

Perirenal fat: a missing link between mineralocorticoid receptor activation and cardiovascular-kidney-metabolic syndrome in primary aldosteronism

Koro Gotoh^{1,2} · Hirotaka Shibata²

Keywords Chronic kidney disease (CKD) · Perirenal fat (PRF) · Primary aldosteronism · MicroRNAs

Received: 29 October 2025 / Accepted: 7 November 2025

© The Author(s), under exclusive licence to The Japanese Society of Hypertension 2025

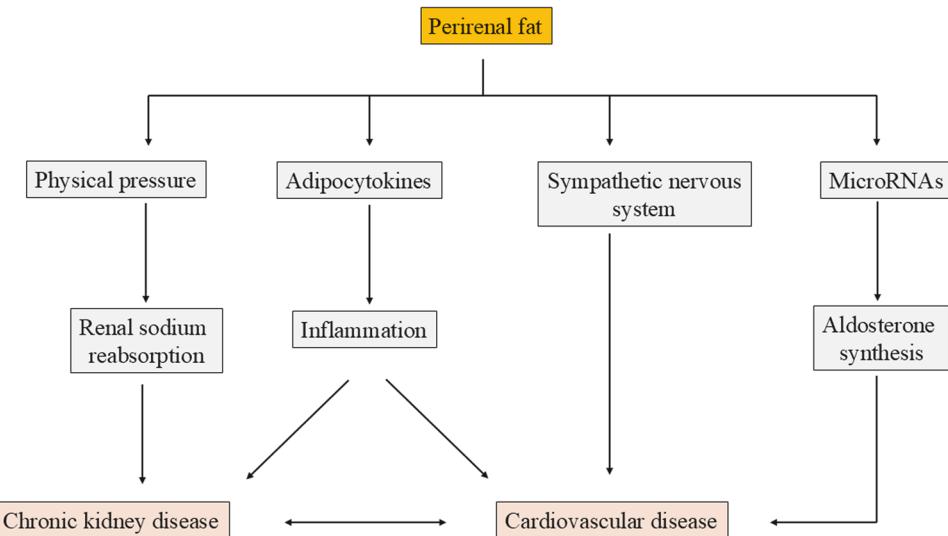
Obesity is a risk factor for metabolic diseases, including hypertension, type 2 diabetes, and dyslipidemia. These metabolic disorders cause vascular complications such as cardiovascular disease (CVD) and chronic kidney disease (CKD). Adipose tissue comprises a large number of adipocytes and is traditionally classified into visceral adipose tissue and subcutaneous adipose tissue based on its morphological appearance and location [1]. Perirenal fat (PRF), a component of the visceral adipose tissue that surrounds the kidney, was originally presumed to provide only mechanical support. However, PRF has been shown to have a closer relationship with renal disease among individuals with obesity, compared with other visceral fat deposits [2]. In addition, excess PRF has been identified as an independent risk factor for CKD and a contributor to the development of CVD [3].

In obese patients with hypertension who underwent bariatric surgery, a positive correlation was observed between PRF thickness and a reduction in the use of anti-hypertensive drugs. PRF thickness was greater in obese and hypertensive patients than in lean and normotensive subjects [4]. After bariatric surgery, a greater reduction in PRF is associated with a more effective amelioration of hypertension. Furthermore, PRF thickness positively correlates with serum creatinine levels and negatively with the glomerular filtration rate estimated by serum creatinine,

indicating an important relationship between PRF thickness and renal function [4]. Measurement of PRF thickness, especially by noninvasive and rapid ultrasound, or alternatively by more expensive methods, such as computed tomography or magnetic resonance imaging, might help identify obese patients at higher risk of obesity-related hypertension.

Excessive PRF compresses the kidney, increases the intrarenal pressure, and reduces the flow rate in the loop of Henle. These changes elevate sodium reabsorption in the proximal tubule, decrease sodium delivery to the macula densa, inhibit tubuloglomerular feedback, cause preglo-merular vasodilation, and increase renal blood flow, glo-merular hyperfiltration, and renin secretion.

Moreover, PRF produces adipocytokines such as leptin, interleukin (IL)-1 β , IL-6, and tumor necrosis factor- α (TNF- α), which may also contribute to obesity-related hypertension by stimulating inflammatory responses. Excess PRF can affect the kidneys via systemic or local secretion of inflammatory cytokines. PRF secretes TNF- α , which directly impairs renal arterial endothelial dysfunction, an early sign of vascular damage [5].


PRF stimulates the sympathetic nervous system (SNS). Efferent nerves innervate the PRF, while afferent nerves have been distributed in adipose tissue. The physiological function of PRF neural activity is presumably related to these anatomical characteristics. The afferent nerves of PRF may control the SNS through a negative feedback loop. Renal sympathetic activation increases with enhanced afferent signaling from PRF, followed by elevated arterial blood pressure, known as the “adipose afferent reflex.” Injection of leptin into PRF also activates this reflex without affecting serum levels of sympathetic-activating substances, suggesting that PRF directly regulates the cardiovascular system through the SNS [6].

✉ Hirotaka Shibata
hiro-405@cb3.so-net.ne.jp

¹ Research Center for Global and Local Infectious Diseases, Oita University, Yufu city, Oita, Japan

² Department of Endocrinology, Metabolism, Rheumatology and Nephrology, Faculty of Medicine, Oita University, Yufu city, Oita, Japan

Fig. 1 Relevant mechanisms for perirenal fat in chronic kidney disease and cardiovascular disease

A recent study by Mitsuno et al. showed that PRF accumulation is involved in the mechanisms linking mineralocorticoid receptor (MR) activation with cardiometabolic and renal dysfunction in patients with primary aldosteronism (PA). Moreover, PRF could be not only a prognostic factor but also a potential therapeutic target for MR antagonist (MRA)-resistant hypertension. These findings provide new insight into why MR overactivation results in the development and progression of cardiovascular-kidney-metabolic syndrome [7]. Here, we discuss the association between PRF microRNAs (miRNAs) and aldosterone levels. MiRNAs, non-coding RNAs consisting of 19–22 nucleotides that regulate gene expression, have been identified in tissues, circulation, and urine, and serve as potential biomarkers and mediators in various diseases, including CVD [8]. Recently, attention has focused on miR-24-3p derived from PRF, as a previous study has shown that miR-24-3p targets CYP11B2 in PA, affecting aldosterone synthesis [9]. In fact, miR-24-3p is significantly upregulated in the PRF of patients with PA than in those with non-adrenal disease (exclusion criteria: secondary hypertension [Cushing's syndrome, pheochromocytoma, renal and renovascular hypertension, hyperthyroidism, or aortic stenosis], use of glucocorticoids, or medications affecting the renin–angiotensin–aldosterone system). Furthermore, miR-24-3p expression in the PRF of patients with PA positively correlates with plasma aldosterone concentration, left ventricular posterior wall end-diastolic thickness, body mass index, and PRF thickness [10]. These findings indicate that PRF-derived miR-24-3p may contribute to poor responsiveness to MRA in patients with PA, and that the upregulation of miR-24-3p in PRF may be involved in the high risk of CKD in this population (Fig. 1).

However, little is known about the relationship between circulating miR-24-3p and CKD, or whether miR-24-3p is directly involved in MR signaling. Additional pre-clinical and clinical studies are required to address these questions.

Compliance with ethical standards

Conflict of interest The authors declare no competing interests.

Publisher's note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References

1. Lopes LL, Bressan J, Peluzio MDCG, Hermsdorff HHM. *LINE-1* in obesity and cardiometabolic diseases: a systematic review. *J Am Coll Nutr*. 2019;38:478–84.
2. Sun X, Han F, Miao W, Hou N, Cao Z, Zhang G. Sonographic evaluation of para- and perirenal fat thickness is an independent predictor of early kidney damage in obese patients. *Int Urol Nephrol*. 2013;45:1589–95.
3. Liu BX, Sun W, Kong XQ. Perirenal fat: a unique fat pad and potential target for cardiovascular disease. *Angiology*. 2019;70:584–93.
4. Moritz E, Dadson P, Saukko E, Honka MJ, Koskensalo K, Seppälä K, et al. Renal sinus fat is expanded in patients with obesity and/or hypertension and reduced by bariatric surgery associated with hypertension remission. *Metabolites*. 2022;12:617.
5. Hall JE, Mouton AJ, da Silva AA, Omoto ACM, Wang Z, Li X, et al. Obesity, kidney dysfunction, and inflammation: Interactions in hypertension. *Cardiovasc Res*. 2021;117:1859–76.
6. Li P, Liu B, Wu X, Lu Y, Qiu M, Shen Y, et al. Perirenal adipose afferent nerves sustain pathological high blood pressure in rats. *Nat Commun*. 2022;13:3130.
7. Mitsuno R, Nakamura T, Nakamura K, Kaneko K, Kojima D, Mizutani Y, et al. Effects of perirenal fat accumulation on cardiometabolic and renal functions and mineralocorticoid receptor

activation in primary aldosteronism. *Hypertens Res.* 2025. <https://doi.org/10.1038/s41440-025-02401-x>.

8. Lewis BP, Burge CB, Bartel DP. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. *Cell.* 2005;120:15–20.
9. Robertson S, MacKenzie SM, Alvarez-Madrazo S, Diver LA, Lin J, Stewart PM, et al. MicroRNA-24 is a novel regulator of aldosterone and cortisol production in the human adrenal cortex. *Hypertension.* 2013;62:572–8.
10. Li X, Luo M, Zeng Y, Zhang R, Lin X, Du Y, et al. MicroRNA-24-3p targeting Top1 in perirenal fat is involved in circulating inflammation and high cardiovascular disease risk in patients with primary aldosteronism. *J Transl Med.* 2025;23:345.