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Metallic-mean quasicrystals as aperiodic
approximants of periodic crystals
Joichiro Nakakura1, Primož Ziherl 2,3, Junichi Matsuzawa4 & Tomonari Dotera 1

Ever since the discovery of quasicrystals, periodic approximants of these aperiodic structures

constitute a very useful experimental and theoretical device. Characterized by packing motifs

typical for quasicrystals arranged in large unit cells, these approximants bridge the gap

between periodic and aperiodic positional order. Here we propose a class of sequences of

2-D quasicrystals that consist of increasingly larger periodic domains and are marked by an

ever more pronounced periodicity, thereby representing aperiodic approximants of a periodic

crystal. Consisting of small and large triangles and rectangles, these tilings are based on the

metallic means of multiples of 3, have a 6-fold rotational symmetry, and can be viewed as a

projection of a non-cubic 4-D superspace lattice. Together with the non-metallic-mean three-

tile hexagonal tilings, they provide a comprehensive theoretical framework for the complex

structures seen, e.g., in some binary nanoparticles, oxide films, and intermetallic alloys.
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The once-traditional understanding of positional order in
condensed matter, which postulates translational periodi-
city, permits only 2-, 3-, 4-, and 6-fold rotational sym-

metry. In 1984, this view was challenged by the observation of an
icosahedral symmetry in an Al-Mn alloy1 immediately backed up
theoretically by the now well-accepted existence of quasiperiodic
positional order, which are essential for a sharp diffraction pat-
tern, in aperiodic quasicrystals (QCs), such as the Penrose tiling2.
In turn, the discovery of QCs offered a new perspective on
complex crystalline lattices with large unit cells such as the Frank-
Kasper phases3 (and tetrahedrally close-packed structures4 in
general) and periodic crystals of large near-icosahedral clusters
such as the Mackay icosahedra5, some of which were found to
bear considerable similarity with QCs and are thus referred to as
QC approximants6,7.

Approximants are among the cornerstones of QC science8,9. In
experiments, they are typically seen at a somewhat different
temperature, pressure, composition, etc. than QCs10–15 and they
signal the proximity of QCs16–19, whereas theoretical studies of
approximants allow one to explore structures that approach QCs
in terms of both local arrangement of particles and material
properties by using the mathematical apparatus developed for
periodic crystals20–22. Approximants show that the simple, small-
unit-cell periodic crystals and QCs are connected by a spectrum
of structures that interpolate between the two extremes. This
unified view of periodic crystals and QCs is further supported by
the higher-dimensional analysis where both are seen as projec-
tions of a hyperdimensional lattice onto the physical space with
rational and irrational tangents8,9.

Here we complement the established concept of periodic
approximants by introducing structures that locally resemble
periodic crystals but are globally quasicrystalline (Fig. 1a). We
focus on a class of aperiodic approximants that are characterized
by hexagonal symmetry23 and originate in the bronze-mean til-
ing24 (Fig. 1b), their inflation factors being metallic means of
multiples of 3 (Fig. 1c–j). By elaborating the subdivision rules, the
higher-dimensional analysis, and the diffraction patterns of the
aperiodic approximants as well as by discussing their non-
metallic-mean variants, we provide a comprehensive description
of this particular type of incommensurately modulated structures.
Our findings offer a new perspective of the manifestation of six-
fold symmetry, which may be very elaborate as demonstrated,
e.g., by the binary nanoparticle assemblies featuring two-
lengthscale in-plane local motifs identical to those reported
here25 and by the twin-boundary superstructures theoretically
predicted in monodisperse particles with a fairly simple pair
interactions26,27.

Results
Quasicrystalline hexagonal tilings. We construct several types of
two-lengthscale tilings with 6-fold symmetry, both composed of
small (ST) and large (LT) equilateral triangles of edge length S
and L, respectively, and of L × S rectangles (R) seen in the fun-
damental dodecagon of the bronze-mean tiling (Fig. 1b). In type
IA tilings, the fundamental motif consist of a central rosette of 6
LT tiles, 6 radial spokes each containing n R tiles, and 6 wedges of
ST tiles filling the gaps between the spokes (Fig. 1c–e and
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Fig. 1 Metallic-mean aperiodic approximants. a Schematic showing the role of aperiodic approximants as a link between QCs and periodic crystals
illustrated by bright-field transmission electron micrographs of dodecagonal QCs and (32.4.3.4) Archimedean tiling observed in star terpolymer-
homopolymer blend used in ref. 17; the latter consists exclusively of the rugby-ball local motifs (outline) whereas the former features various local motifs
including the dodecagonal wheel. b First-generation bronze-mean k= 3 (n= 1, m= 1) tiling. c–f First-generation type IA tilings with k= 6 (n= 3, m= 4),
k= 9 (n= 5, m= 7), k= 12 (n= 7, m= 10), and k→∞, respectively. g–j First-generation type IB tilings with k ¼ 6 ð~n ¼ 2; ~m ¼ 1Þ, k ¼ 9 ð~n ¼ 3; ~m ¼ 2Þ,
k ¼ 12 ð~n ¼ 4; ~m ¼ 3Þ, and k→∞, respectively. In f, j the k→∞ patterns are drawn schematically, showing only a patch of majority tiles. k, l Subdivision
patterns for the rectangle (R), small triangle (ST), and large triangle (LT) tiles in k= 6 type IA and IB tilings, respectively, which also illustrate the meaning
of n;m; ~n, and ~m. m Second-generation k= 6 type IA tiling, with dark blue outlines showing the superimposed first-generation tiling magnified by a factor of
β6 ¼ 3þ ffiffiffiffiffi
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so as to emphasize self-similarity
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Supplementary Note 1). These tilings are additionally described
by the number of rectangles along the short edge of the next-
generation R tile denoted by m (Fig. 1k), or, equivalently, by the
number of rows of ST tiles in the wedges of the fundamental
motif measured in the radial direction as shown in Supplemen-
tary Fig. 2. Evidently mmust be no smaller than n; for m= 2n the
ST wedges reduce to rhombi.

As is common in self-similar patterns, the next-generation
tiling can be obtained by magnifying the previous-generation
tiling by a suitable factor and then placing the fundamental motifs
at its vertices. Within the ST wedges of the next-generation tiling,
the fundamental motifs partly overlap so as to create a gap-free
pattern. On the other hand, the fundamental motifs fill out most
but not all of the area of the previous-generation LT and R tiles.

Using this procedure, we find the subdivision scheme
illustrated in Fig. 1k using the n= 3, m= 4 pattern. Upon
subdivision, the two lengths of the i-th generation tiling Li and Si
transform as

Liþ1

Siþ1

� �
¼ 2

ffiffiffi
3

p
nffiffiffi

3
p

m

 !
Li
Si

� �
: ð1Þ

The positive eigenvalue of the transformation matrix given by

λIAþ ¼
mþ 2þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðm� 2Þ2 þ 12n

q
2

ð2Þ

is the inflation factor and the corresponding eigenvector gives the
length ratio at which the pattern is self-similar: ϕIA ¼ L=S ¼
�mþ 2þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðm� 2Þ2 þ 12n

q� �
=ð2 ffiffiffi

3
p Þ: Also of interest are the

numbers of long and short edges nLi and nSi , respectively, which
transform according to

nLiþ1
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 !
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n m
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In a self-similar tiling, the ratio of long and short edges ψIA=
nL/nS is ϕIA/n.

If n= 2k/3− 1 and m= k− 2, then the inflation factor of this
tiling equals the metallic mean

βk ¼
kþ ffiffiffiffiffiffiffiffiffiffiffiffiffi

k2 þ 4
p

2
ð4Þ

(defined as the positive solution of the quadratic equation x2−
kx− 1= 0), where k is a multiple of 3. By locking n and m with
these two relations, we obtain a subset of type IA patterns which
is of particular interest due to the singular role of metallic means
in QCs epitomized by the golden and the silver mean behind the
Penrose28,29 and the Ammann–Beenker tiling30,31, respectively.
In the metallic-mean type IA tilings, the length ratio reads

ϕIA ¼ �kþ 4þ ffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ 4

p

2
ffiffiffi
3

p ð5Þ

and the ratio of long and short edges is

ψIA ¼
ffiffiffi
3

p �kþ 4þ ffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ 4

p� �
2ð2k� 3Þ : ð6Þ

In the bronze-mean k= 3 tiling, we have ϕ= ψ; for all other ks
these ratios are different. Figure 1m shows the second-generation
k= 6 type IA tiling, where ϕIA ¼ �1þ ffiffiffiffiffi

10
p� �

=
ffiffiffi
3

p � 1:248.
Three more second-generation tilings are presented in Supple-
mentary Note 2 where we also show zoomed-in portions of
second- and third-generation k= 9 type IA and IB tilings,
respectively, which provide an insight complementary to the
complete flower-like patterns.

Type IA tiling is not the only 6-fold pattern that can be
constructed using ST, LT, and R tiles. In type IB, the central LT
rosette of the bronze-mean fundamental motif is enlarged so as to
obtain a hexagonal patch of LT tiles with ~n triangles along an
edge (Fig. 1g–i). This patch is encompassed by a ring consisting of
ST and R tiles. The outermost layer contains 6 spokes, each with
~m radially oriented R tiles, and trapezoidal patches of LT tiles
filling the space between the spokes. Like in type IA tilings, ~m is
chosen so as to maximize the size of the fundamental motif
consistent with the construction of the next-generation tiling.

The analysis of inflation in type IB tilings is analogous to that
in type IA tilings. The transformation matrix in type IB
counterpart of Eq. (1) reads

2~nþ ~m
ffiffiffi
3

pffiffiffi
3

p
~n 1

 !
ð7Þ

and the matrix in the type IB version of Eq. (3) is its transpose.
Like in type IA tilings, type IB inflation factors given by

2~nþ ~mþ 1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð~m� 1Þ2 þ 4~nð2þ ~mþ ~nÞ

q� �
=2 reduce to

metallic means βk for ~n ¼ k=3 and ~m ¼ k=3� 1 if k is a multiple
of 3. In a general two-parameter type IB tiling, the self-similar
length ratio and the ratio of long and short edges are given by

ϕIB ¼ 2~nþ ~m� 1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð~m� 1Þ2 þ 4~nð2þ ~mþ ~nÞ

q� �
=ð2 ffiffiffi

3
p

~nÞ;
and ψIB ¼ ~nϕIB, respectively, which in the multiple-of-3 metallic-
mean type IB tiling read ϕIB ¼ ffiffiffi

3
p

k� 2þ ffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ 4

p� �
=ð2kÞ and

ψIB= kϕIB/3, respectively.
The most important feature of type IA and type IB patterns is

that as k is increased, they are dominated by ST and LT tiles,
respectively, so that they approach a periodic hexagonal crystal
(Fig. 1c–j). These two types are not the only possible self-similar
metallic-mean tilings based on ST, LT, and R tiles. For each k,
there exists a finite number of distinct types, each with a different
transformation matrix and thus a different length ratio
(Methods); the three additional k= 6 type I tilings are presented
in Supplementary Note 3.

Higher-dimensional representation. To provide a theoretical
basis for these tilings, we construct their higher-dimensional
description based on a 4-D superspace lattice with two lattice
constants a and c rather than with a single one; in this respect,
our analysis departs from existing constructions. We note that a
generalization of the 6-D superspace representation of the
bronze-mean hexagonal quasicrystal from ref. 24 is completely
equivalent to the 4-D representation proposed below.

We denote the orthogonal basis vectors that generate the four-
dimensional hyperspace by e1, e2, e3, and e4, where ei ⋅ ej= δij and
δij is the Kronecker delta. The points of the superspace lattice are

given by r ¼P4
j¼1

njaj, where nj are integers and the basis vectors aj

read a uj for odd j and by c uj for even j; uj constitute a direct sum
of two hexagonal bases {u1, u3} ⊕ {u2, u4}:
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Suppose that the projected lattice allows a 30° rotation and
scaling transformations: ‘ ! 1 ! ‘ ! 1 ! � � �; here ‘ is a yet
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undetermined parameter. The transformation matrix is given by

T ¼

0 0 ‘=2 � ffiffiffi
3

p
‘=2

0 0
ffiffiffi
3

p
‘=2 ‘=2

1=‘ 0 0 0

0 1=‘ 0 0

0
BBB@

1
CCCA: ð9Þ

The real and imaginary parts of the eigenvector associated with
the eigenvalue z= exp(iπ/6) of the T matrix are pkx ¼
α 1; 0;

ffiffiffi
3

p
‘=2;�‘=2

� �
and pky ¼ α 0; 1; ‘=2;

ffiffiffi
3

p
‘=2

� �
, where α ¼

1=
ffiffiffiffiffiffiffiffiffiffiffiffi
‘2 þ 1

p
: These two vectors span an invariant subspace called

the physical space. Similarly, the complementary invariant
subspace referred to as the perpendicular space is spanned by
p?x ¼ α ‘; 0;� ffiffiffi

3
p

=2; 1=2
� �

and p?y ¼ α 0;�‘; 1=2;
ffiffiffi
3

p
=2

� �
.

The projection operator onto the physical space is defined by

Pk
jk ¼

P
γ¼x; y

pkγ � ej
	 


pkγ � ek
	 


and reads

Pk ¼ 1
‘2 þ 1

1 0
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Note that P∥2= P∥. The complementary projection operator

introduced by P⊥= 1− P∥ or, equivalently, by P?
jk ¼P

γ¼x; y
p?γ � ej
	 


p?γ � ek
	 


is

P? ¼ 1
‘2 þ 1

‘2 0 � ffiffiffi
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p
‘=2 ‘=2

0 ‘2 �‘=2 � ffiffiffi
3

p
‘=2

� ffiffiffi
3

p
‘=2 �‘=2 1 0

‘=2 � ffiffiffi
3

p
‘=2 0 1

0
BBB@

1
CCCA:

ð11Þ
Using P∥ and P⊥, we define the basis vectors in the physical

and in the perpendicular space by akj � Pkaj and a?j � P?aj,

respectively. Thus we find that akodd
��� ��� ¼ a‘α, akeven

�� �� ¼ cα,

a?odd
�� �� ¼ aα, and a?even

�� �� ¼ c‘α. The ratios of the lengths of even
and odd basis vectors in the physical and in the perpendicular
space are

akodd
��� ���
akeven
��� ��� ¼

a‘
c

and
a?even
�� ��
a?odd
�� �� ¼ c‘

a
; ð12Þ

respectively. The x and y components of akj in the physical space
and those of a?j in the perpendicular space are given by

akj � pkx; akj � pky
	 


and a?j � p?x ; a?j � p?y
	 


; respectively, and the

projected basis vectors of k= 3 tilings are shown in Fig. 2. The
basis vectors for k= 6, 9, 12, and ∞ type IA and IB tilings are
discussed in Supplementary Note 4.

Now we need to choose the two parameters ‘ and c/a so as to
obtain a desired metallic-mean hexagonal QC. The simplest way
of introducing the characteristic lengthscale ratio in the physical
space and ensuring that the projection window is compact is to

require that akodd
��� ���= akeven

�� �� ¼ ϕIA and to choose a?even
�� ��= a?odd

�� �� ¼
ψIA for the type IA tiling [where ϕIA and ψIA are given by Eqs. (5)
and (6), respectively] and analogously for the other type I tilings.
These conditions imply that for type IA tiling

c
a

	 

IA
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2k� 3

3

r
ð13Þ

and

‘IA ¼ �kþ 4þ ffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ 4

p

2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2k� 3

p : ð14Þ

In type IB tiling, c=að ÞIB¼
ffiffiffiffiffiffiffi
3=k

p
and ‘IB ¼ffiffiffiffiffiffiffiffiffiffiffiffiffi

k2 þ 4
p þ k� 2
� �

=ð2 ffiffiffi
k

p Þ; respectively. The values of these
parameters for k= 3, 6, 9, and 12 as well as the corresponding
ratios of basis vectors for type IA and IB tilings are tabulated in
Supplementary Tables 2 and 3. Evidently the ratio of superspace
lattice constants c/a is different from unity in all of our tilings
except in the bronze-mean k= 3 QCs.

Using these ratios, we now construct the projection windows in
the perpendicular space. The position of a vertex of a tiling in the

physical space is described by rk ¼P4
j¼1

nja
k
j , where nj are integers

and akj are the physical-space basis vectors of the tiling; inflation
of tilings is elaborated in Methods. The same set of ni also defines
the position of the corresponding vertex in the perpendicular

space r? ¼P4
j¼1

nja
?
j , and these vertices constitute the projection

windows. Figure 3a shows the projection windows for the k= 3,
6, 9, and 12 type IA and type IB tilings from Fig. 1b–e, g–i, which
evidently tend to self-similar shapes as one proceeds with
inflation from generation to generation.

Apart from their physical-space structure, the key signature of
each of our metallic-mean tilings is its Fourier transform which
captures the main features of its diffraction image (Methods).
Figure 3b shows the transforms of finite but large type IA and
type IB tilings with k= 3, 6, 9, and 12, with the intensities
normalized by the central peak; the transforms of the k= 6 tilings
are discussed in more detail in Supplementary Note 5. As k is
increased the image clearly approaches the pattern characteristic
for the hexagonal lattice, with the incommensurate peaks
becoming ever smaller and ever closer to those representing the
hexagonal lattice. The strongest peaks in k= 6, 9, and 12 type IA
patterns have reciprocal-space vectors with indices (2, 1, 0, −1),
whereas the strongest peaks in k= 6, 9, and 12 type IB have
reciprocal-space vectors with indices (2, 1, 1, 0).

The hierarchical nature of the transforms with the prominent
peaks and many smaller ones is rather evident, and the weaker
peaks are consistent with the satellite reflections known from
samples with a periodic arrangement of (anti)phase-domain
boundaries26,32, which gives rise to an incommensurately
modulated periodic crystal if the period of the boundaries is
not commensurate with that of the arrangement of atoms or
other building blocks as appropriate8. With their characteristic
structure consisting of domains forming a quasiperiodic pattern,
our metallic-mean tilings can indeed be regarded as a special class
of incommensurately modulated structures with an underlying
periodic crystal and a set of modulation vectors from a
quasicrystal with 6-fold symmetry.
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Fig. 2 Basis vectors in real and in reciprocal space. a, b Projected basis
vectors of k= 3 tilings in the physical and in the perpendicular space akj and
a?j , respectively. c, d Projected reciprocal-space basis vectors in the
physical and in the perpendicular space qkj and q?j , respectively
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Hexagonal lattice as k → ∞ limit. The first-generation type IA
and type IB sequences in Fig. 1b–j show that at large ks, these
tilings are dominated by ST and LT tiles, respectively. By
inspecting the patterns in Fig. 1k, we find that in type IA tiling the
numbers of ST, LT, and R tiles in the (i+ 1)-th generation
denoted by STi+1, LTi+1, and Ri+1, respectively, are related to
those in the i-th generation by

STiþ1

LTiþ1

Riþ1

0
B@

1
CA ¼

ðk� 2Þ2 ð3�2kÞ2
3

4ð2k2�7kþ6Þ
3

3 4 8
3ðk�2Þ

2 2k� 3 4k� 7

0
B@

1
CA

STi

LTi

Ri

0
B@

1
CA:

ð15Þ
The largest eigenvalue of the above matrix is β2k. Its top-row

components scale as k2 for large ks whereas the middle- and the
bottom-row components scale as 1 and k, respectively. As a result,
ST tiles quickly outnumber LT and R tiles upon inflation, their
frequency approaching unity at large ks (Fig. 4; Methods). An
analogous argument shows that in large-k type IB tilings the
majority tiles are LTs, further proving that the k→∞ limit of
both types is the periodic hexagonal lattice. Convergence towards
the hexagonal lattice is also reflected in the fact that although the
rank of the Fourier module is 4 for all k, 2 of the wave vectors
become vanishingly small as k→∞ and so does the intensity of
the corresponding incommensurate peaks. In this limit, only two

reciprocal-space wavevectors remain finite (qk2 and qk4 in type IA

tilings, qk1 and qk3 in type IB tilings, etc.) as implied by Fig. 3b and
illustrated in the inset in Fig. 4 and discussed in Supplementary
Note 4. This, in turn, means that for large k, the relative intensity
of the spots I(q∥)/I(0)= 1.0 for any q∥ which is characteristic of

the periodic hexagonal lattice. Yet another indication of the
convergence is provided by the four basis vectors of the physical
space, which cease to be linearly independent as k→∞
(Supplementary Note 4).

Complementary tilings and accidental periodic crystals. The
different type I tilings hardly exhaust the possible structures
formed by ST, LT, and R tiles. In a variant of the bronze-tiling
mentioned in passing in ref. 24 and observed in ref. 25, the fun-
damental motif consists of six ST tiles arranged in a hexagonal
rosette (Fig. 1k of ref. 24), six R tiles around them pointing in the
radial direction, and six LT tiles filling the gaps between the R
tiles. Upon inflation, this motif becomes decorated by smaller
copies of itself rotated by 30° relative to the first-generation tiling;
the orientation of the third-generation dodecagons is again the
same as in the first generation (Fig. 5a). In this respect, this
pattern referred to as type II is quite different from type I tilings.

Like in type I tilings, we can construct generalized subdivision
schemes for type II tilings parametrized by n and m (type IIA)
and ~n and ~m (type IIB) as illustrated by the R tiles in Fig. 5c. In
type IIA, we have

Liþ1

Siþ1

� �
¼

ffiffiffi
3

p
n 2

m
ffiffiffi
3

p
 !

Li
Si

� �
: ð16Þ

The columns in this transformation matrix are swapped
compared to the matrix for type IA tilings [Eq. (1)]. Like in
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type IA tilings (blue points) vs. k. Also included are the reciprocal-space
basis vectors for k= 3, 6, 9, 12, and ∞
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Fig. 5 Type II tilings. a Dodecagonal type IIA fundamental motif combined
with four second-generation dodecagons and three third-generation
dodecagon. Only the R tiles are colored so as to emphasize rotation by 30°
upon subdivision; some are semitransparent for clarity. b Type IIA
subdivision scheme. c Subdivision scheme for generalized type IIA and type
IIB R tiles parametrized by (m, n) and ð~m; ~nÞ, respectively

a

b

Type IA

Type IB

k = 3 k = 6 k = 9 k = 12

Type IA

Type IB

Fig. 3 Projection windows and Fourier transforms. a Windows of the k= 3,
6, 9, and 12 type IA tilings with 324391, 123392, 1212652, and 7195910
points, respectively (top row), and type IB tilings with 95659, 11041, and
32767 points, respectively; the windows are obtained based on third-
generation tilings except for the k= 3 tiling (fifth generation) and k= 12
type IB tiling (second generation). b Transforms of these tilings with spots
normalized relative to the central peak; shown are all spots with intensities I
(q∥) > 0.0045
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type I tilings, this matrix gives the inflation factor and the self-similar

length ratio which read
ffiffiffi
3

p ðnþ 1Þ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ðn� 1Þ2 þ 8m

q� �
=2 and

ffiffiffi
3

p ðn� 1Þ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ðn� 1Þ2 þ 8m

q� �
=ð2mÞ, respectively. In the n=

m= 1 case shown in Fig. 5a, b, the inflation factor is
ffiffiffi
2

p þ ffiffiffi
3

p
which is a non-Pisot number33 but its square 5þ 2

ffiffiffi
6

p
corresponding to two consecutive subdivisions is; its self-similar
length ratio is

ffiffiffi
2

p
. Without going into details, we note that type

IIB tiling is related to type IIA tiling just as type IB is related to
type IA, and that the meaning of ~n and ~m is analogous as
illustrated in Fig. 5c.

Although the main emphasis of the above discussion was on
the multiple-of-3 metallic-mean patterns, type II tilings show
that the general two-parameter tiling scheme based on ST, LT,
and R tiles is very rich, containing an infinite class of self-similar
tilings of 6-fold rotational symmetry concisely represented by
their inflation factors. In Table 1 we list the inflation factors of
type IA tilings given by Eq. (2) for n between 1 and 5 and m
between n and n + 6, which emphasizes that the multiple-of-3
metallic-mean tilings are just a small subset of the two-parameter
ST/LT/R scheme; those for type IB and type IIA tilings are
discussed in Supplementary Note 6 and listed in Supplementary
Tables 4 and 5. Among the interesting non-metallic-mean special
cases, we single out the n= 1, m= 2 type IA square-triangle
pattern with the inflation factor of 2þ ffiffiffi

3
p

known from the usual
dodecagonal QCs, whose hexagonal arrangement was already
studied33–36. Also intriguing are the generalized type IA and IB
tilings with m= 3n/2 and ~m ¼ ~n, respectively, which have
integer inflation factors (Table 1 and Supplementary Table 4). As
the points in their diffraction pattern are placed at those of the
triangular lattice but are not dense, the type IA tilings with m=
3n/2 are limit-periodic rather than aperiodic33,37. On the other
hand, the ~n ¼ ~m type IB tilings which too have integer inflation
factors are periodic crystalline rather than quasicrystalline
because they consist of a single type of domains as shown by
Supplementary Fig. 12. Given that these tilings are still
characterized by a single inflation factor (which is equal to
3~nþ 1) their periodicity appears to be accidental. Together with
the main body of results presented above, these examples
illustrate how our hexagonal QCs contribute to the generic

theory of tilings, especially to the k-uniform tilings that are not
based on regular polygons30.

Discussion
The hexagonal QCs based on ST, LT, and R tiles can be directly
related to two-lengthscale superstructures seen in several systems
including binary nanoparticles25, intermetallic alloys38, and oxide
QC approximants39, which do contain such tiles. These experi-
mentally observed structures are generally less neatly ordered
than, e.g., the pattern in Fig. 1m, which may be attributed to
phason flips40 whereby the periodic domains can either expand or
shrink by collective displacement of a row of R tiles forming the
twin boundary. The ensuing structures can thus be regarded as
randomized versions of our QCs41,42. It is natural to wonder what
may be the possible physical mechanisms behind the generally
large distance between the domain/twin boundaries and the
sophisticated patterns such as that in Fig. 1m. The theoretical
insight into domain-wall incommensurate phases in systems with
a simple isotropic pair interaction26,27 suggests that the forces
needed to stabilize such patterns need not be very complex,
implying that they may well appear in an atomic or colloidal
material even if it consists of a single type of particles.

The late members of the multiple-of-3 metallic-mean self-
similar hexagonal QCs described here approach the periodic
hexagonal crystal; the non-metallic-mean QCs consisting of small
and large triangles and rectangles must do so too. As such, these
QCs can be regarded as aperiodic approximants of periodic
crystals formed by increasing the size of their domains that
consist of majority triangles, much like periodic approximants
approach QCs as the size of their unit cells grows. We expect that
there exist other types of aperiodic approximants with tradi-
tionally allowed rotational symmetry. For example, it is con-
ceivable that 4-fold approximants may be derived from the
Ammann–Beenker tiling by replacing the single-length square-
rhombus tiling scheme by a two-lengthscale set of tiles including
a small and large square and a parallelogram. Whether our
approach can be used to construct approximants of QCs with a
rotational symmetry that is coprime to any periodic crystal (e.g.,
5-fold) remains an open question.

The aperiodic approximants proposed here resonate with two
established concepts in QCs. Firstly, our hexagonal QCs can be
likened to the random square-triangle tilings41–43 which con-
stitute the dodecagonal QC if the triangle-to-square ratio is
4=

ffiffiffi
3

p � 2:3094, and reduce to the hexagonal and the square
lattice if the ratio is infinite and 0, respectively. At large but finite
ratios, these tilings consist of random hexagonal-lattice domains
separated by domain walls of squares; our QCs are domain
structures too and they approach the hexagonal lattice in the limit
of k→∞ but the domains form a regular hierarchical pattern. At
the same time, we can draw an analogy between our aperiodic
approximants and the well-known 1-D Fibonacci QCs44 based on
the substitution rule A→AkB, B→A. These QCs can too be
viewed as a simple type of sequence of aperiodic approximants
because as k→∞, the number ratio of the short and the long
segments vanishes so that the Fibonacci QCs approach a 1-D
periodic crystal. Together with the experimental indications
mentioned above, these parallels support the notion of apeiodic
approximants as incommensurately modulated structures char-
acterized by locally periodic but globally quasiperiodic
positional order.

Methods
Generalized transformation matrix and distinct types of tilings. Type IA and
IB tilings do not exhaust the metallic-mean patterns at a given k; at k= 6, there
exist a total of five of them shown in Supplementary Fig. 8. To see how the different

Table 1 Inflation factors of type IA tilings with 1≤ n≤ 5 and
n≤m≤ n+ 6a

m n

1 2 3 4 5

n
3þ

ffiffiffiffiffi
13

p

2
2þ

ffiffiffi
6

p 5þ
ffiffiffiffiffiffi
37

p

2
3þ

ffiffiffiffiffi
13

p 7þ
ffiffiffiffiffiffi
69

p

2

n+ 1 2þ
ffiffiffi
3

p
5 3þ

ffiffiffiffiffi
10

p 7þ ffiffiffiffiffiffi
57

p

2
4þ

ffiffiffiffiffi
19

p

n+ 2
5þ

ffiffiffiffiffi
13

p

2
3þ ffiffiffi

7
p 7þ 3

ffiffiffi
5

p

2
8

9þ
ffiffiffiffiffiffi
85

p

2

n+ 3 5
7þ

ffiffiffiffiffi
33

p

2
4þ

ffiffiffiffiffi
13

p 9þ
ffiffiffiffiffiffi
73

p

2
5þ 2

ffiffiffi
6

p

n+ 4
7þ

ffiffiffiffiffi
21

p

2
4þ

ffiffiffiffiffi
10

p 9þ
ffiffiffiffiffi
61

p

2
5þ

ffiffiffiffiffi
21

p 11þ
ffiffiffiffiffiffiffiffi
109

p

2

n+ 5 4þ
ffiffiffi
7

p
8 5þ 3

ffiffiffi
2

p 11þ
ffiffiffiffiffiffi
97

p

2
6þ

ffiffiffiffiffi
31

p

n+ 6
9þ

ffiffiffiffiffiffi
37

p

2
5þ ffiffiffiffiffi

15
p 11þ

ffiffiffiffiffiffi
85

p

2
2ð3þ ffiffiffi

7
p Þ 13þ

ffiffiffiffiffiffiffi
141

p

2
aThe multiple-of-3 metallic-mean inflation factors are typeset in boldface
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types emerge, note that the matrices describing the transformation of the long and
the short length of type IA and type IB patterns [Eqs. (1) and (7)] can be viewed as
special cases of a generalized transformation matrix of the form

Liþ1

Siþ1

� �
¼ α

ffiffiffi
3

p
βffiffiffi

3
p

γ δ

 !
Li
Si

� �
; ð17Þ

where α, β, γ, and δ are positive integers. If this matrix is to define a subdivision
rule, αmust be larger than 1. The characteristic equation of the matrix is λ2− (α+
δ)λ+ αδ− 3βγ= 0. If α+ δ= k and αδ− 3βγ=−1, then the positive eigenvalue
of the matrix, which represents the inflation factor, is the metallic mean βk. This
shows that there exist several combinations of α, β, γ, and δ that lead to the same
metallic-mean eigenvalue.

For k= 3, the only choice of the four parameters consistent with the constraints
is α= 2, β= 1, γ= 1, and δ= 1 but for k= 6 there are six combinations listed in
Supplementary Table 1 and arranged in ascending order of α and β. Two of them
represent type IA and type IB tilings, which are elaborated in the main text, and the
remaining four are described in Supplementary Note 3. In Supplementary Table 1,
we also list the self-similar length ratio L/S defined by the eigenvector
corresponding to the positive eigenvalue of the transformation matrix in Eq. (17),
which reads

ϕðα; β; γ; δÞ ¼
α� δ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α2 þ 12βγ� 2αδ þ δ2

q
2
ffiffiffi
3

p
γ

: ð18Þ

The construction of type IC-F tilings proceeds by deriving the subdivision rules.
Using the transformation matrix, we first determine the number of tiles with long
and short edges to fit along either edge of the R tile as well as their orientation, the
latter pertaining to ST and LT tiles. After that, we arrange the second-generation
tiles along the four edges and then we fill out the rest of the R tile such that the
subdivision pattern is characterized by two perpendicular mirror planes through
the center and parallel to the edges. This involves some educated guessing as well as
some trial and error. After the subdivision rule for the R tile is established, we also
construct the rules for the LT and ST tiles, again starting from a given arrangement
of second-generation tiles along the edges. This procedure leads to patterns
presented in Supplementary Note 3.

Inflation of tilings. Upon inflation, r∥ of the i-th generation tiling is transformed

to rk ¼P4
j¼1

njðiþ 1Þakj in the (i+ 1)-th generation tiling. The transformation

matrix relating the tiling-vector indices of the i-th generation and the (i+ 1)-st
generation general type IA tiling parametrized by n and m is

n1ðiþ 1Þ
n2ðiþ 1Þ
n3ðiþ 1Þ
n4ðiþ 1Þ

0
BBB@

1
CCCA ¼

2 1 0 �1

2n m n 0

0 1 2 2

�n 0 n m

0
BBB@

1
CCCA

n1ðiÞ
n2ðiÞ
n3ðiÞ
n4ðiÞ

0
BBB@

1
CCCA: ð19Þ

The transformation matrix relating the tiling-vector indices of the i-th
generation and the (i+ 1)-st generation general type IB tiling parametrized by ~n
and ~m is

n1ðiþ 1Þ
n2ðiþ 1Þ
n3ðiþ 1Þ
n4ðiþ 1Þ

0
BBB@

1
CCCA ¼

2~nþ ~m ~n 0 �~n

2 1 1 0

0 ~n 2~nþ ~m 2~n

�1 0 1 1

0
BBB@

1
CCCA

n1ðiÞ
n2ðiÞ
n3ðiÞ
n4ðiÞ

0
BBB@

1
CCCA: ð20Þ

Inflation matrices for tiles. To compute the frequency of the majority tiles, we
examine the numbers of ST, LT, and R tiles in type IA and type IB tilings; these
numbers in the i-th generation tiling are denoted by STi,LTi, and Ri, respectively.
We first spell out the recursive relation for a general type IA tiling parametrized by
n and m

STiþ1

LTiþ1

Riþ1

0
B@

1
CA ¼

m2 3n2 4nm

3 4 8
3
2m 3n 3nþ 2m

0
B@

1
CA

STi

LTi

Ri

0
B@

1
CA; ð21Þ

and for general type IB tiling parametrized by ~n and ~m

STiþ1

LTiþ1

Riþ1

0
B@

1
CA ¼

1 3 4

3~n2 ~m2 þ 4~n~mþ 4~n2 8~n2 þ 4~m~n
3~n
2

3ð~mþ2~nÞ
2 ~mþ 5~n

0
B@

1
CA

STi

LTi

Ri

0
B@

1
CA: ð22Þ

In the metallic-mean type IA tilings where n= 2k/3− 1 and m= k− 2,

STiþ1

LTiþ1

Riþ1

0
B@

1
CA ¼

ðk� 2Þ2 ð3�2kÞ2
3

4ðk2�7kþ6Þ
3

3 4 8
3ðk�2Þ

2 2k� 3 4k� 7

0
B@

1
CA

STi

LTi

Ri

0
B@

1
CA; ð23Þ

whereas in the metallic-mean type IB tilings where ~n ¼ k=3 and ~m ¼ k=3� 1,

STiþ1

LTiþ1

Riþ1

0
B@

1
CA ¼

1 3 4
k2
3 ðk� 1Þ2 4ðk�1Þk

3

k
2

3ðk�1Þ
2 2k� 1

0
B@

1
CA

STi

LTi

Ri

0
B@

1
CA; ð24Þ

The largest eigenvalue of matrices in Eqs. (23) and (24) is
β2k ¼ k2 þ k

ffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ 4

p þ 2
� �

=2. The first component of the corresponding
eigenvector in type IA tilings is

16k2 � 15
ffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ 4

p � 39kþ 60
2kð8k� 15Þ þ 75

; ð25Þ

which amounts to 0.652, 0.787, and 0.849 for k= 6, 9, and 12, respectively. As
k→∞, type IA tiling is evidently dominated by ST tiles as the majority tile as
shown in Fig. 4 of the main text, which implies that it reduces to the hexagonal
lattice. In type IB tilings, the majority tiles in the limit of k→∞ are LT tiles as
witnessed by the relative magnitude of entries in the top, middle, and bottom row
of the matrix in Eq. (24). Their frequency is given by the second component of the
largest-eigenvalue eigenvector is

kð3 ffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ 4

p þ 7k� 6Þ � 12ð ffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ 4

p � 2Þ
kð10k� 3Þ þ 48

; ð26Þ

giving 0.713, 0.813, and 0.862 for k= 6, 9, and 12, respectively. This shows that as
k→∞, type IB tilings also converge to the hexagonal lattice.

Fourier transform. To evaluate the Fourier transform of the metallic-mean tiling
exactly, we first define the reciprocal-space basis vectors q∥ such that aj ⋅ qj′= 2πδjj',
where δjj' is the Kronecker delta: qj are given by (2π/a)vj for odd j and by (2π/c)vj
for even j, where

v1 ¼

1

�1=
ffiffiffi
3

p

0

0

0
BBB@

1
CCCA; v2 ¼

0

0

1

�1=
ffiffiffi
3

p

0
BBB@

1
CCCA; v3 ¼

0

2=
ffiffiffi
3

p

0

0

0
BBB@

1
CCCA; and v4 ¼

0

0

0

2=
ffiffiffi
3

p

0
BBB@

1
CCCA:

ð27Þ
The projected reciprocal-space basis vectors are shown in Fig. 2c, d, respectively.
The ratios of lengths of the basis vectors in the physical and the perpendicular

space are qkodd
��� ���= qkeven

�� �� ¼ c‘=a ¼ ψ and q?even
�� ��= q?odd

�� �� ¼ a‘=c ¼ ϕ; respectively.

These ratios are the inverses of those in the physical space.
The following identity holds for any pair of vectors x(k)= (x∥, x⊥) and q= (q∥,

q⊥): 1= exp(iq ⋅ x(k))= exp(iq∥ ⋅ x∥)exp(iq⊥ ⋅ x⊥). If the particles’ positions are

described by δ-functions so that the density reads f ðrkÞ ¼ PN
k¼1

δ rk � xkðkÞ� �
where

the sum goes over all particles, then the Fourier transform of the density is given byR
drk exp �iqk � rk� �

f ðrkÞ ¼ PN
k¼1

exp �iqk � xkðkÞ� � ¼ PN
k¼1

exp iq? � x?ðkÞð Þ:

Data availability
The whole datasets are available from the corresponding author on reasonable request.

Code availability
The codes used to construct the tilings and the projection windows are available from the
corresponding author on reasonable request.
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