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Microscopic study of the Halperin–Laughlin
interface through matrix product states
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Interfaces between topologically distinct phases of matter reveal a remarkably rich phe-

nomenology. We study the experimentally relevant interface between a Laughlin phase at

filling factor ν= 1/3 and a Halperin 332 phase at filling factor ν= 2/5. Based on our recent

construction of chiral topological interfaces (Nat. Commun. https://doi.org/10.1038/s41467-

019-09168-z; 2019), we study a family of model wavefunctions that captures both the bulk

and interface properties. These model wavefunctions are built within the matrix product state

framework. The validity of our approach is substantiated through extensive comparisons with

exact diagonalization studies. We probe previously unreachable features of the low energy

physics of the transition. We provide, amongst other things, the characterization of the

interface gapless mode and the identification of the spin and charge excitations in the many-

body spectrum. The methods and tools presented are applicable to a broad range of topo-

logical interfaces.
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Topological phases of matter, while being gapped in the
bulk, often display gapless edge modes. On the one hand
the edge modes are controlled by bulk topological invar-

iants, and on the other hand, the critical edge theory governs the
full topological content of the bulk. This phenomenon is known
as the bulk-edge correspondence (see for instance refs. 1–3 for
general discussions about its validity). In the context of the
fractional quantum Hall (FQH) effect, the bulk-edge correspon-
dence has been pushed one step further with the pioneering work
of Moore and Read4 who expressed a large class of FQH model
WFs as two-dimensional Conformal Field Theory (CFT) corre-
lators. Assuming generalized screening, one can then establish
that the associated low-energy edge modes are described by the
same CFT5, making the correspondence between the bulk and
edge properties explicit.

Among the challenges that emerged during the last few years in
the realm of topologically ordered phases, understanding the
interface between two distinct intrinsic topologically ordered
phases stands out as one of the most fascinating6–14. Predicting
what happens at such an interface is notoriously difficult15–17,
and even the transitions between Abelian states have not yet been
classified18–20. In this article, we consider the prototypical
example of an interface between two FQH Abelian states.

The FQH effect is the first observed21 quantum phase of matter
with intrinsic topological order. Many features of this strongly-
correlated, non-perturbative problem were unraveled by the study
of model wavefunctions (WFs)4,22. In particular, the experimentally
observed fractional e/3 charges23,24 were first described as excita-
tions of the seminal Laughlin WF at filling factor ν= 1/325.
Model WFs have been an invaluable tool in our understanding
of the FQH effect. They provide a bridge between the microscopic
models in terms of strongly-correlated electrons and the low-energy
effective description in terms of topological quantum field
theories. Indeed the Laughlin WF is the densest zero energy ground
state of a microscopic relevant Hamiltonian, while at the same
time it exhibits non-Abelian anyons and a topology-dependent
ground state degeneracy consistent with that of a Chern–Simons
theory26,27.

Theoretical approaches to understand interfaces between
topological phases mostly rely on the cut and glue approach12, in
which both phases are solely described by their respective edge
theories. The interface emerges from the coupling between the
two edges28 and predictions can be made about the nature of the
interface theory7,10,16. While powerful, these effective field theory
approaches suffer from a complete lack of connection with a
more physical, microscopic description. In order to overcome this
limitation, we have recently proposed a family of matrix product
state (MPS) model wavefunctions for the Laughlin–Halperin
interface capable of describing the whole system including both
bulks and the interface29. We found that these MPSs faithfully
describe the bulks intrinsic topological order while presenting the
expected universal low-energy physics at the interface. However,
the validity of these model WFs at the microscopic level still has
to be established.

In the present article, we provide such a detailed microscopic
analysis of these model WFs through extensive comparison with
exact diagonalization (ED). We focus on the fermionic interface
between the ν= 1/3 Laughlin state and the ν= 2/5 Halperin (332)
state. This interface is relevant for condensed matter experiments,
and could be realized in graphene. There, the valley degeneracy
leads to a spin singlet state at filling fraction ν= 2/530,31 while the
system at ν= 1/3 is spontaneously valley-polarized31–33. Thus,
changing the density through a top gate provides a direct
implementation of the Laughlin–Halperin interface.

The paper is organized as follows: we first introduce a micro-
scopic model reproducing the physics of the transition between a

Laughlin phase at filling factor 1/3 and a Halperin (332) phase at
filling 2/5. We then detail the MPS construction of both the
Halperin (332) state, derived in ref. 34, and of the model state for
such an interface that we have introduced in ref. 29. From there
we explicitly show how to perform the identification of the
interface gapless theory and apply the procedure to our system.
We finally compare the ED results of the microscopic Hamilto-
nian with the model state and show how the construction of the
ansatz may be used to identify the spin and charge excitations in
the many-body spectrum. The main results of this work appear in
this discussion, as it validates the model state not only on the
universal features it holds but more importantly at a microscopic
level.

Results
Microscopic model. The Halperin (m, m, m −1) at filling factor
ν ¼ 2

2m�1 is the natural spin singlet35–37 generalization of the
celebrated, spin polarized, Laughlin state25,38 at filling factor ν=
1/m. It describes a FQH fluid with an internal two-level degree of
freedom39,40 such as spin, valley degeneracy in graphene or layer
index in bilayer systems. For the sake of conciseness, we will refer
to the internal degree of freedom as spin in the following. The
most relevant case for condensed matter systems is m= 3, namely
the fermionic (3, 3, 2) Halperin state. Numerical evidence30,41

suggests that the plateau at filling νH= 2/5 observed in gra-
phene31 is in a valley-pseudospin unpolarized Halperin (332)
state. Interestingly, graphene brought at filling νL= 1/3 sponta-
neously valley-polarizes31–33 and is described by a Laughlin state.
Top-gating different regions to change the density, it seems
possible to engineer a setup where the Halperin 332 and Laughlin
1/3 topological orders develop on either side of a sample. These
phases have distinct intrinsic topological orders and hence cannot
be adiabatically connected to one another. Thus, the creation of
such an interface requires a gap closing and the emergence of a
critical boundary or of critical points. In this section, we exhibit a
microscopic model describing such an interface between the
Halperin (332) and the polarized Laughlin 1/3 phases.

We first recall the expressions of the Laughlin 1/3 state
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and of the Halperin 332 state
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where the position of the i-th spin down (resp. up) electrons is
denoted by zi (resp. wi) and ‘B the magnetic length of the system.
Here, it is implicit that the total many-body state is the proper
antisymmetrization of the spatial part Eq. (2) associated with the
spin component # � � � #" � � � "ð Þ with respect to both electronic
spin and position. The vanishing properties of these states ensure
that they completely screen the interacting Hamiltonian1,42,43:

Hint ¼
Z

d2r
X

σ;σ′2f";#g
� : ρσðrÞ∇2ρσ′ðrÞ : þ : ρ"ðrÞρ#ðrÞ : þμ"ρ"ðrÞ;

ð3Þ
respectively for μ↑= 0 and μ↑=∞. Here μ↑ is a chemical potential
for the particles with a spin up, ρσ denotes the density of particles
with spin component σ, and : : : stands the for normal
ordering. Hence, creating an interface between these two
topologically ordered phases can be achieved by making μ↑
spatially dependent without tuning the interaction6.
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We make a few additional assumptions, allowing the numerical
study of such an interface. First, we send the cyclotron energy to
infinity, i.e., large enough so that only the Lowest Landau Level
(LLL) is populated. We will always assume periodic boundary
conditions along the y-axis, thus mapping the system on a
cylinder with perimeter L. Let cyσðrÞ be the creation operator of an
electron of spin σ at position r ¼ ðx; yÞ. The LLL is spanned by
the one-body orbital WFs:

ψnðrÞ ¼
eiknyffiffiffiffiffiffiffiffiffiffi
L
ffiffiffi
π

pp e
�ðx�xnÞ2

2‘2
B ; ð4Þ

where the momentum along the compact dimension kn ¼ 2π
L

� �
n,

with n 2 Zþ 1=2, labels the orbitals and determines the center of
the Gaussian envelope

xn ¼ kn‘
2
B ð5Þ

along the cylinder axis. The corresponding creation operator is
cyn;σ ¼

R
d2rψnðrÞcyσðrÞ. Once projected to the LLL, the Hamilto-

nian of Eq. (3) with a spatially dependent chemical potential μ"ðrÞ
is made of an interaction Hint term and a polarization term Hpol.
After projection, the Halperin 332 state (resp. the Laughlin state)
becomes the densest zero-energy state for a uniform chemical
potential μ↑= 0 (resp. μ↑=∞)26. Indeed, Hint reduces to the
zero-th and first Haldane pseudo-potentials27,44. We now choose
μ"ðrÞ such that the quadratic part reads

Hpol ¼ U
X
k<0

cyk;"ck;"; ð6Þ

corresponding to a smooth ramp from zero to U in real space
over a typical distance 2π/L. Moreover, we assume that U �
jHintj while remaining smaller than the cyclotron energy. This
allows us to project our Hilbert space onto a subspace where the
occupation for all orbitals with n < 0 is zero for the spin up
electrons. The polarized Hilbert subspace is spanned by the
occupation basis:
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ð7Þ
To summarize, our model is described by a purely interacting

Hamiltonian Hint, consisting of the two first Haldane pseudo-
potentials, projected to a polarized subspace of the many-body
LLL Hilbert space in which no spin up occupies the n < 0 orbitals.
ED studies shows that some low energy features emerge from the

continuum, as shown in Fig. 1a. The largest reachable system size
consists of 4 spin up and 8 spin down particles. For a suitable
choice of orbital number, edge excitations acquire a large energy
due to finite size effects and we can isolate a single low energy state
detached from the continuum. The spin-resolved densities of this
vector are depicted in Fig. 1b. They reach plateaus far from the
transition, corresponding to the expected results for the Laughlin
(ρ↑= 0, ρ↓= 1/3) and Halperin bulks (ρ↑= 1/5, ρ↓= 1/5). It
shows that our model Eq. (3) indeed captures the physics of the
interface at a microscopic level. The density inhomogeneity
persists at the interface and is a probe of the interface
reconstruction due to interactions.

Tensor network description of the bulks. From the study of
quantum entanglement in strongly correlated systems, a new class
of variational WFs, namely the tensor networks states (TNS) has
emerged in recent years. TNS efficiently encode physically rele-
vant many-body states, relying on their rather low entanglement
(for a review, see ref. 45). For a large set of FQH model states, a
MPS–the prototype of TNS–have been derived46,47. Moreover,
the computational toolbox of tensor networks has been applied to
large system size simulations of FQH systems34,48–53.

We now first briefly recall the theoretical background of the
exact MPS description for the Laughlin 1/m and the spin singlet
Halperin (m, m, m − 1) states34,46,50. The exact MPS description
of an FQH state which can be written as a CFT correlator consists
of an electronic part and a background part46,50. The former can
be deduced from the mode expansion of the primaries appearing
in the CFT correlators. The main result of ref. 34 is a method to
determine those primaries and the exact MPS representation of
two-components Abelian states from a factorization of the K-
matrix as K=QQT 22,54. We choose Q to be upper diagonal for
reasons which will become clear later on:

K ¼ m m� 1

m� 1 m

� 	
; Q ¼

2m�1
R?

m�1
RL

0 m
RL

 !
ð8Þ

where we have defined R? ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mð2m� 1Þp

and RL ¼
ffiffiffiffi
m

p
. The

underlying CFT is that of a two-component boson φ?;φLð Þ55.
Their respective U(1)-charges are integers n⊥, nL if measured in
units of R⊥ and RL respectively, and satisfy the constraint
n?þðm�1ÞnL

m 2 Z. Compared to ref. 34, Eq. (8) is just a different
choice of orthonormal basis for the two-component boson, which
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Fig. 1 Exact diagonalization results. a Energy spectrum of Eq. (3) for NL= 3 and 2NH ¼ 6 particles in Norb= 23 orbitals, NLgh
orb ¼ 8 are polarized, on a cylinder

of perimeter L ¼ 12‘B. Low energy features detach from the continuum, hinting toward an interesting low energy physics coming from the interface. b Spin-
resolved densities for the ground state of Eq. (3) for NH= 4 spin up and NH+ NL= 8 spin down particles in Norb= 30 orbitals, NLgh

orb ¼ 10 of which are
completely polarized. It is the only state detaching from the continuum and arises for a center of mass momentum Ky= 40.5. For this system size, the ED
calculation captures both the interface and bulk physics as can be seen from the plateaus of densities at both edges of the sample
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is related to the usual spin-charge formulation56,57 by:

φ? ¼
ffiffiffiffiffiffiffi
1
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1
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r
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where φc and φs are the bosonic fields corresponding to the
charge and spin respectively. We define the spinful electronic
operators as

W"ðzÞ ¼: exp i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m� 1

m

r
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m� 1ffiffiffiffi
m
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m
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where χ ¼ ð�1Þ
n?þðm�1ÞnL

m acts as a Klein factor ensuring correct
commutation relations between the electronic operators. The j-th
Landau orbital on the cylinder is characterized by its occupation
numbers n↑ and n↓. The electronic part Aðn";n#Þ½j� of the Halperin
MPS matrices only depends on the mode expansion of the
electronic operators of Eq. (10):

Aðn";n#Þ½j� ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffi
n"!n#!

p W"
�j

� �n"
W#

�j

� �n# ð11Þ

It simply reduces to Að0;n#Þ½j� for the (spin down) polarized
Laughlin state. Our variational ansatz relies on the following
crucial point: the Laughlin CFT Hilbert space made of a single
boson φL is embedded into the Halperin CFT Hilbert space.
Hence both sets of MPS matrices share the same auxiliary space
which makes the gluing procedure straightforward in the Landau
orbital basis, i.e. a simple matrix multiplication. The basis change
of Eq. (9) makes this embedding transparent since we extract φL

from the two component free boson. At the transition between
the Halperin and the spin down polarized Laughlin bulks, the cut
and glue approach12 predicts with renormalization group
arguments28 that the degrees of freedom related to φL gaps out
when the tunneling of spin down electrons across the transition is
relevant, which is often assumed. The one-dimensional effective
field theory at the transition is then expected to be the one of a
single bosonic φ⊥ field.

To obtain an infinite MPS representation of the states, we
combine the electronic operators as
VðzÞ ¼ W"ðzÞj "i þW#ðzÞj #i. The Operator Product Expan-
sion (OPE) of vertex operators55 together with the K-matrix
factorization Eq. (8) ensures that the Ne-points correlator

Obkg

Y
i

VðziÞ
* +

ð12Þ

reproduces the Halperin (m, m, m − 1) (resp. Laughlin 1/m) WF
with Ne particles through a careful choice of the background charge

OH
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1
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0 þ 1

RL
φL
0

� �n o
resp:OL

bkgðNeÞ ¼ exp �iNe
m
RL
φL
0

n o� �
. The choice of the back-

ground charge reflects the facts that the Laughlin 1/m state is an
excitation of the denser Halperin (m, m, m − 1) state. Indeed, it
may be understood as the introduction of a macroscopic number of
φ⊥ quasiholes (or a giant quasihole6) to fully polarize the Halperin
Hall droplet into a Laughlin liquid. Spreading these background
charges equally between the orbitals provides a site-independent
MPS representation for the Laughlin and Halperin states on the
cylinder. Labeling these site-independent MPS representation BL

and BH, we have:

Bðn#Þ
L ¼ Að0;n#Þ½0�UL UL ¼ e�

2π
Lð Þ2LL0�i

φL
0

RL ; ð13aÞ

Bðn";n#Þ
H ¼ Aðn";n#Þ½0�UH UH ¼ e�

2π
Lð Þ2L?0 �i

φ?
0

R?UL;
ð13bÞ

where L?0 (resp. LL0) is the Virasoro zero-th mode corresponding to
the standard free boson action for φ⊥ (resp. φL). Because there is no
spin up component in the electronic part of the Laughlin MPS
matrices, we may add a shift in the φ⊥ U(1)-charge to UL at each
orbital. Doing so allows to always fulfill the compactification
constraint n?þðm�1ÞnL

m 2 Z. Since the Laughlin transfer matrix
should only be considered over m orbitals to preserve the
topological sectors50, we simply impose the shift over any m
consecutive orbitals to be zero.

Model wavefunction for the interface. We introduce a MPS
model WF to describe the low energy features of the previously
described microscopic model. It has non-vanishing coefficients
only over the polarized Hilbert subspace discussed previously. To
construct the MPS ansatz, we use BH (resp. BL) matrices Eq. (13b)
(resp. (13a)) for unpolarized (resp. polarized) orbitals. Thus, the
MPS ansatz expanded on the many-body states Eq. (7) reads

ΨH�Lj i ¼
X

n#kf gk
; n"kf gk>0

ηh j � � �Bn#�3=2

L B
n#�1=2

L B
n"
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H B

n"
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;n#
1=2

� �
H

� � � μ?
�� 
 fn#kgk; fn"kgk>0��� E

:

ð14Þ
This ansatz is schematically depicted on Fig. 2a. Here 〈η| and |μ〉

are the two states in the auxiliary space fixing the left and right
boundary conditions. We fix the gauge of the MPS by choosing a
basis for the CFT auxiliary space, which agrees with the structure
discussed earlier and in which we have hηj ¼ hηLj � hη?j and
jμi ¼ jμLi � jμ?i. It is worth mentioning some important features
of this ansatz. First, the use of Halperin and Laughlin site-
independent MPS matrices allows to consider an infinite cylinder
and enables the use of efficient infinite-MPS (iMPS) algorithms48,49.
Figure 2b shows the spin-resolved densities of this variational ansatz
on an infinite cylinder of perimeter L ¼ 25‘B. As in Fig. 1b, they
smoothly interpolate between the polarized Laughlin bulk at filling
factor νL= 1/3 and the Halperin unpolarized bulk at filling factor
νH ¼ 1

5 þ 1
5. We recover the typical bulk densities and the spin SU

(2) symmetry of the Halperin (332) state after a few magnetic
lengths. We can also observe that the finite size effects on the
density quickly disappear with increasing L. The correlation lengths
for the bulks are respectively ξH ¼ 1:28‘B for the Halperin 332 and
ξL ¼ 1:38‘B for the Laughlin 1/3 states34. The ripples disappear for
L=maxðξH ; ξLÞ � 15. Another source of finite size effects is the
truncation of the infinite CFT Hilbert space in our computations. In
practice, we truncate the auxiliary space with respect to the
conformal dimension. Our truncation parameter, denoted as Pmax,
is a logarithmic measure of the bond dimension (see refs. 34,50. for a
precise definition). The truncation of the auxiliary space is
constrained by the entanglement area law58, the bond dimension
should grow exponentially with the cylinder perimeter L to
accurately describes the model WFs (at least in the gapped bulks).
Thus, as an empirical rule, Pmax should grow linearly with the
cylinder perimeter. This is what prevents us from reaching the
thermodynamic limit L=‘B ! 1. Using both charge conservation
and rotation symmetry along the cylinder perimeter provides
additional refinements to the iMPS algorithm46,48,49. They can be
implemented all along the cylinder, and importantly across the
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interface, by keeping track of the quantum numbers of the CFT
states.

Due to the block structure of the MPS matrices34, the boundary
conditions 〈η| and |μ〉 naturally separates the different charge and
momentum sectors all along the cylinder. In particular, they
separate the different topological sectors and ensure that no local
measurement can discriminate them. For instance on the
Halperin side, we can create five distinct bulk WFs (since det
K= 554) corresponding to the topological degeneracy of the state
on genus one surfaces. While for the Halperin state, the U(1)-
charge of both |μL〉 and |μ⊥〉 should be fixed to determine the
topological sector, only the one of 〈ηL| is required to fix the
topological sector of the Laughlin phase. The remaining bosonic
degree of freedom, 〈η⊥| at the edge of the Laughlin bulk
constitutes a knob to dial the low-lying excitations of the one
dimensional edge mode at the interface. Note indeed that the
Laughlin iMPS matrices (15) act as the identity on 〈μ⊥| and
propagate the state all the way to the interface.

In the following sections, we put our model wavefunctions Eq.
(14) to the test and we establish that they indeed capture the
universal features of the interface. We confirm that the expected
intrinsic topological order is recovered in the bulks away from the
interface by extracting the relevant topological entanglement
entropies. We characterize the interface gapless mode as a chiral
Luttinger liquid. We first extract the interface central charge c= 1
through the entanglement entropy. We then extract the
corresponding compactification radius R? ¼ ffiffiffiffiffi

15
p

by identifying
the spin and charge of the interface elementary excitations in the
many-body spectrum. Moreover, we compare our model states
with finite size studies and characterize the low energy features of
the spectrum thanks to the boundary state 〈η⊥|.

Universal features of the trial state. Effective one-dimensional
theories similar to the ones of refs. 6,14. predict that the gapless
interface is described by the free bosonic CFT φ⊥ of central
charge c= 1 and compactification radius R? ¼ ffiffiffiffiffi

15
p

. Remarkably,
this is neither an edge mode of the Halperin state nor of the

Laughlin state. It is a direct consequence of the edge recon-
struction due to interactions which are kept constant across the
interface (see Eq. 3). The full characterization of the bulk uni-
versal properties and the interface critical theory is the main
result of ref. 29. We briefly discuss such a characterization in the
context of the fermionic Laughlin 1/3—Halperin (332) interface.

Local operators such as the density cannot probe the
topological content of the bulks. We thus rely on the entangle-
ment entropy (for a review, see ref. 59) to analyze the topological
features of our model WF. All the relevant theoretical framework
required for the computation of Real-Space Entanglement
Spectrum (RSES)60–62 has been summed up in the Methods.
Consider a bipartition A� B of the system defined by a cut
perpendicular to the cylinder axis at a position x. The RSES and
the corresponding Von Neumann EE SAðL; xÞ are computed for
various cylinder perimeters L. We find that SAðL; xÞ obey an area
law58 for any position of the cut x:

SAðL; xÞ ¼ αðxÞL� γðxÞ : ð15Þ
Far away from the transitions, the constant correction to the area

law converges to the Topological Entanglement Entropy (TEE)63,64

of the Laughlin γðx ! þ1Þ ¼ log
ffiffiffi
3

p� �
and Halperin

γðx ! �1Þ ¼ log
ffiffiffi
5

p� �
states. Near the interface, the EE still

follows Eq. (15) as was recently predicted for such a rotationally
invariant bipartition16. The correction γ(x) smoothly interpolates
between its respective Laughlin and Halperin bulk values (see
Fig. 2c). Hence, it contains no universal signature of the critical
mode at the interface between the two topologically ordered phases.
The same conclusion holds for the area law coefficient α(x).

In order to obtain signature from the interface critical theory,
we need to break the translation symmetry along the cylinder
perimeter. We thus compute the RSES for a bipartition for which
the part A consists of a rectangular patch of length ‘ along the
compact dimension and width w along the x-axis. To fully
harness the power of the iMPS approach, it is convenient to add a
half-infinite cylinder to the rectangular patch (see Fig. 3a). The
contribution of the interface edge mode is isolated with a Levin-
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Fig. 2 Construction of an interface model wavefunction. a Schematic representation of the MPS ansatz jΨH�Li for the Laughlin 1/3—Halperin 332 interface
on a cylinder of perimeter L. The Halperin iMPS matrices BH (red) are glued to the Laughlin iMPS matrices BL � I (blue) in the Landau orbital space. Due to
the embedding of one auxiliary space into the other, the quantum numbers of jμ?i (see Eq. (14)) are left unchanged by the Laughlin matrices all the way to
the interface. It constitutes a direct access controlling the states of the interface chiral gapless mode, graphically sketched here with a double arrow. b Spin-
resolved densities of the MPS ansatz state along the cylinder axis obtained at Pmax= 11 for L ¼ 25‘B. They smoothly interpolate between the Laughlin
(2πρ↓= 1/3 and ρ↑= 0) and the Halperin (2πρ# ¼ 2πρ" ¼ 1=5) theoretical values. The density is a robust quantities for which it is safe to consider large
perimeter with our truncation level. c The EE SAðL; xÞ follows an area law (Eq. 15) for the rotationally invariant bipartition A� B depicted on top of the
graph. The constant correction is numerically extracted by finite differences SAðL; xÞ � L∂LSAðL; xÞ and plotted for L ¼ 13‘B as a function of the position
along the cylinder axis x. It smoothly interpolates between its respective Laughlin and Halperin bulk values and we see no universal signature of the critical
mode at the interface. Away from the interface, i.e., x<� 7‘B on the Halperin side and x> 3‘B on the Laughlin side, the extracted γ(x) agree with the
theoretical expectation within 3% accuracy. Thus, our MPS model WF describes the interface between two distinct topological orders. Note that the
extraction and convergence of the subleading quantity γ(x) (see Eq. 15) requires large truncation parameters. The spikes appearing on both sides of the
transitions are artifacts of the computations of the RSES (see ref. 34 for details). They corresponds to the points where a patch of three (resp. five) orbitals
are added on the Laughlin (resp. Halperin) side of the finite size region which translate the bipartition A� B to orbital space. They disappear with
increasing Pmax, as shown by the points computed at Pmax= 14 (black dots)
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Wen addition subtraction scheme64 depicted in Fig. 3a and more
thoroughly discussed in ref. 29. Noticing that the critical
contribution is counted twice, the 1D prediction for a chiral
CFT of central charge c with periodic boundary conditions
reads65

SAð‘;wÞ � SAðL=2;wÞ ¼ 2
c
6
log sin

π‘

L

� 	� �
: ð16Þ

We vary the length ‘ along the compact dimension of the
cylinder while keeping w constant, we fit the numerical derivative
∂‘SAð‘;wÞ with the theoretical prediction using the central charge
c as the only fitting parameter (the derivative removes the area
law contribution arising from the cut along x). We minimize
finite size effects by keeping only the points for which ‘ and L� ‘
are both greater than three times the Halperin bulk correlation
length34 and consider the largest perimeter that reliably converge
L ¼ 13‘B. We extract a central charge c= 1.1(1) in agreement
with the universal expectation. The inset of Fig. 3a shows the
numerical data, the result of the fit and the theoretical expectation
Eq. (16) which all nicely agree.

In order to fully characterize the gapless mode circulating at the
interface, we now extract the charges of its elementary excitations
which are related to the compactification radius R⊥. As previously
mentioned, excited states of the critical theory are numerically
controlled by the U(1)-charge of 〈η⊥|. For each of these excited
states, we compute the spin-resolved densities and observe that the
excess of charge and spin are localized around the interface. They
stem from the gapless interface mode observed in Fig. 3a and we
plot the charge and spin excess as a function of n⊥ in Fig. 3b.
Elementary excitations at the transition carries fractional charge e/
15 and a fractional spin 1/3 in unit of the electron spin. More
generally, the transition between Laughlin 1/m state and an
Halperin (m, m, m− 1) state should host quasiparticles of charge
e/(m(2m − 1)). This exactly fits the elementary spin and charge
content of φ⊥ (see Eq. 9). The interface gapless mode is described

by a chiral Luttinger liquid, i.e. a compact bosonic conformal field
theory whose elementary excitations agree with the value R ¼ffiffiffiffiffi
15

p
of the compactification radius.

Comparison with exact diagonalization in finite size. To go
beyond these universal properties and test the relevance of our
model WF at a microscopic level, we now compare it to finite size
calculations. We first investigate in more details the model WF to
get a better microscopic understanding of the interface and the
role of the MPS boundary states’ quantum numbers. The elec-
tronic operators W" and W# generate the charge lattice from a
unit cell composed of 5 inequivalent sites34. Physically, they
correspond to the ground state degeneracy of the Halperin (332)
state on the torus (or the infinite cylinder) which is known to be
|det K|= 554. The choice of n⊥ modulo five determines the
topological sector of the Halperin bulk far from the transition. An
identical analysis involving the spin down electronic operator W#
only shows that the Laughlin topological sector is selected by the
value of nL modulo 3. Loosely speaking, these degeneracies give
15 different ways of gluing the two bulks together which lead to
the observed fractional charge in Fig. 3b and the compactification
radius R? ¼ ffiffiffiffiffi

15
p

. This intuition is rigorous in the thin torus limit
L 	 ‘B

67,68 where the bulk physics are dominated by their
respective root partitions42,69. In the CFT language, we may
understand it as a renormalization procedure. Because the Vir-

asoro zero-th mode L055 only appears with a prefactor 2π‘B
L

� �2
, all

excitations above the CFT ground state becomes highly energetic
and we can trace them out. This is exactly what the truncation at
Pmax= 0 does. From here, we may look at the U(1)-charges
(nL, n⊥) of the boundary state |μ〉 which produce a non-zero
coefficient for a given Halperin root partition (i.e., when Pmax=
0). We have performed the study for both the Halperin and the
Laughlin bulks, and we summarize our results on the possible
ways of gluing together the root partitions of these states in
Table 1. These insights on the role of boundary states may be
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Fig. 3 Universal features of the interface ansatz. a Levin-Wen subtraction scheme (top) to get rid of the spurious area law coming from the patch
boundaries along the cylinder perimeter together with corner contributions to the EE. The position and width w of the rectangular extension are selected to
fully include the gapless mode at the interface. (bottom) SAð‘;w ¼ 3:25‘BÞ for different cylinder perimeters computed at Pmax= 12. They all fall on top of
the CFT prediction Eq. (16) with c= 1 (black line), pointing toward a critical chiral edge mode at the interface. The agreement improves with increasing L, as
expected since universal effects are unraveled at L=‘B ! 1. The inset shows the derivative ∂‘SAð‘;wÞ and the fit with the central charge as the only free
parameter (dashed red). The grayed area corresponds to points for which ‘ or L� ‘ is smaller than three times the Halperin 332 bulk correlation length 37,
points in this areas are discarded to mitigate finite-size effects. We find cFit ¼ 1:1ð1Þ, in close agreement with the theoretical prediction (the fitting
procedure at Pmax= 11 gives the same result). b Charge and spin excess are localized at the interface when excited states are addressed via the MPS
boundary U(1)-charge n? . Inset shows how to extract the charge excess (gray shaded area) from the charge densities ρc at different n? , computed at Pmax

= 11. Each excess follows a linear relation with respect to n? with extremely good accuracy. The charge (resp. spin) excess has a slope 0:0666ð1Þ ’ 1=15
(resp. 0:3332ð2Þ ’ 1=3). This indicates that the elementary excitations of the c= 1 critical theory at the interface carry a fractional charge e/15 and a
fractional spin 1/3 in unit of the electron spin
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used to understand the low energy features of finite size calcu-
lations. The choice of the U(1)-charges selects one of the possible
root configurations given in Table 1. The root configuration fixes
the reference for the center of mass angular momentum of the
system Ky in finite size. Low energy excitations on top of a given
U(1)-charge choice are obtained by dialing the φL and φ⊥

descendants.
Using the root configuration to relate the MPS boundary

indices to the finite size parameters, we are now able to provide
convincing numerical evidence that our ansatz should capture the
low energy physics of the Hamiltonian Eq. (3). For this purpose,
we have performed extensive exact diagonalization (ED) of the
Hamiltonian Eq. (3) for NL+NH spin down and NH spin up
particles in NL

orb þ NH
orb orbitals, N

L
orb of which are fully polarized.

We would like to show that the low energy features detaching
from the continuum in the spectrum of Eq. (3), which is depicted
in Fig. 4 for NL=NH= 3. Let us first fix the level descendant of
the MPS boundary conditions Pμ= Pη= 0 and selects some U(1)-
charges appearing in Table 1, to describe the states which persist
in the thin torus limit L 	 ‘B. We observe that, when NL

orb ¼
3NL � 2 and NH

orb ¼ 5NH, the ED ground state is the unique state

detaching from the continuum (see green symbols in Fig. 4). It
has exactly the total momentum expected from the glued root
partition selected by the (0, 0) boundary charges. Our MPS ansatz
with these boundary conditions shows extremely high overlap
with the corresponding ED ground states (see Table 2). Figure 1b
shows the spin-resolved densities of the ED ground state of the
largest reachable system sizes. Both the bulks and interface
physics are displayed in the ED study and its very high overlap
with our ansatz shows that this latest correctly captures the
interface physics at a microscopic level.

When the number of polarized orbitals is increased, several low
energy branches separate from the continuum (orange and blue
markers in Fig. 4). Changing the boundary U(1)-charges of the
MPS model WF as prescribed in Table 1 while keeping Pμ= Pη=
0, we could identify the root partition dominating the low energy
features in each branch in the thin torus limit. These states are
labeled by (nL, n⊥) in Fig. 4 and their overlaps with the
corresponding MPS model WF is always above 0.977. The
momentum transfer required to go from one gluing condition to
another is extensive with the number of particles. Thus for an

Table 1 Combining root partitions

(nL, n⊥) [∅∅↑∅↓] [∅↓∅∅↑] [∅↑∅↓∅] [↓∅∅↑∅] [↑∅↓∅∅]

[∅∅↓] (0, 0) (0, 3) (0, 6) (0, 9) (0, 12)
[∅↓∅] (1, −5) (1, −2) (1, 1) (1, 4) (1, 7)
[↓∅∅] (2, −10) (2, −7) (2, −4) (2, −1) (2, 2)

Right and left MPS boundary charges (nL, n⊥) to recover the glued Laughlin 1/3 and Halperin 332
root partitions. ∅, ↓ and ↑ respectively denote an empty orbitals or an occupied orbital with a
spin down or up. Using the first line and the first columns, the total root configuration should be
understood as…∅ ∅↓∅ ∅↓∅ ∅↓−∅ ∅↑∅↓∅ ∅↑∅↓… for the gluing of [∅ ∅↓] and [∅ ∅ ↑∅↓].
Note that defining the root configuration by, e.g., [∅ ∅↑∅↓] instead of [∅ ∅↓∅↑] is arbitrary
due to the SU(2) singlet nature of the Halperin 332 state. We refer to ref. 66 for more details of
the Halperin states root configurations
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Fig. 4 Identifying low-energy excitations. Energy spectrum (using a logarithmic scale) of Eq. (3) for a system of 9 particles (6 spin down, 3 spin up) on a
cylinder of perimeter L ¼ 12‘B with NH

orb ¼ 15 orbitals and NL
orb ¼ 7 (green symbols), NL

orb ¼ 8 (orange symbols) or NL
orb ¼ 9 (blue lines). In the first case,

only one of the root configuration of Table 1 can be produced. Increasing the number of polarized orbitals, we allow for excitations of the Laughlin edge
gapless mode, that we can track with the MPS boundary quantum number PLη (a). The low lying branches for NL

orb ¼ 8 or 9 are all connected to some gluing
conditions (see Table 1). We have indicated them as ðnL; n?Þ0, together with the overlap with the ED states targeted (Main Figure). Halperin edge
excitations are also present in the spectrum and, as shown in b, we can locate them in the spectrum thanks to the MPS ansatz by varying Pμ. Finally, we can
discriminate the interface gapless mode excited states by comparing the ED eigenvectors with our MPS model WF when P?η ≠0. The corresponding states
and overlaps are labeled ðnL; n?ÞP

?
η . We can for instance follow the two first excitations starting from (2, −4)0, and observe a very steep dispersion relation

for the interface critical mode. In general, all low lying excitations may be reproduced with our ansatz for mixed excitation ðPμ ≠0; PLη ≠0; P
?
η ≠0Þ. All the

overlaps presented were computed at truncation parameter Pmax= 12 and as a rule of thumb we observe that the closer to the continuum the poorer the
MPS ansatz performs

Table 2 Comparison with ED ground states

(2NH, NL) ψED
trunc

�� 


 

 ψMPS
trunc

�� 


 

 ψED
truncjψMPS

trunc

� 
�� ��
(6,3) 1.000 1.000 0.998
(6,4) 1.000 1.000 0.997
(8,4) 1.000 1.000 0.997

Overlap between the MPS variational ansatz (at Pmax= 11) for the ðnL ; n?Þ ¼ ð0;0Þ and Pμ= Pη
= 0 boundary conditions and the corresponding ED ground state for different system sizes
characterized by the particle numbers (2NH, NL) on a cylinder L ¼ 12‘B . The number of orbitals
are fixed to NL

orb ¼ 3NL � 2 and NH
orb ¼ 5NH . Due to the dimension of the many-body Hilbert

space considered (415 203 170 for the largest systems), the overlaps are computed over a
significant fraction of the vectors weights (we keep all the coefficients with a magnitude greater
than 10−5). The norms of the truncated ED jψED

trunci and MPS jψMPS
trunci vectors, which can be

evaluated rigorously, give an estimate for the possible error
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infinite system, the different branches clearly separate in the
spectrum, while they may overlap (and do in many cases) for the
system considered as can be seen for the state (1, 1) in Fig. 4.
Furthermore, we are able to access and identify the low energy
excitations above the different root configurations with the MPS
model ansatz. The latter arises at the edge of the gapped FQH
droplets and are of three distinct types: Laughlin edge excitations,
Halperin edge excitations and excitations of the interface gapless
mode. We now exemplify each of these three cases, and show at
the same time how to characterize the states in the many-body
spectrum.

Halperin edge excitations: Let us fix the MPS boundary charges
to ðnL; n?Þ ¼ ð2; 2Þ, whose corresponding root partition (see
Table 1) is expected to appear for a center of mass momentum Ky

= 22.5. In this momentum sector, we find one eigenvector of Eq.
(3) with high overlap with the model WF for Pμ= Pη= 0, which
slightly detaches from the continuum. Changing the momentum
of the Halperin boundary state Pμ, the MPS model WFs acquire a
momentum Ky+ Pμ. These excitations are used to describe
quasihole excitations at the edge of the Halperin bulks66,69.
We compute the weight of the ED eigenvectors close-by in
the space generated by all MPS model WFs with Pη= 0 and Pμ=
1 or Pμ= 2. As shown in Fig. 4a, they clearly belong to this
subspace. Thus, our MPS model WFs allowed us to characterize
without ambiguity the excitations in the branch starting at Ky=
22.5 as Halperin gapless edge mode excitations (note the counting
1-2-5-…).

Laughlin edge excitations: The same tools may be used to probe
excitations of the Laughlin gapless edge mode. We split
Pη ¼ PL

η þ P?
η , where P

?
η (resp. PL

η) denotes the descendant level
of the state 〈η| with respect to the φ⊥ (resp. φL) boson and we
keep P?

η ¼ 0 for now. Starting from the state ðnL; n?Þ ¼ ð0; 0Þ at
Ky= 40.5, we could reproduce the excitations at Ky � PL

η as
depicted in Fig. 4b. Finite size effects limit the number of
accessible descendants to PL

η ¼ 3 in the ED spectrum. However, it
is clear from the computed overlaps that the considered states are
edge excitations of the Laughlin droplet. The same analysis can be
repeated all over the spectrum.

Interface excitations: Finally, and more interestingly, we were
able to localize the excitations due to the interface gapless mode
(see Fig. 4). This time, we keep Pμ ¼ PL

η ¼ 0 and vary P?
η . We

really want to highlight the difficulty to find those states from a
pure ED approach, especially considering that each interface
gapless mode excitation changes the energy by an order of
magnitude. We attribute this large interface mode velocity to the
sharpness of the transition described by our ansatz, i.e., to the
change from μ↑= 0 to μ↑=∞ over an inter-orbital distance (see
Supplementary Fig. 2 for further investigations).

While we have only considered one kind of excitations at a
time, generic low energy states in the spectrum are characterized
by non-zero Pμ, PL

η and P?
η . While the ED spectrum does not

distinguish between the Laughlin and Halperin bulk excitations
and the excitations of interface modes, the high overlap between
the MPS states with the low lying part of the ED spectra help us
discriminating these different types of excitations. This makes
the proposed model states valuable tools even for finite size
studies.

Discussion
We have considered the fermionic interface between the Laughlin
1/3 and Halperin (332) states, relevant for condensed matter
experiments. Indeed experimental realizations of this transition
can be envisioned in graphene. There, the valley degeneracy leads
to a spin singlet state at ν= 2/530,31 while the system at ν= 1/3 is

spontaneously valley-polarized31–33. Thus, changing the density
through a top gate provides a direct implementation of our setup.

In ref. 29, we introduced a family of model states to describe the
Laughlin–Halperin interface. Their universal properties were
established using quantum entanglement measures, and the
emerging gapless mode at the interface was characterized. It is
described by a chiral Luttinger liquid, i.e., a compact bosonic
conformal field theory whose elementary excitations agree with
the value R ¼ ffiffiffiffiffi

15
p

of the compactification radius.
The main result of this work is the thorough microscopic

validation of our model wavefunctions. We introduced an
experimentally relevant microscopic Hamiltonian that captures
the physics of this interface, which we then analysed using exact
diagonalization simulations on large-size systems. We found that
the family of model states we introduced in ref. 29 performs
exceedingly well, reproducing the low-energy states of the
microscopic model with extraordinarily good overlaps. Further-
more, these model states provide a powerful tool to identify the
nature of the low-energy states obtained through exact diag-
onalization. In particular, they allow to disentangle the interface
modes from the Laughlin and Halperin edge modes, a notoriously
difficult task to carry out from finite size exact diagonalization.

Our interface model state, therefore, yields a bridge between
the microscopic, experimentally relevant model and its low-
energy effective description in terms of interfaces between topo-
logical quantum field theories.

Methods
Entanglement entropy and MPS: derivation. We turn to the computation of the
real space entanglement spectrum (RSES)60–62 for MPS ansatz considered. We
recall that the electronic operator modes have the same commutation relations as
the creation and annihilation operators. We will use these relations extensively to
compute the RSES. For clarity, we focus primarily on the Laughlin case, the gen-
eralization to the Halperin case or to the Laughlin–Halperin interface only involves
additional indices without involving any new technical step. For clarity, we will
remove the spin index from the discussion whenever they are not needed. It is also
useful to work with the site-dependent representation of the Laughlin 1/m state50:

ΦαL
αR

��� E
¼ P

n#kf g
αLh jOL

bkg

QNφ

k¼0

1
n#k !

W#
�k

� �n#k� cyk
� �n#k" #

jαRi � jΩið Þ; ð17Þ

where cyk creates a particle on orbital k (see Eq. (4)). The afore-mentioned site
independent MPS representation Eq. (13a) comes from spreading of the back-
ground charge46 and requires a shift of the MPS-boundary state U(1) charges50,
which we will keep implicit here.

Real Space Bipartition—Under a a generic real space bipartition A� B, the LLL
orbitals Eq. (4) are decomposed as cyk ¼ dyk;A þ dyk;B with

dyk;I ¼
Z
r2I

d2rψkðrÞcykðrÞ; I 2 fA;Bg: ð18Þ
The sets fdk;Ag and fdk;Bg span two disjoint Hilbert spaces of respective vacua

jΩAi and jΩBi but are in general not orthonormal:

dk;I ; d
y
‘;I ′

n o
¼ δI ;I ′

Z
r2I

d2rψ

kðrÞψ‘ðrÞ ð19Þ

where {.,.} denotes the anticommutator. For a cut preserving the rotation symmetry
along the cylinder perimeter A ¼ fðx′; y′Þjx′< x; 0 � y′ � Lg, the overlaps in the
right-hand side of Eq. (19) are diagonal and take the form

gk;A ¼ Rr2Ad2rψ

kðrÞψkðrÞ

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
π‘B

R
x′<xdx′exp � ðx′�xkÞ2

‘2B

� �r ð20Þ

These overlaps can still be computed analytically for some bipartitions breaking
the rotation symmetry. In that case, fdk;Ag can be decomposed over an
orthonormal basis f~cμ;Ag as

dyk;A ¼
XNϕ

μ¼0

αk;μ~c
y
μ;A ð21Þ

where the coefficient {αk,μ} are obtained either analytically or numerically from the
known overlaps between LLL orbitals over the region A.

Split and Swap Procedure—Using the decomposition cyk;# ¼ dyk;A þ dyk;B together
with the commutation relations of Eq. (19), and introducing a closure relation

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-09169-y

8 NATURE COMMUNICATIONS |         (2019) 10:1860 | https://doi.org/10.1038/s41467-019-09169-y | www.nature.com/naturecommunications

www.nature.com/naturecommunications


P
β2HCFT

jβihβj, with HCFT the auxiliary space, i.e., the CFT Hilbert space, the

Schmidt decomposition of Eq. (17) ΦαL
αR

��� E
¼Pβ2HCFT

jϕBβ i � jϕAβ i onto the

partition A� B is found to be:

ϕBβ
��� E

¼ P
fn#kg

αLh jOL
bkg

QNϕ

k¼0

1
n#k !

W#
�k

� �n#k� cyk
� �n#k" #

αRj i � Ωj ið Þ;

ϕBβ
��� E

¼ P
fn#kg

αLh jOL
bkg

QNϕ

k¼0

1
n#k !

W#
�k

� �n#k� cyk
� �n#k" #

αRj i � Ωj ið Þ ;
ð22Þ

where we have set h~αLj ¼ hαLjOL
bkg. This step is described in great details for the

rotationally symmetric case in ref. 34,46. From now on, we focus on subspace A, the
derivation being exactly the same for the subspace B. The occupation numbers fnAk g
are equivalently described by ordered lists of occupied orbitals λ ¼ ðλ1; � � � ; λNe

Þ, with
Ne the number of electrons in the system: Nϕ � λ1> � � �>λNe

� 0. Because of the
commutation relation of the vertex operator modes, we may also write

ϕAβ
��� E

¼
X

λ1 ;���;λNe
βh j
YNe

j¼1

W#
�λj

� dyλj ;A

" #
αRj i � ΩA

�� 
� �
; ð23Þ

where the sum runs over unordered lists of integers {λ}. Plugging the orthonormal
basis with Eq. (21) and reordering the various terms, we find

ϕAβ
��� E

¼
X

μ1 ;���;μNe
βh j
YNϕ

j¼0

XNϕ

λ¼0

αλ;μjW
#
�λ

 !
� ~cyμj ;A

" #
jαRi � j0Ai
� �

: ð24Þ

A similar reasoning helps us to finally expressing the state jϕAβ i in the

occupation basis ~nAk relative to the new physical space spanned by the orthonormal
basis f~ck;Ag. We find the MPS expression

ϕAβ
��� E

¼
X
~nAkf g

βh jK
~nANϕ
A ½Nϕ� � � �K~nA0

A ½0� αRj i ~nANϕ
� � � ~nA0

��� E
; K~n

A½j� ¼
1ffiffiffiffi
~n!

p
XNϕ

λ¼0

αλ;jW#
�λ

 !~n

:

ð25Þ
Here, we have used the commutation relations of the vertex operator modes to

swap the matrices in order to derive Eq. (25), a site-dependent representation of
jϕAβ i onto the orthonormal basis f~ck;Ag.

Spreading the Background Charge—The last step of the derivation consists in
spreading the background charge in order to find back the iMPS matrices Eq. (13a)
far away from the cut. The Laughlin background charge OL

bkg can only be spread
over Norb orbitals, but the bipartition has introduced twice more matrices (Norb in
both parts A and B). Although any allocation of the background charge over these
matrices is acceptable, we append UL to the first (resp. last) Norb/2 matrices of A
(resp. B). The product of matrices appearing in Eq. (25) can be split into two parts

F
~nANϕ

� �
A Nϕ;Norb=2

h i
� � � F

~nA
Norb=2

� �
A Norb=2; 1½ �

0
@

1
A F

~nA
Norb=2�1

� �
A ½Norb=2� 1; 0�UL � � � F

~nA0ð Þ
A ½0; 0�UL

0
@

1
A

ð26Þ
where we have defined

F~n
A½j; q� ¼

1ffiffiffiffi
~n!

p
XNϕ

λ¼0

αλ;jW#
�ðλ�jÞþq

 !~n

: ð27Þ

For a partition preserving the rotation symmetry around the cylinder axis, we
have αk;r ¼ δk;rgk;A (see Eq. 20) and we thus recover the tensor of refs. 34,46,50. For
the rectangular patch described in the main text, the off diagonal weights αk,r decay
rapidly for orbitals far from the cut (typically like Gaussian factors multiplied by
cardinal sine functions) so that we can approximate αk;r ’ δk;rgk;A. In other words,
the rotational symmetry is recovered after a large enough number of orbitals.
Moreover, far away from the cut in the iMPS part of the product, gk;A ¼ 1 and we

get back the site independent matrices Fð~nÞ
A ½k; 0�UL ¼ Bð~nÞ

L . Similarly when gk;A ¼ 0,
i.e. far away from the cut in the site-dependent part of the product, the matrices
reduces to F~n

A½j; q� ’ δ~n;01, with 1 being the identity operator over the auxiliary
space. This shows that the translation invariance along the cylinder axis is
recovered far away from the transition. We can thus work on the infinite cylinder
and take Norb→∞, by switching to the site independent matrices far away from the
cut. Numerically, we have considered up to 50 orbitals in the site-dependent region
to ensure that when the iMPS is glued to take the limit Norb →+∞, we always satisfy
the condition jαk;r � δk;r j< 10�10.

Data availability
Raw data and additional results supporting the findings of this study are included in
Supplementary Information and are available from the corresponding author on request.
The exact diagonalization data for finite size comparisons have been generated using the
software “DiagHam” (under the GPL license).
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