher in hypertensive individuals compared to normoten-
sive individuals. The identification of robust biomarkers for
accelerated epigenetic age in HTN patients may help cardiol-
ogists identify patients at greatest risk of complications
and encourage lifestyle modifications such as exercise and
targeted nutritional interventions. Further research is required
to determine if EAA may be predictive of HTN outcomes
or if measures to reduce EAA are useful in management
of HTN.

Strengths and Limitations

This review critically investigates the association between
epigenetic age and HTN and importantly, is the first to
employ a systematic approach to identify the studies sub-
jected to meta-analysis to ensure a robust overview of
current evidence. The analysis was conducted in line with
PRISMA guidelines with defined inclusion and exclusion
criteria. We have outlined a comprehensive summary using
a combination of quantitative and qualitative evidence for
the role of DNA methylation in HTN and BP. Limitations
of this study include any fixed exposures that may influence
epigenetic age, such as age, sex or race, which were not
considered due to the small number of studies available for
meta-analysis, however, all included studies bar one,
cofounded for age and sex as appropriate [83, 99]. Studies
included within the meta-analysis were considered to be
sufficiently homogenous for analysis, however due to the
exploratory nature of combining multiple epigenetic clocks
studies, heterogeneity was introduced in the combined
estimate limiting the generalisability of findings and we
suggest caution in the interpretation of the pooled estimate
broad summary of the overall association between EAA and
HTN rather than a definitive result. A further limitation is
that most studies included within the meta-analysis were
conducted in the USA, while the remaining studies were
conducted in other predominantly white Caucasian popu-
lations such as the UK and Australia. Although, 5/8 of
included studies cofounded for ethnicity as a covariate, only
one cohort included only African American participants
(n= 227), introducing potential population bias and limit-
ing generalisation of findings to non-European populations.
The majority of studies assessed DNA methylation in blood
due to sample accessibility with lack of readily available
cardiac tissue studies remaining a constraint. DNA methy-
lation exhibits tissue-specificity, influenced by leukocyte
composition [100–105]. A recently defined cardiac-specific
epigenetic clock indicated, however, that both blood and
cardiac tissue reflect chronological age, suggesting that
blood is a suitable proxy for cardiac epigenetic age studies
[106, 107]. Moreover, the epigenetic clock algorithms
applied in included studies were trained on multiple tissue
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types, including blood, and have been demonstrated robust
performance across different tissues [16–19].

Conclusion

This study is the first to demonstrate that HTN is associated
with accelerated epigenetic ageing, by systematically eval-
uating the current evidence. There is need for further
epigenome-wide approaches, and we recommend the use of
clinically measured HTN over self-reported HTN in
appropriately powered studies of epigenetic age to provide
clarity on the relationship between environment, epigenome
and HTN. The identification of robust biomarkers for
accelerated epigenetic age in HTN patients may help clin-
icians identify patients at greatest risk of complications and
encourage lifestyle modifications such as exercise and tar-
geted nutritional interventions. In conclusion, accelerated
epigenetic ageing as an underlying mechanism for hyper-
tension holds much promise through the potential to impact
development of novel therapeutic targets for HTN.
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