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Azole antifungals inhibit the fungal ergosterol biosynthesis pathway, resulting in either
growth inhibition or killing of the pathogen, depending on the species. Here we report that
azoles have an initial growth-inhibitory (fungistatic) activity against the pathogen Aspergillus
fumigatus that can be separated from the succeeding fungicidal effects. At a later stage, the
cell wall salvage system is induced. This correlates with successive cell integrity loss and
death of hyphal compartments. Time-lapse fluorescence microscopy reveals excessive
synthesis of cell wall carbohydrates at defined spots along the hyphae, leading to formation of
membrane invaginations and eventually rupture of the plasma membrane. Inhibition of p-1,3-
glucan synthesis reduces the formation of cell wall carbohydrate patches and delays cell
integrity failure and fungal death. We propose that azole antifungals exert their fungicidal
activity by triggering synthesis of cell wall carbohydrate patches that penetrate the plasma
membrane, thereby killing the fungus. The elucidated mechanism may be potentially
exploited as a novel approach for azole susceptibility testing.
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he antifungal activity of an azole (benzimidazole) was first

described in 1944!. Since then, azoles have come a long

way, nowadays representing one of the most important
drug classes for the control of plant diseases caused by fungi as
well as for the treatment of fungal infections in human and
veterinarian medicine. Azoles can be categorized in two groups,
the imidazole derivatives (e.g., ketoconazole and miconazole) and
the newer triazole derivatives (e.g., fluconazole and voriconazole).
Both groups have in common that they interfere with ergosterol
biosynthesis. Ergosterol is the primary sterol in fungal mem-
branes and presumably contributes to membrane fluidity and
function®3. Azoles act by directly inhibiting the lanosterol 14a-
demethylase (CYP51), a key enzyme in the ergosterol biosynthesis
pathway, which catalyzes demethylation of the intermediates
eburicol or zymosterol at position C-14. As a consequence, the
fungal cells suffer from depletion of ergosterol and, according to
some authors, from the accumulation of toxic sterol precursors
(14a-methyl sterols)24.

While the interaction of azoles and their target enzymes have
extensively been analyzed on a molecular and structural level
(reviewed in ref.), surprisingly little is known about the phy-
siological consequences of CYP51 inhibition on the fungal cell
biology. Based on several studies performed in the early 1980s, it
was hypothesized that ergosterol depletion affects fungal viability
and growth in various ways: by increasing the permeability of
membranes, decreasing or increasing the activity of membrane-
bound enzymes in the plasma membrane and mitochondria,
stimulating uncoordinated chitin synthesis or interfering with
fatty acid synthesis (reviewed in refs.>%). More recently, it has
been proposed that azoles trigger the production of reactive
oxygen and nitrogen species in certain fungi’~!0. Some of the
effects were potentially attributed to additional, CYP51-
independend activities of the imidazole derivatives used at this
time, such as direct binding to lipids®!'!. Undoubtedly, azoles
have divergent effects depending on the fungal species. They exert
generally a fungistatic activity against yeasts, e.g., Candida spp.,
while being fungicidal for certain medically important molds, e.g.,
Aspergillus spp>!2. The nature of the fungicidal effect on Asper-
gillus species remained essentially unexplained.

Here, we provide an explanation on how azoles kill the major
fungal pathogen Aspergillus fumigatus. This mold is the primary
cause of invasive aspergillosis, a severe and life-threatening infection
with an estimated global incidence of 200,000 human cases per year
and a mortality rate of 30 to 95 %'>!4. The triazole voriconazole is
highly effective against A. fumigatus and recommended as first-line
treatment. Here, we show that the fungicidal activity of voriconazole
against A. fumigatus is linked to azole-induced cell wall remodeling
defects, which cause cell wall stress, bending of the plasma mem-
branes to the inside, cell wall integrity failure, and death. The death
is associated with heterogeneous phenotypes, which include
expulsive release of cytoplasm, mitochondrial fragmentation, and
mitochondrial lysis. Further, we demonstrate that the fungicidal
effect is a distinct mechanism that can be separated from the solely
fungistatic activity of the azoles. Our findings are linked to azole-
mediated inhibition of CYP51 because we were able to reproduce all
observations by genetically depleting the lanosterol 14a-
demethylase. Moreover, analysis of clinical A. fumigatus isolates
suggests a potential application in routine diagnostics for detecting
clinically relevant azole resistance.

Results

Manifestations of azole-induced fungal death is heterogeneous.
In viable cells, mitochondria form tubular and highly dynamic
networks. We exposed A. fumigatus wild-type hyphae expressing
a mitochondria-targeted green fluorescent protein (GFP) to

fungicidal concentrations of voriconazole. Examination of static
images of samples fixed after approximately 12h voriconazole
exposure revealed a mixed picture. Several hyphae did not show
any fluorescence signal. Some hyphae presented a tubular, others
a highly fragmented mitochondrial morphology. Occasionally, we
observed hyphae with homogeneous cytosolic GFP fluorescence
and GFP positive vesicles outside of hyphae. To understand this
heterogeneity, we followed the fate of individual Aspergillus
hyphae exposed to voriconazole with microscopy over time. As
shown in Fig. la-c and Supplementary Movies 1-6, we observed
essentially three manifestations of voriconazole-induced fungal
death: First, sudden expulsive release of cytoplasm (Fig. la and
Supplementary Movies 1 and 2). Second, arrest of mitochondrial
dynamics combined with mitochondrial fragmentation (Fig. 1b
and Supplementary Movies 3 and 4). Third, intracellular lysis of
mitochondria (Fig. 1c and Supplementary Movies 5 and 6). As
expected, voriconazole caused a significant and concentration-
dependent growth repression within 1 h after addition. However,
the hyphae always survived for at least 2.5-3 h, independent of
the applied azole concentration (Supplementary Movies 1-6). As
shown in Fig. 1d, the frequency of the individual manifestations
of death was directly related to the applied azole concentration.
At lower concentrations we observed primarily the expulsive
release of the cytoplasm, at higher concentrations mitochondria
preferentially lyse, releasing their mitochondria-targeted GFP to
the cytosol (see Supplementary Movies 7-10). Importantly,
careful examination of the movies revealed a sudden subtle
shrinking of the hyphae immediately before the occurrence of
mitochondrial fragmentation or lysis (Supplementary Movies 1-
10). This indicates a cell integrity failure followed by lowering and
dissipation of the intracellular pressure preceding all three man-
ifestations of death.

Azole-induced stress activates the fungal cell-wall salvage sys-
tem. In A. fumigatus, maintenance of the cell wall integrity (CWI)
relies on a conserved fungal stress signaling pathway (reviewed in
ref.1). As our time-lapse microscopy data indicated cell integrity
failure, we analyzed the activation state of this pathway upon
exposure of A. fumigatus to voriconazole over time. To this end,
we applied a novel reporter construct where the firefly luciferase
is placed under the control of the Aspergillus niger agsA promoter,
which is readily induced by the cell wall salvage system upon
stress!®. Interestingly, the reporter was strongly induced after a
two to 3h lag phase following azole addition (Fig. le). In
agreement with our previous results, the voriconazole con-
centration did not influence the time to onset, but correlated with
the strength of induction. Taken together, this indicates that
azoles trigger activation of the cell wall salvage system at the same
time when the hyphae begin to die.

Hyphal septa improve survival of azole-treated Aspergillus
hyphae. We have recently shown that hyphal septa are essential
for survival of A. fumigatus exposed to echinocandin anti-
fungals!”. Echinocandins inhibit biosynthesis of the cell wall
carbohydrate B-1,3-glucan. As a consequence, hyphal cell walls
occasionally rupture, thereby dooming the affected hyphal com-
partment to death. We speculated that septa could have a similar
protective role for survival of A. fumigatus hyphae exposed to
azoles. Hyphae of wild-type and of an Aspergillus mutant that is
unable to form septa (Arho4)!8 as well as the complemented
mutant (rho4) were exposed to voriconazole. To discriminate
viable from dead hyphae, strains were used that constitutively
express cytosolic GFP. After 5 h, hyphae were stained with trypan
blue to quench the GFP signal in lysed compartments and ana-
lyzed with a fluorescence microscope (Fig. 1f). In agreement with
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our hypothesis, the amount of viable microcolonies (herein
defined as microscopic colonies consisting of hyphae that origi-
nate from single conidia) of the Arho4 mutant was drastically
reduced compared to wild-type and the complemented mutant.
Remarkably, the number of fully viable microcolonies of the wild-
type and the complemented mutant were in the same range as
those of the Arho4 mutant. Although this clearly shows that septa
contribute to survival of A. fumigatus challenged by azoles, the
minimal concentration required to inhibit growth of the Arho4
mutant is similar to that of wild-type!8. In addition, prolonged

a

voriconazole exposure of the wild-type (e.g., >24 h) caused death
of essentially all microcolonies (not shown). This demonstrates
that hyphal septa can extend the survival time but not prevent
death caused by azole antifungals.

Azoles trigger the formation of cell wall carbohydrate patches.
As shown in Fig. 1f, the trypan blue dye strongly stained several
undefined patch-like structures within the dead and living
voriconazole-exposed hyphae. These structures were not present
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in hyphae not exposed to azoles (Supplementary Fig. 1). Only
recently, it was reported that trypan blue can label cell wall car-
bohydrates chitin and glucan!®. To validate and eventually dis-
criminate these potential two carbohydrates, we stained hyphae
raised under similar conditions with the chitin-specific dye cal-
cofluor white and the glucan-specific dye aniline blue. Both dyes
strongly accumulated in the patch-like structures, thereby indi-
cating that they contain large amounts of both chitin and glucan
(Fig. 2a, b). Intriguingly, the formation of the cell wall carbohy-
drate deposits strongly correlated with the induction of the cell
wall salvage system (Fig. 2c).

All experiments so far have been performed with hyphae.
However, it has been reported that azoles also act on conidia of A.
fumigatus. After exposure to fungicidal concentrations of an azole
conidia lose the ability to germinate!2. We were wondering if
carbohydrate patches could also be observed in conidia when
treated with azoles, which is indeed the case as shown in Fig. 2d.
The conidia accumulated carbohydrate patches that fill up to one
quarter of the conidial volume. Finally, the conidia died similar to
azole-exposed hyphae (Fig. 2d).

Repression of CYP51 phenocopies azole-treated wild-type.
Several antifungal activities reported for azole derivatives in ear-
lier studies are probably not linked to inhibition of the target
enzyme lanosterol 14a-demethylase®!l. We, therefore, ques-
tioned whether the effects we observed in our study are related to
inhibition of the lanosterol 14a-demethylase by voriconazole or
constitute target-independent effects. To this end, we constructed
a mutant that allowed us to specifically address CYP51-dependent
effects by genetically depleting the target enzyme. A. fumigatus
encodes two functionally redundant CYP51 genes, cyp51A and
cyp51B. To conditionally repress CYP51, a mutant was con-
structed where we replaced the endogenous promoter of cyp51A
with a doxycycline-inducible Tet-On promoter and subsequently
deleted cyp51B. The resulting mutant, cyp51A;.0,Acyp51B, had
no apparent growth phenotype compared to wild-type under
induced conditions, but was non-viable under repressed condi-
tions. To visualize the mitochondrial morphology, the conditional
CYP51 mutant was additionally transformed with a construct for
expression of mitochondria-targeted GFP. Repression of CYP51
caused an initial growth inhibition followed by the three different
manifestations of fungal death, which we also found after treat-
ment of wild-type with voriconazole: that is expulsive release
of mitochondria (cytoplasm) (Fig. 3a), fragmentation of the
tubular mitochondrial network (Fig. 3b) and mitochondrial lysis
(Fig. 3¢). In addition, we observed excessive synthesis of cell wall
carbohydrates at defined spots, very similar to the chitin and

glucan accumulation observed with wild-type exposed to vor-
iconazole (Fig. 3d). This clearly demonstrates that the effects of
voriconazole we describe above are exclusively attributed to
inhibition of the lanosterol 14a-demethylase.

Cell wall carbohydrate patches invaginate the plasma mem-
brane. The microscopic examination of the chitin and glucan-
stained voriconazole-exposed hyphae and conidia suggested a
localization of the patches within the hyphae or conidia. This
could mean that either irregular cell wall synthesis occurs within
chitin and glucan synthase loaded secretory vesicles in the cyto-
plasm?® or that excessive synthesis occurs at defined patches at
the cell surface, thereby forcing the plasma membrane into the
hyphal body. To clarify the exact topology of the chitin and
glucan deposits, we expressed a GFP-tagged Wscl cell wall stress
sensor in A. fumigatus. This type I transmembrane protein is
evenly distributed at the plasma membrane under normal growth
conditions'®. Time-lapse microscopy of Wscl-GFP-expressing
hyphae treated with voriconazole demonstrated the formation of
remarkable invaginations of the plasma membrane up to 3 um in
size. These invaginations co-localized with sites where the cell
wall carbohydrate patches were formed (Fig. 4 and Supplemen-
tary Movies 11-13). Interestingly, the fluorescence intensity of
Wscl-GFP significantly increases at sites of invaginated mem-
branes (fluorescence heatmap, Fig. 4). Very similar results were
also obtained with a different GFP-tagged cell wall stress sensor
(MidA-GFP)!8, This demonstrates that transport vesicles loaded
with stress sensors and, presumably, other membrane proteins are
continuously delivered to the sites of excessive cell wall biogenesis
under azole stress.

Attenuated fungicidal activity in respiratory chain mutants.
The time-lapse microscopy results indicated that the fungistatic
effect of the azoles precedes the fungicidal activity by several
hours. This suggested that the fungicidal activity is a discrete
effect, which occurs in parallel or builds on top of the fungistatic
activity. We and others recently reported a link between mito-
chondrial dysfunction and azole susceptibility of A.
fumigatus?h?2. In the sequel of these studies, we constructed
mutants that are affected in the mitochondrial respiratory path-
way. Specifically, we replaced the endogenous promoters of ripl
(AFUA_5G10610), the gene encoding the Rieske iron-sulfur
protein, a catalytic subunit of mitochondrial complex III, and of
cycA, the gene encoding cytochrome C, with a doxycycline-
inducible Tet-On promoter. Although A. fumigatus strictly
depends on a functional respiratory chain, these mutants are
viable under repressed conditions thanks to the alternative

Fig. 1 Multiple manifestations of voriconazole-induced death are linked to cell wall integrity failure. a-d A. fumigatus wild-type conidia expressing
mitochondria-targeted GFP were inoculated in Sabouraud medium and incubated at 37 °C. After 9 h, medium was supplemented with 0.4 ug mi—' (a), 1.27
ug ml=" (b, ¢) or the indicated amount (d) of voriconazole. The fate of individual hyphae was followed over time with confocal laser scanning microscopy.
a-c Exemplary bright field and time-lapse GFP fluorescence images (green) of optical stacks covering the entire hyphae in focus are depicted.

d Quantitative analysis of three voriconazole-induced fungal death manifestations. Approximately 160 hyphal compartments were analyzed per condition
for 13 h. Bars represent means of the six individual data points, error bars indicate standard deviations. Shown are results representative of two independent
time-lapse microscopy experiments per condition. e A. fumigatus conidia harboring a luciferase-based cell wall salvage reporter were inoculated in a 96-
well plate in Sabouraud medium and incubated at 37 °C. After 7 h, luciferin and the indicated amount of voriconazole were added. Upper panel, luciferase
activity over time after addition of voriconazole. Lower panel, exemplary microscopic dark-field images of hyphae after 17 h co-incubation. Data are
representative of three independent experiments. f Conidia of wild-type, Arho4 and rho4 expressing cytosolic GFP were inoculated in Sabouraud medium.
After 11h incubation at 37 °C, medium was supplemented with 1.27 pg ml~1 voriconazole. After 5 h co-incubation, hyphae were stained with trypan blue to
quench the GFP signal in lysed compartments. The percentage of viable microcolonies was determined (graph). Data points represent means, the error
bars indicate standard deviations. Data are representative of six independent blinded experiments. An exemplary overlay fluorescence image of optical
stacks covering a partially viable wild-type hypha (green, GFP; red, trypan blue) is depicted on the left. a-¢, f Bars represent 10 pm and are applicable to all

subpanels
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Fig. 2 Inhibition of the lanosterol 14a-demethylase triggers excessive synthesis of cell wall carbohydrates at defined foci. a-¢ Conidia of A. fumigatus wild-
type expressing mitochondria-targeted GFP (a), cytosolic GFP (b), or no GFP (c) were inoculated in Sabouraud medium on cover slips and incubated at 37
°C. The experiment depicted in b was additionally inoculated with conidia of a conditional B-1,3-glucan synthase mutant under repressive conditions
(fksTeton; Staining control). a When indicated ( + Vori), medium was supplemented with 0.4 or 1.27 pug ml~ voriconazole 10 h after inoculation. After a
total of 15 h incubation, hyphae were fixed, stained with calcofluor white and analyzed with a confocal laser scanning microscope. Depicted are
representative images of optical stacks of mitochondria (GFP; left panels), chitin (calcofluor white; middle panels) and an overlay (right panels) that cover
the entire hypha in focus. b After 8 h incubation, medium was supplemented with 1.27 ug ml~" voriconazole. After additional 9 h incubation at 37 °C,
hyphae were fixed, stained with aniline blue and immediately analyzed with a fluorescence microscope. Left, glucan-specific (green) and nonspecific
(fksTieton blue) aniline blue fluorescence. Right, bright field microscopy. Arrow heads indicate glucan patches. ¢ After 7 h incubation, medium was
supplemented with the indicated amount of voriconazole. After 2, 3, and 5 h co-incubation, samples were fixed and stained with calcofluor white. The
percentage of microcolonies with chitin patches was determined with a fluorescence microscope and plotted in the depicted graph. Bars represent means
of the indicated data points, error bars indicate standard deviations. Data are representative of three independent blinded experiments. d Wild-type conidia
expressing mitochondria-targeted GFP were stained with calcofluor white, either directly (resting conidia; left panel) or after 45 h incubation at 37 °C in
Sabouraud medium supplemented with 1.27 ug ml~ voriconazole (right panel). Depicted are representative bright field images (left), images of single GFP
(middle left) and calcofluor white (middle right) fluorescence cross sections and an overlay of both (right). a, b, and d Bars represent 5 um and are
applicable to all subpanels

oxidase. This enzyme can catalyze the electron transfer from
reduced ubiquinone directly to oxygen and thereby bypasses
complex I and IV?3, Both conditional mutants, cycA 0, and
riplieion, exhibited an unexpected and surprising phenotype
under repressed conditions (Fig. 5). Disruption of complex III as
well as downregulation of cytochrome C resulted in minimal
growth of Aspergillus hyphae within voriconazole Etest inhibition
zones (Fig. 5a). This is in marked contrast to wild-type or to
cycAeton and riply,o, under induced conditions where the

conidia die and the inhibition zones of Etests are typically void of
any hyphal growth (Fig. 5a, compare Fig. 2d). At the same time
macroscopic examination of the plates suggested a minimal
inhibitory concentration for cycAu0, and riply,o, under
repressed conditions similar or even lower than that for wild-type
(Fig. 5a). Very similar results were obtained using the broth
microdilution method (Fig. 5b, c). These results indicate that
voriconazole exerts a general fungistatic activity against A.
fumigatus independent of the mitochondrial electron transport
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Fig. 3 Azole-triggered cell death and synthesis of cell wall carbohydrate patches are linked to inhibition of the lanosterol 14a-demethylase. a-d Conidia of
the conditional cyp5TAtetonAcyp5TB strain (a- d) and wild-type (d) that express mitochondria-targeted GFP were inoculated under induced conditions in
Sabouraud medium supplemented with 15 ug mi=1 doxycycline. After 9 h incubation at 37 °C, hyphae were shifted to repressive conditions by substitution
of the medium without doxycycline. a-c The fate of individual hyphae was followed over time with a confocal laser scanning microscope. Depicted are
exemplary bright field and time-lapse GFP fluorescence images (green) of optical stacks covering the entire hyphae in focus. d After 5 h incubation under
repressive conditions, hyphae were fixed, stained with calcofluor white and subjected to confocal laser scanning microscopy. Depicted images represent
optical stacks of GFP fluorescence (left panels), calcofluor white fluorescence (middle panels) and an overlay (right panels) that cover the entire hypha in
focus. a-d Bars represent 10 pm and are applicable to all subpanels

Fig. 4 Multiple azole-induced cell wall carbohydrate patches invaginate the plasma membrane. A. fumigatus conidia expressing mitochondria-targeted red
fluorescence protein (RFP) and GFP-tagged membrane-anchored Wscl were inoculated in Sabouraud medium. After 9 h incubation at 37 °C, medium was
supplemented with 0.53 pg ml~1 voriconazole. Fluorescence was analyzed with a confocal laser scanning microscope. The micrographs show bright field
(left), fluorescence cross sections (green, RFP; glow dark color scheme, GFP) and an overlay of the two fluorescence cross sections of a representative
hypha incubated for 4 h in the presence of voriconazole. The GFP fluorescence intensity is additionally visualized with a heatmap color scheme (right
micrograph), the accumulation of Wsc1-GFP at sites of plasma membrane invaginations are indicated with arrow heads. The bar represents 5 pm
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Fig. 5 The fungicidal activity of azoles depends on the functionality of the conventional mitochondrial electron transport chain. a 1x 10° conidia of wild-type
(wt) and of the conditional cytochrome c (cycAeron) and complex Il (ripTiero0n) Mutants were spread on Sabouraud agar plates. When indicated, medium
was additionally supplemented with 15 ug mi=T doxycycline to induce the conditional promoter ( 4+ Doxy). Voriconazole Etest strips were applied and plates
were incubated at 37 °C. Representative photos were taken after approximately 48 h. The panels next to the macroscopic Etest strip photos show
magnifications of the framed sections. b, ¢ Conidia of the indicated strains were inoculated in Sabouraud medium supplemented with resazurin (cell
viability marker, 0.1ug mI=") and the indicated amount of voriconazole and incubated at 37 °C. Macroscopic (b) and microscopic (¢) images were taken

after 42 h

chain. In contrast, the fungicidal activity seems to depend on the
functionality of the conventional mitochondrial electron trans-
port chain and can thus be clearly dissected from the fungistatic
activity of voriconazole.

Fungicidal activity of azoles is linked to patch formation. The
cell integrity loss following the vigorous invaginations of the
plasma membrane suggests that the formation of the cell wall
carbohydrate patches is responsible for the fungicidal activity of
azole antifungals. We, therefore, questioned whether the shift of
the antifungal activity of azoles from fungicidal to fungistatic
observed with the conditional mutants affected in the cytochrome

respiratory pathway correlates with the formation of cell wall
patches. As shown in Fig. 6, this is the case. The cycA;.0, and
ripl,0, Mutants under repressed conditions exposed no carbo-
hydrate patches at concentrations where patches are already
observed in the wild-type (0.4, 0.8, and 1.6 pg ml~! voriconazole,
Fig. 6). At these concentrations, voriconazole already exerts
imposing fungistatic activity against cycAon and riplion
under repressed conditions. Higher azole concentrations (3.2 and
6.4 pgml~! voriconazole) yielded significant patch formation,
which also correlated with incremental inhibition of the minimal
mycelial growth (Figs. 5¢ and 6).

We exploited the decoupling of the fungistatic and fungicidal
activity of voriconazole observed with the ripl,.0, and cycA.ion

NATURE COMMUNICATIONS| (2018)9:3098 | DOI: 10.1038/s41467-018-05497-7 | www.nature.com/naturecommunications 7


www.nature.com/naturecommunications
www.nature.com/naturecommunications

ARTICLE

NATURE COMMUNICATIONS | DOI: 10.1038/s41467-018-05497-7

a VO concentration (ug mi~)
0 0.1 0.4 0.8 1.6 3.2 6.4
= - —
B = r e fy i
, g9 ||~ . N s £
' ;:"; ;,." '-‘. ‘:‘ "-\'.
8 L s & =
b VO concentration (ug mi~")
0 0.1 0.4 0.8 1.6 3.2 6.4
CYCArion | 1
= > R I <{
o 2R = ~% - (4
pp 4 A <
[ ; <, - ° »
B k 4 p 1 b Yy
2 s 6= || ot & %
—¢ 2 . AL T % \ e
g g\ L ? T NE 4 ?r c:-.rf";f.}g':! \
1|~ : ) o € %
4 s IS 1 ) V%
c VO concentration (ug mi™")
0 0.1 0.4 0.8 1.6 3.2 6.4
11p7 100 . 7 b s
/l’ - - S
/ Z =g
7= \ W
o0 4 FN\ A
s ; ¢ — o A o] D
2 [ /e A <K N Vi
R / A § e g ‘AJ

Fig. 6 Fungistatic azole concentrations do not trigger cell wall carbohydrate patch formation in mutants affected in the conventional mitochondrial electron
transport chain. a-¢ Conidia of wild-type (wt; @), cycAieton (b) and riptli.ion (€) were inoculated in Sabouraud medium and incubated at 37 °C. After 10 h
incubation at 37 °C, the medium was supplemented with the indicated amount of voriconazole. After additional 10 h incubation, hyphae were stained with
calcofluor white, fixed and analyzed with a confocal laser scanning microscope. Depicted are representative images of optical stacks of the calcofluor white
fluorescence (chitin) that cover the hyphae in focus. The lower panels show magnifications of the framed sections in the upper panels. Bars represent

50 pm and are applicable to all respective subpanels

mutants to investigate the relation of the patch formation and
fungal cell death. Hyphae of the conditional mutants expressing
mitochondria-targeted GFP were cultured under repressed
conditions and then exposed to azole concentrations that induce
the formation of cell wall patches. After azole co-incubation,
hyphae were stained with calcofluor white to visualize the
carbohydrate patches and subsequently analyzed with confocal
laser scanning microscopy. Viable hyphal compartments were
identified based on their tubular and dynamic mitochondrial
morphology (Fig. 7a and Supplementary Movies 14 and 15).
Depending on the azole concentration, a large number of the
hyphal compartments were still alive after approximately 15-17 h
azole exposure. Quantitative analysis of the hyphae revealed a
significant and strong correlation of fungal cell death with the
presence and size of the cell wall carbohydrate patches (Fig. 7b-d
and Supplementary Fig. 2). Notably, especially at lower
concentrations that, overall, were less fungicidal against the
mutants under repressed conditions, we observed a small number

of compartments (<4%) which were dead but exhibited no
patches (Supplementary Fig. 2). This suggests that a minor
fungicidal activity of azoles may exist independently from the
fungicidal effect of the cell wall carbohydrate patch formation.
Taken together, these data demonstrate that the cell wall patch
formation greatly correlates with the fungicidal activity of the
azoles, while the fungistatic azole concentrations do not
necessarily yield patches.

Inhibition of glucan synthesis delays fungicidal activity. We
speculated that inhibition of the formation of these patches would
antagonize the fungicidal activity of voriconazole. As shown in
Fig. 8a, inhibition of the (-1,3-glucan synthase Fksl with the
echinocandin caspofungin altered the microscopic appearance of
the calcofluor white-stained cell wall carbohydrate patches that
form in azole-treated A. fumigatus hyphae. The patches became
much smaller and were more compact compared to the rather
huge amorphous bodies under azole exposure alone.
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Fig. 7 The presence and size of the cell wall carbohydrate patch correlate with death of individual hyphae. a-d Conidia of the conditional complex Il mutant
(ripTieton) expressing mitochondria-targeted GFP were inoculated in Sabouraud medium under repressed conditions. After 10 h of incubation at 37 °C,
medium was supplemented with 2.4 ug ml~1 voriconazole and incubated for another 15 h. Hyphae were stained with calcofluor white, and analyzed with
time-lapse laser scanning microscopy. a Representative images of dead and living hyphae. Left, calcofluor white fluorescence (patches), right, GFP
fluorescence (mitochondria). Dead hyphae (arrows) were characterized by multiple cell wall carbohydrate patches, arrest of mitochondrial dynamics
(compare Supplementary Movie 7), fragmentation of the tubular mitochondrial network and fading of the GFP fluorescence. Living hyphae show highly
dynamic and tubular mitochondria (compare Supplementary Movie 7) and less or no cell wall carbohydrate patches. The bar indicates 50 um. b-¢ Short
time-lapse sequences of multiple hyphae were taken and each hyphal compartment was analyzed for viability, compartment length, and cumulative
diameter of the containing cell wall carbohydrate patches. The depicted results are based on time-lapse microscopy data obtained from three technical
replicates in one experiment. Two-hundred and ninety-four hyphal compartments were analyzed in total. Very similar results were obtained in two
independent experiments with the cycAie;o, strain under similar conditions (Supplementary Fig. 1). b Absolute and relative numbers for living and dead
compartments that exhibit patches or no patches. A significant number of living compartments exhibit no patches, while almost all dead compartments
have patches. ¢ The graphs indicate the cumulative patch diameter and compartment length for each living (blue) and dead (red) compartment. d Dead
compartments exhibit a significantly higher ratio of the cumulative patch diameter and compartment length (patch index; depicted as box-and-whiskers

graph). Statistical significance (***p <0.001) was calculated with a Mann-Whitney test

Therefore, we analyzed the effect of B-1,3-glucan synthase
inhibition on the survival of azole-treated A. fumigatus hyphae.
Caspofungin was able to significantly increase the number of
viable hyphal compartments after five and 6 h co-incubation with
voriconazole (Fig. 8b). Very similar results were obtained using a
conditional fks1 mutant (fksl,0,'”). Conditional repression of
the B-1,3-glucan synthase gene fksl was able to significantly
increase the number of microcolonies surviving 6 h voriconazole
exposure (Fig. 8c). These data show that inhibition of cell wall
patch accumulation delays the fungicidal effects of voriconazole.

Azole-resistant clinical isolates do not form cell wall patches.
Azole antifungals are currently recommended as first-line therapy
of invasive aspergillosis and other fungal infections. Unfortu-
nately, the recent emergence of azole resistance in fungal
pathogens challenges this approach and infections with azole-
resistant A. fumigatus have been shown to result in up to 88%
mortality?»2°, If as our data suggest cell wall patches are related
to the fungicidal activity of azoles, they should be absent in azole-
resistant isolates. To test this hypothesis, three azole-susceptible
and two azole-resistant clinical isolates were acquired from the
National Reference Center for Invasive Fungal Infections. As
shown in Fig. 9, the three azole-susceptible clinical isolates
equally formed multiple cell-wall patches at low inhibitory

concentrations of voriconazole (0.8 ug ml~1). Similarly, patches
were also found after exposure to high azole concentrations
(12.8 pgml~1). In sharp contrast, the azole-resistant clinical iso-
lates did not form any patches after exposure to any of the tested
azole concentrations. This clearly illustrates that, first, patches are
also triggered in different Aspergillus isolates by azoles, and sec-
ond, patch formation is linked to azole susceptibility.

Discussion

Azoles exert a potent fungicidal activity against the major
pathogen A. fumigatus. This activity is important for the clear-
ance of life-threatening invasive fungal infections in the immu-
nocompromised host. But the cellular mechanism responsible for
the fungicidal activity remained unresolved so far. In this study,
we provide new insights on how azole antifungals kill A. fumi-
gatus. By constructing and studying a conditional CYP51 mutant,
we have shown that the fungicidal activity of voriconazole is
unambiguously linked to specific inhibition of the lanosterol 14a-
demethylase. This inhibition results in suppression of hyphal
growth within 1h, the fungistatic effect. Importantly, hyphae
remain fully viable at this point. The marked growth arrest is
followed by extensive delivery of membrane protein-loaded
transport vesicles to the cell membrane concomitant with
excessive biogenesis of cell wall carbohydrates at defined spots
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Fig. 8 Inhibition of B-1,3-glucan synthesis attenuates the fungicidal activity of voriconazole. a, b Conidia of A. fumigatus wild-type (a) or wild-type

expressing mitochondria-targeted GFP (b) were inoculated in Sabouraud medium on cover slips (a) or in an eight-well live cell microscopy slide (b) and
incubated at 37 °C. After 9 h incubation, medium was supplemented with 1.27 pg ml~" voriconazole (Vori) and, when indicated, 30 min later additionally
with 4 ug ml~" caspofungin ( + Caspo). a After 4 h co-incubation with antifungals, hyphae were fixed, stained with calcofluor white and analyzed with a
confocal laser scanning microscope. Depicted are representative calcofluor white fluorescence images of optical stacks that cover the entire hypha in

focus. Bar represents 10 pm and is applicable to both subpanels. b After 5 and 6 h co-incubation with antifungals, the mitochondrial morphology and

dynamics of at least 975 hyphal compartments per condition were analyzed with a confocal laser scanning microscope in seven independent experiments.
The box-and-whiskers graph shows the percentage of viable compartments under each condition. Statistical significance (**p < 0.01) was calculated with a
two-tailed paired Student's t-test (assuming equal variances). ¢ Conidia of the conditional p-1,3-glucan synthase mutant (fksliet0,) Were inoculated in

Sabouraud medium in 24-well plates and incubated at 37 °C under repressive conditions for 11 h. When indicated, media were subsequently supplemented
with 1.27 ug ml~1 voriconazole (Vori), or additionally with 10 ug ml~" doxycycline (Vori 4+ Doxy) to induce expression of the p-1,3-glucan synthase Fksl.
After additional 6 h incubation at 37 °C, medium was discarded. The wells were washed and supplemented with fresh medium without antifungals and
doxycycline and the plates incubated for additional 10 to 30 h at 37 °C. The percentage of surviving microcolonies was microscopically determined and
shown in the depicted box-and-whiskers graph. Criteria for viability were continuation of growth combined with light refraction; viable hyphae were bright,
and dead hyphae were dark. Exemplary bright-field image of dead and viable microcolonies as assessed after the indicated additional incubation time are
shown on the right, dead microcolonies are indicated with arrow heads. The depicted experimental results are representative of four independent blinded

experiments under similar conditions. Statistical significance (***p <0.001) was calculated with a two-tailed unpaired (assuming equal variances)

Student's t-test

along the hyphae. The fungus fails to underpin the bolstered cell
wall synthesis with hyphal protrusions. Instead, the excessive
accumulation of cell wall carbohydrates bends the membrane to
the inside. This results in tremendous cell wall stress as exem-
plified by the strong induction of the cell wall salvage system.
Finally, the cell wall carbohydrate patches impale the plasma
membrane, thereby causing sudden cell integrity failure and death
of the fungus. Hyphal septa improve the fungal survival by sealing
off damaged compartments from the viable mycelium, but cannot
fully prevent the profound fungicidal activity, which takes effect
in parallel in all hyphal compartments. Our model, summarized
in Fig. 10, is well supported by our additional findings: First, in
the azole-tolerant cycA;o, and ripl,.o, mutants the cell wall
carbohydrate patches are predominantly found in dead and not in
viable compartments of azole-inhibited hyphae. Second, inhibi-
tion of glucan synthesis can attenuate the formation of cell wall
carbohydrate patches and delay the fungicidal effect of lanosterol
14a-demethylase inhibition in A. fumigatus.

A review of the literature revealed that our results are in good
agreement with results reported and discussed more than 30 years
ago®. At this time, Kerkenaar and Barug observed that the fila-
mentous fungi Ustilago maydis and Penicillium italicum form

chitin patches after treatment with the azole antifungal imazalil
and the morpholine fenpropimorph?®. Similar, irregular chitin
deposits were found in the yeast form and filaments of the
pathogenic yeast Candida albicans®?’. Kerkenaar, Barug, and
Bossche hypothesized that the occurrence of chitin deposits may
differentially affect growth and viability, depending on the mor-
photype and cell wall composition of the species®2°. However, the
exact mechanism that kills filamentous fungi was not further
elaborated. Our results clearly demonstrate the role of cell wall
carbohydrates, especially of (-1,3-glucan, for the fungicidal
activity of azoles.

Our time-lapse microscopy results revealed that growth inhi-
bition occurs in the first hour after azole exposure while cell wall
carbohydrate patches need more than 2h to manifest. This
indicates that (1) the initial fungistatic effect of CYP51 inhibition
does not result from the cell wall carbohydrate patches, and (2)
that the formation of cell wall carbohydrate patches is a sec-
ondary event that results from or occurs in parallel to the arrest of
growth. This model is greatly supported by the distinct azole
susceptibility phenotype of the ripl,.0, and cycA,,0, mutants. At
lower effective azole concentrations these mutants do not form
patches but are strikingly inhibited in growth. In contrast, higher
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Fig. 9 Azoles trigger patch formation in azole-susceptible but not in azole-
(2017-323, 2017-350, 2017-351) and two azole-resistant (2014-065, 2016
After 10 h incubation at 37 °C, medium was supplemented with the indicated

resistant A. fumigatus clinical isolates. Conidia of three azole-susceptible
-364) clinical isolates of A. fumigatus were inoculated in Sabouraud medium.
amount of voriconazole. After additional 10 h incubation, hyphae were stained

with calcofluor white, fixed and analyzed with a confocal laser scanning microscope. Depicted are representative images of optical stacks of the calcofluor
white fluorescence (chitin) that cover the hyphae in focus. The right panels show magnifications of the framed sections in the panels shown on the left.

Bars represent 50 pm and are applicable to all respective subpanels

azole concentrations additionally induce patch formation, which
then correlates with death of the fungus. It remains speculative
whether one of the many other previously proposed antifungal
activities of azole derivatives is responsible for the initial fungi-
static effect®~10,

Although not the intentional focus of our study, our results
might be interpreted to suggest that inhibition of B-1,3-glucan
synthesis could antagonize the fungicidal activity of azole anti-
fungals. This could have important implications because combi-
natory therapy is currently under consideration to improve the
poor outcome of invasive fungal infections. However, it has to be
noted, that our observations require a well-defined time course of
azole-echinocandin application unlikely to occur in vivo. Fur-
thermore, our readout was solely focused on the fungicidal
activity but not on the fungistatic effect and it is important to
note that inhibition of glucan synthesis can significantly delay but
not fully block azole-induced hyphal death. Several factors can
account for this, including excessive synthesis of other major cell
wall carbohydrates, e.g., chitin!7, a-1,3-glucan or galactomannan,
which also results in patches that challenge the cell wall integrity.
Thus, our data do not contradict previous in vitro studies sug-
gesting synergistic activity of azoles and echinocandins?®2 as
well as a recent randomized clinical trial, which suggested
potential beneficial effects of combination therapy30.

Finally, our results open up new approaches to evaluate the
efficacy of antifungal therapy. Refractory or progressive invasive
aspergillosis may occur and often it remains unclear whether the
azole-based antifungal therapy is effective or not. Reported rea-
sons for non-effective therapy and breakthrough invasive fungal
infections are resistance due to mutations in CYP51, upregulation
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of CYP51 expression or upregulation of efflux pumps or, as a
matter of debate, antifungal tolerance or host-specific insufficient
bioavailability of the drug?31:32. In this study, we could
demonstrate that azole-susceptible clinical A. fumigatus isolates
regularly exhibit cell wall carbohydrate patches upon exposure to
inhibitory voriconazole concentrations. Azole-resistant clinical
isolates, however, did not form cell wall carbohydrate patches.
This could be exploited to establish novel protocols for more
rapid in vitro susceptibility testing of clinical isolates in routine
diagnostics. Similar, evidence of chitin or glucan patches within
hyphae in host specimens would indicate that the administered
azole successfully inhibited CYP51. In contrast, the absence of
any chitin or glucan patches could indicate that CYP51 was not
effectively inhibited. To substantiate these diagnostic approaches
and the general applicability to other fungal species, additional
studies are required.

Methods

Strains and culture conditions. The non-homologous end joining-deficient A.
fumigatus strain AfS35 (ref. 33), a derivative of D141, was used as wild-type in this
study. The Arho4 mutant and the complemented Arho4 4 rho4 mutant (rho4) were
described previously!®. To conditionally express CYP51, a doxycycline-inducible
promoter system (pkiA-tetOn; pYZ002) was inserted before the coding sequence of
cyp51A, essentially as described before?!. Subsequently, cyp51B was replaced with a
self-excising hygromycin B resistance cassette (pSK4853%), thereby yielding
cyp51A;et0,Acyp51B. To conditionally express cycA and ripl, the doxycycline-
inducible promoter system (pkiA-tetOn; pYZ002) was inserted before the coding
sequence of the respective genes. To visualize mitochondria with mitochondria-
targeted GFP or RFP, the respective strains were transformed with the construct
pCHO05 or pYZ0122!, The conditional fksl,.0, strain and the strains that con-
stitutively express cytosolic GFP, Wscl1-GFP or MidA-GFP were described
previously!”-18. To construct the cell wall salvage reporter, the sequence of the
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Fig. 10 Proposed model for the fungicidal activity of azole antifungals
against A. fumigatus. Azole enters the growing Aspergillus hypha (1) and
binds to the target enzyme lanosterol 14a-demethylase (CYP51). The
inhibition of CYP51 results in the depletion of ergosterol and suppression of
growth in less than Th (). This is followed by extensive delivery of
membrane protein-loaded transport vesicles to the cell membrane
(accentuation in pink) and the induction of excessive p-1,3-glucan and
chitin synthesis at defined spots along the hyphae (lll). The continually
increasing cell wall carbohydrate patches vigorously invaginate the plasma
membrane, eventually resulting in membrane integrity failure and death of
hyphae. Septa adjacent to damaged compartments are sealed off by
Woronin bodies, specialized organelles that plug the septal pores, and
improve survival of azole-exposed hyphae (IV). Inhibition of B-1,3-glucan
synthesis, either by echinocandin antifungals or by reduced expression of
the p-1,3-glucan synthase Fks1, attenuates the patch formation and delays
the fungicidal activity of the azole. Mutants with a dysfunctional respiratory
chain are strongly inhibited in growth but do not form cell wall patches, and
thus do not die in the presence of lower inhibitory concentrations of azoles

Aspergillus niger agsA promoter fused to the coding sequence of the firefly luci-
ferase of pNB04!6 was PCR-amplified and cloned into the PstI and Pmel sites of
pSK379%, thereby yielding pBG005. The ptrA resistance cassette of pBG005 was
subsequently replaced with a phleomycin resistance cassette. The resulting plasmid,
pBGO005-phleo, was transformed in the AfS35 wild-type strain. All experiments
were performed in Sabouraud medium [4% (w/v) D-glucose, 1% (w/v) peptone
(#LP0034; Thermo Fisher Scientific; Rockford, IL, US), pH 7.0]. Doxycycline was
purchased from Clontech (#631311; Mountain View, CA, USA). Resazurin
(#R7017), calcofluor white (#F3543), aniline blue diammonium salt (#415049),
trypan blue (#6146), and caspofungin diacetate (#SML0425) were obtained from
Sigma-Aldrich (St. Louis, MO, USA). Voriconazole was purchased from Apexbt
Technology LLC (#A4320; Houston, TX, USA). Luciferin was purchased from
Promega (#E1601; Fitchburg, WI, USA). Etest strips were purchased from bio-
Meérieux (Marcyl’Etoile, France).

Microscopy. Confocal laser scanning microscopy was performed with a Leica SP5
microscope (Leica Microsystems; Mannheim, Germany) equipped with a
temperature-controllable environment chamber. For live cell microscopy, conidia
were inoculated in 15 p-Slide eight-well (#80826) slides or 60 u-Dish (#81156)
dishes (Ibidi; Martinsried, Germany). When indicated, samples were fixed with
3.7% formaldehyde in Dulbecco’s phosphate-buffered saline for 3 min. Chitin and
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glucan were stained with calcofluor white and aniline blue, respectively. For cal-
cofluor white-staining, fixed samples were stained with 10 mgml~! calcofluor
white dissolved in ddH2O for approximately 1 min and unfixed samples were
stained by supplementing the medium with 3.33 pg ml~! calcofluor white for at
least 5 min. Staining procedures for aniline blue were described previously3°. Fixed
calcofluor white-stained samples were mounted with Vectashield mounting med-
ium (H-1000; Vector, Burlingame, CA, USA). Fluorescence microscopy of aniline
blue-stained samples was performed with a BX61 microscope (Olympus, Tokyo,
Japan) and a modified filter cube as described recently36. An Axiovert 25 inverted
microscope (Carl Zeiss Microlmaging, Gottingen, Germany) and an EOS 550D
digital camera (Canon, Tokyo, Japan) were used for samples that were examined
with bright field microscopy only. Samples for blinded experiments (see figure
legends) were allocated randomly by an investigator. The data were subsequently
collected by another investigator without knowing the allocation of the samples or
groups. The Shapiro-Wilk test results were used to assume equal variances.

Cell wall salvage reporter assay. Conidia were inoculated in white 96-well
polystyrene microplates with transparent bottom (#655095, #656171) purchased
from Greiner Bio-One (Kremsmiinster, Austria). After 7 h incubation at 37 °C,
medium was supplemented with the indicated amount of voriconazole and 0.5 mM
luciferin. Luminescence was measured over time at 37 °C with a Clariostar
microplate reader obtained from BMG Labtech (Ortenberg, Germany).

Data availability. The data that support the findings of this study are available in
this article and its Supplementary Information files, or from the corresponding
author upon request.
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