
ARTICLE

Observationally quantified reconnection providing
a viable mechanism for active region coronal
heating
Kai E. Yang 1,2,3, Dana W. Longcope2, M.D. Ding1,3 & Yang Guo 1,3

The heating of the Sun’s corona has been explained by several different mechanisms

including wave dissipation and magnetic reconnection. While both have been shown capable

of supplying the requisite power, neither has been used in a quantitative model of obser-

vations fed by measured inputs. Here we show that impulsive reconnection is capable of

producing an active region corona agreeing both qualitatively and quantitatively with

extreme-ultraviolet observations. We calculate the heating power proportional to the velocity

difference between magnetic footpoints and the photospheric plasma, called the non-ideal

velocity. The length scale of flux elements reconnected in the corona is found to be around

160 km. The differential emission measure of the model corona agrees with that derived using

multi-wavelength images. Synthesized extreme-ultraviolet images resemble observations

both in their loop-dominated appearance and their intensity histograms. This work provides

compelling evidence that impulsive reconnection events are a viable mechanism for heating

the corona.
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Heating of the Sun’s corona is often attributed to either
Alfvén waves1,2 or nanoflares3,4 of which many aspects
have been studied at length5–11. Recent investigations

have yielded new insights into the coronal heating mechanism.
For example, observations from the Atmospheric Imaging
Assembly (AIA)12 on board Solar Dynamics Observatory (SDO)
have shown that the total energy flux observed in low-frequency
Alfvén waves is sufficient to supply the energy heating the quiet
corona, but not the active corona13. This does not, however, rule
out the possibility of waves heating the active corona, if obser-
vations had underestimated the actual energy flux, perhaps
occurring on numerous randomly distributed loops14. Moreover,
there is certainly some energy in the frequency range outside that
observed. In order to account for coronal heating, the energy flux
in Alfvén waves would have to be dissipated. Several energy
dissipation mechanisms have been proposed, including resonant
absorption15–17 and phase mixing18, in an inhomogeneous
plasma. Nevertheless, it is not yet clear what fraction of the energy
flux carried by Alfvén waves can be dissipated in the corona by
any of the mechanisms proposed.

The alternative scenario, that of magnetic reconnection,
assumes that the corona is heated by numerous small-scale
energy release events called nanoflares3,4. This hypothesis is
supported by the reasonable correspondence between the differ-
ential emission measure (DEM) observed and that predicted from
random heating by nanoflares19. Another investigation showed
that the corona could be well simulated using the observed solar
velocity spectrum and Ohmic dissipation from an artificially high
resistivity20.

Magnetic reconnection occurs when an electric field, directed
parallel to the local magnetic field, changes the connectivity of
field lines, by allowing them to move independently of the plasma
itself. Such a process is able to release energy stored in the large-
scale magnetic field. A key measure of independent motion is the
apparent slippage of field line footpoints relative to the plasma in
which they would otherwise be anchored21–23. It is possible to
observe and measure this non-ideal motion by tracing field lines
from one footpoint to its conjugate footpoint in a sequence of
coronal field models. If the starting footpoint is fixed to move
with the plasma, reconnection will cause the conjugate footpoint
to move at a velocity different from the plasma. This velocity
difference, which we hereafter call the non-ideal velocity, is
proportional to the parallel component of the electric field inte-
grated along that field line, a measure of the reconnection rate21.
The non-ideal velocity is also known as the slipping velocity
found during solar flares23–25. If reconnection is somehow heat-
ing the corona, as nanoflare models assume, then the local
heating rate will be proportional to the reconnection rate and
thus to the non-ideal velocity. Our observational measure of the
reconnection electric field provides a heating rate without
assuming a particular dissipation mechanism, such as Ohmic
heating used in many investigations20,26,27, about which there is
still great uncertainty28. Here, we show that this hypothesis leads
to an equilibrium, active region corona qualitatively and quan-
titatively similar to observations.

Results
Energy released by magnetic reconnection. Reconnection
releases magnetic energy only if it occurs in the presence of
current. Transferring a finite amount of flux, δΦ, across a net
current I, will release energy δE = IδΦ29. This is the electro-
magnetic work done by the reconnection, and is valid regardless
of how that released energy is converted into non-magnetic
forms. If this flux element is reconnected in impulses repeating
with a mean interval of τr, the average heating power will be

Pi = IδΦ/τr. This expression accounts for the integrated recon-
nection electric field through Faraday’s law, δΦ=τr � �R

Ejjds.
The flux transfer event will slip the loop’s footpoints a distance
roughly equal to the diameter of the reconnected flux element,
L ¼

ffiffiffiffiffiffiffiffiffiffiffi
δΦ=B

p
, where B is the mean field strength at the photo-

sphere where the non-ideal motion is observed. The mean non-
ideal velocity will then be vs ¼ L=τr. The parallel current across
which this reconnection occurs is I = αδΦ/μ0, where α is the local
twist in the force-free field: ∇ × B = αB. The average heating rate
for the single flux element is therefore Pi ¼ αvsLδΦB=μ0. The
flux elements may be too small to resolve, so a resolvable pho-
tospheric area A will include AB=δΦ sub-resolution elements. The
mean energy flux, F, input into the coronal volume anchored to
that area will be

F ¼
P
i
Pi

A
¼ 1

μ0
αLvsB

2
: ð1Þ

This is the rate of heating due to energy released by repeatedly
reconnecting flux elements of diameter L independent of the
mechanism by which the energy is eventually dissipated. There is
not yet an ab initio theory of magnetic reconnection predicting
the size of elemental reconnection events. With the improvement
of high-resolution instruments30–32, some details of the magnetic
strands have been observed9,33. The observed width of the
magnetic strands might or might not be directly related to the
diameter of a reconnected tube. Nevertheless, for simplicity, we
take a value of 160 km for the parameter L in the model and
assume it is the same for all flux elements. Compared with recent
observations9,33, this value would be regarded as the upper limit
for the width of the magnetic strands.

Measuring non-ideal velocity. The non-ideal velocity of any field
line is measured with the following procedure (Fig. 1a). We
reconstruct the coronal magnetic field from a non-linear force-
free field model34 and through it trace field lines from positive to
negative footpoints, denoted p and n respectively. We perform
this for magnetic equilibria from two closely spaced times, t0 to t1
separated by δt = t1 − t0 = 720 s, the cadence of the vector mag-
netograms from the Helioseismic and Magnetic Imager (HMI)
35,36. At the initial time t0, we trace a field line from p0 to n0,
indicated by the yellow loop. The plasma elements initially
located at those points move according to the photospheric
velocity field derived using the Differential Affine Velocity Esti-
mator for Vector Magnetograms (DAVE4VM)37 applied to the
same pair of HMI vector magnetograms. By time t1 this flow has
taken p0 to p1 and n0 to n'1. Had the corona evolved without
reconnection, n'1 would be conjugate to p1 through the coronal
field found at time t1. Owing to the presence of reconnection this
is not the case and the footpoint conjugate to p1 is located at some
other point n1. The difference in these locations, δn ¼ n1 � n′

1

�� ��,
is therefore due entirely to the reconnection electric field21. The
non-ideal velocity vs = δn/δtmeasures the integrated reconnection
electric field along that one field line. To obtain the corresponding
velocity of the positive footpoint, we fix the negative footpoint.
We would expect the two measures to yield the same value of heat
flux since the electric field integral would be the same. In practice,
the heat flux related to the two results would differ slightly due to
differences in the actual field line used, but must converge as δt→
0.

Modeling the corona. The next step is to determine the plasma’s
response to the heat input derived above5. There has been
extensive work modeling the corona in one and more
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dimensions38–57. Our modest objective, however, is simply to
obtain the distribution of density and temperature from a spe-
cified heat input. Toward this end we assume coronal equilibrium
and obtain a value of temperature and density at each point along
an equilibrium loop38–41,58 (details in Methods section). To jus-
tify our equilibrium assumption, we note that the reconnection
event frequency for a typical non-ideal velocity is 5 km s−1/160
km = 0.03 Hz. Since this rate is high compared to radiative
cooling rate59, impulsive reconnection will have the effect of a
steady input, known as a nanoflare storm. Though there are a lot
of dynamic processes in the real solar corona, the equilibrium
approximation is still a good one under conditions such as these
described above.

We trace the field line at t1 from a given coronal point to its
two footpoints. We then average the reconnection heat flux from
the footpints, Fp and Fn, which are evaluated by Eq. 1 at those
points in the photosphere. The volumetric heating function used
in the equilibrium model depends on the dissipation mechanism,
about which we have made no assumption. We follow previous

authors39,58 by adopting an exponential heating distribution
HðsÞ ¼ H0 expð�s=ZÞ, where s is the distance from the nearest
footpoint to the initial coronal point. We determine H0 using the
energy into the loop averaged over that from the two footpoints
2
R L

2
0HðsÞds ¼ Fp þ Fn

� �
=2, where L is the total loop length. We

express the heating scale length Z ¼ RL=2, where R is a free
parameter in our model. The density and temperature for the
specified coronal point are taken to be those from the
corresponding loop solution. This procedure is then repeated
for every point in the corona serving as the initial point for a new
loop. Our method resembles those of some previous studies41,60,
but we populate every coronal point independently rather than
superposing distinct loops.

Application to observations. We perform the above computation
on the active region (AR) NOAA 11416 on 11 February 2012,
which was well observed by SDO. We expect this region to be well
approximated by our equilibrium assumption because the mag-
netic flux variation was less than 1% during 2 h and no obvious
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Fig. 1 A model showing the non-ideal velocity and the measurement results. a Coronal loops show the measurement of the non-ideal velocity. The letters p
and n stand for the conjugate footpoints of a loop and the subscripts 0 and 1 refer to time labels for the start and end time, t0 and t1, for one measurement,
respectively. The yellow loop represents the initial loop at t0 and the transparent yellow loop is the hypothetical version at time t1 under the assumption of
ideal MHD. The footpoints are advected to new places by the photospheric plasma flow, as indicated by the red and blue arrows in positive and negative
polarities, respectively. The orange loop is the actual coronal loop at time t1. The distance denoted by the two-headed arrow is the non-ideal distance δn
due to magnetic diffusion (reconnection). b The extrapolated magnetic field at 18:10 UT. c The photospheric plasma velocity field overplotted on the
vertical magnetogram from HMI (background). The blue and red arrows represent the plasma flow with positive and negative magnetic flux, respectively. d
The force-free parameter, α, calculated from the vector magnetogram at 18:10 UT. e The measured non-ideal velocity. Here, we only calculate the non-ideal
velocity where both footpoints of the field lines are rooted within the field of view and Bj j>20 G in the magnetograms. f The heating flux calculated from
the reconnection model with the parameter L= 160 km
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flares occurred during the time of our modeling. The non-ideal
velocity, twist parameter α and the heating flux are calculated
using an HMI vector magnetogram pair from 17:58 and 18:10
UT. Figure 1b–d shows the reconstructed magnetic field at 18:10
UT, the photospheric plasma velocity computed using
DAVE4VM, and the distribution of α at the photosphere. Fig-
ure 1e, f shows the magnitude of the non-ideal velocity and the
heating flux F, found from Eq. 1, respectively.

For the sensitivity analysis of the parameter L, and searching
for the best fitting of the parameter R, we vary the values of these
two parameters over a range (9 km<L< 900 km and
0:1<R<1:0) and compute the density and temperature through-
out the corona and from these synthesize a column DEM (Fig. 2b
and Supplementary Fig. 1b) over a subarea (Fig. 2a). This is then
compared with the DEM inverted directly from multi-channel
AIA observations in the same subarea. This yields a discrepancy
quantified by χ2. The results show that 160 km is a good choice of
L, and the optimal free parameter of R is approximately 0.3
(Fig. 2c). We also check the sensitivity ofL and the fitting quality
of R by comparing the intensity histograms formed over a larger
subarea (shown in Fig. 3a) in six different AIA bandpasses
(Fig. 3b–g and Supplementary Fig. 2b–g). The result is similar to
that from the DEM distribution (Fig. 3h).

We use this optimized parameter, R ¼ 0:3 from DEM, to
synthesize extreme-ultraviolet (EUV) images of the entire AR,
and compare these to SDO/AIA images in Fig. 4. Many
corresponding structures can be found between them, e.g., the
brightening loops, moss structures and large loops (indicated by
numbers 1–4 in Fig. 4). The similarities are remarkably good for a
model with only one global free parameter, R, although the
agreement is not perfect. Note that the non-ideal velocity is
structured at very small scales (Fig. 1e). This structuring is
mapped to the heat flux F (Fig. 1f) leading to the appearance of
isolated loops in the synthetic EUV images (Fig. 4). This is a
notable point of agreement considering, as stated above, the
image was constructed voxel by voxel, and not from superposing
elemental loop structures.

Comparison with the previous studies59,61 shows the value of
L to lie within the range of the characteristic size of the magnetic

strands. In particular, in the recent high-resolution observations,
some ultra-fine channels were found with a diameter of 100 km
and co-spatial with brightenings in EUV bandpasses33. Thus, the
choice of our parameters seems very reasonable. It could be
further constrained by the future instruments such as Daniel K.
Inouye Solar Telescope.

Discussion
To further analyze the reliability of our method, we deduce the
relative errors in the key parameters, i.e., the standard deviation
from the mean, by performing 50 new versions of the entire
calculation after adding random errors with a standard deviation
of 20 G to the vector magnetogram at the lower boundary. The
results, shown in Fig. 5, demonstrate that the relative errors
decrease with the mean values for the plasma velocity, non-ideal
velocity and heating flux. Those pixels with magnetic field
strength greater than 100 G have relative errors less than 0.6
(Fig. 5d–f). The heat flux averaged over the strong magnetic field
region ( Bj j>100 G) is approximately 800Wm−2 comparable to
that known to heat a relatively weak active region62. Thus, the
energy released by nanoflares can be directly estimated by our
method, yielding a quantitative and spatially distributed heating
rate, without being extrapolated from the occurrence distribution
of larger flares63.

The DEM is a promising diagnostic tool when we analyze the
multi-wavelength coronal emissions. The practice of its mea-
surement does, however, have limitations. To probe these lim-
itations we re-compute the DEM using the synthesized EUV
images from the modeled corona. We compare this with the
DEM computed from the model and that computed directly from
the observations (Fig. 6). We can see that the DEM from the
synthesized EUV images (the red line in Fig. 6) is very close to
that from the model with the largest departure occurring at lower
temperatures. This suggests that, at least in the higher tempera-
ture domain, the DEM inversion can yield reasonable results.

Even adopting an optimization method, there remains a dis-
crepancy in the DEMs at the highest temperatures. This may
result from our use of an equilibrium loop to estimate the plasma
response to heating. We have demonstrated above that the mean
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time between typical impulsive events is short enough to justify
the equilibrium assumption. There may, however, exist sig-
nificantly larger events occurring at a significantly lower fre-
quency, which would fall outside the equilibrium assumption.
Larger, less frequent nanoflares are, in fact, known to produce
locally high temperature and high density in the corona5.
Another questionable assumption was that the loop had an
upright, semi-circular axis geometry and a uniform cross-
sectional area. In fact, violation of these assumptions might lead
to some discrepancy between the model and observations. The
axis geometry will primarily affect the loop’s legs, where the scale
height is the smallest. Any inclination away from the purely radial
legs, as we have assumed, would therefore presumably enhance
the DEM only at the lowest temperatures.

Variation in the cross-sectional area, on the other hand, would
be inversely proportional to the magnetic field of the loop. In
most cases, the loop constricts from the corona to the chromo-
sphere gradually, and such a constriction occurs most sig-
nificantly at the loop’s feet. This diminished area, and thus
diminished volume, would decrease the DEM at the lowest
temperatures64. We therefore expect that accounting for these
effects would produce results akin to that of using a different
value of the parameter R in the present model58.

In conclusion, we have developed a reconnection-based model
which can estimate the heating rate from the observed non-ideal

velocity. The model can predict the temperature and density
distributions of the corona, at least to first approximation, with
only one global free parameter. Our model avoids using an
artificially high resistivity, or specifying any form of dissipation at
all. The predicted thermal structure of the corona, in particular
the DEM and intensity distributions, resemble the observations
both qualitatively and quantitatively. Thus, our study indicates
that magnetic reconnection is a plausible heating mechanism to
maintain an active region corona remarkably similar to the
observed one.

Methods
Coronal magnetic field and photospheric plasma velocity. We use HMI level 1.5
vector magnetograms from the Space Weather HMI Active Region Patches data65

for AR 11416 from 17:58 and 18:10 UT on 11 February 2012, and the pair of three-
dimensional magnetic fields is modeled with the non-linear force-free assumption
by using the optimization method34, which minimizes a functional combining the
magnetic field divergence, the Lorentz force, and the error in the observations. The
lateral and top boundaries are set according to the method presented in a previous
study34. The photospheric plasma velocity is inferred by solving the magnetic
induction equation using the DAVE4VM37 and the window size used for it is
selected as 23 pixels.

Equilibrium loop. The coronal plasma density and temperature are found by
assuming the magnetic loop to be in equilibrium38,39,58, with heating balanced by
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the radiation and thermal conduction. We solve the energy equation

� P2

4k2BT
2
ΛðTÞ þ ∂

∂s
κ
∂T
∂s

� �
þ HðsÞ ¼ 0; ð2Þ

where s is the length along the loop starting from one footpoint, kB is the Boltz-
mann constant, T and P are the temperature and gas pressure, respectively. The
first term is the energy loss by radiation, where Λ(T) is the radiative loss function,
which we take from CHIANTI v8.166,67 complemented with the coronal abun-
dance determined by Schmelz et al.68. The second term is the thermal conduction,
where κ = κ0T2.5 is the Spitzer conductivity, and κ0 = 10−6 erg cm−1 s−1 K−7/2. The
third term is the local volumetric function normalized to yield the heat flux given
by Eq. 1. We take an exponential profile for H(s) as described in the section
'Modeling the corona'. The boundary condition is set as,

Tð0Þ ¼ 104 K;

κ∂T∂s
��
s¼0

¼ 0:

(

We solve for the pressure using hydrostatic balance

dP sð Þ
ds

¼ � g�m
kBT sð Þ P sð Þcos π

s
L

� 	
; ð3Þ

where m is the average particle mass, g⊙ denotes the gravitational acceleration on
the photosphere and the cosine comes from assuming an upright semi-circular
geometry, which is an approximation of the real geometry from the three-
dimensional coronal magnetic field. Thus, the effects of the inclined loop on the
profiles of temperature and density are neglected in our calculation.

The above equations are solved as an initial value problem starting from s = 0.
For each value of L, F and R, we perform the initial value integration using the
initial condition P(0) as a parameter adjusted via the shooting method69 to satisfy
the condition of symmetry about the loop top, ∂T=∂sjs¼L=2¼ 0. The density and
temperature are recorded at a series of points along the solution. In this way we
create a set of equilibrium loop solutions characterized by different values of length
L, heat flux F and ratio of heat scale length R. We perform a single synthesis for a
fixed value of R by tracing all field lines as described in the section 'Modeling the
corona'. For each field line we determine F and L, and then interpolate from the
loop set described above to deduce the temperature and density at the coronal
point in question.

Differential emission measure. The column DEM derived from our model is
calculated directly by DEM(T) = d(n(T)2h)/dT, where h is the line-of-sight distance
and n(T) is the plasma density with temperature T. Then the synthetic fluxes of the
optically thin EUV images are obtained by Ii ¼

R
DEM Tð ÞKiðTÞdT , where Ki(T) is

the response function of the AIA instrument for the ith wavelength from SDO
package in Solar Software. This produces synthetic images with units of DN s−1,
exactly the same as the observations; no scaling is performed. On the other hand,

the DEM can be inverted from observations using the regularized inversion
method70 with the AIA EUV images at six bandpasses (94, 131, 171, 193, 211 and
335 Å) in the temperature range of 5:5<log10ðTÞ<7:0. We conduct 10,000 Monte-
Carlo realizations in order to estimate the errors in the results.

Data availability. The data that support the findings of this study are available
from the corresponding author upon reasonable request.
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