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Causal effects of population dynamics and
environmental changes on spatial variability of
marine fishes
Jheng-Yu Wang 1, Ting-Chun Kuo 1,2 & Chih-hao Hsieh 1,3,4,5✉

Populations with homogeneous distributions have better bet-hedging capacity than more

heterogeneously distributed populations. Both population dynamics and environmental fac-

tors may influence the spatial variability of a population, but clear empirical evidence of such

causal linkages is sparse. Using 25-year fish survey data from the North Sea, we quantify

causal effects of age structure, abundance, and environment on nine fish species. We use

empirical dynamic modeling—an approach based on state-space reconstruction rather than

correlation—to demonstrate causal effects of those factors on population spatial variability.

The causal effects are detected in most study species, though direction and strength vary.

Specifically, truncated age structure elevates population spatial variability. Warming and

spatially heterogeneous temperatures may enhance population spatial variability, whereas

abundance and large-scale environmental effects are inconclusive. Fishing may affect

population spatial variability directly or indirectly by altering age structure or abundance. We

infer potential harmful effects of fishing and environmental changes on fish population sta-

bility, highlighting the importance of considering spatial dynamics in fisheries management.
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Spatial structure is critical for a population to buffer envir-
onmental fluctuations. By distributing broadly and homo-
geneously in space (i.e., with low population spatial

variability), species can spread risks of extinction over various
habitats when encountering environmental changes1; this strategy
is known as bet-hedging. However, species naturally distribute
heterogeneously and adjust their spatial structure in response to
population dynamics2 and environmental variability2,3. For
example, changes in age structure can affect population spatial
variability4,5, since different age classes live in different habitats
according to age-specific living requirements, mobility, and
competitive advantages6. Hence, populations with a diverse age
structure are more capable of occupying various habitats and
should have lower population spatial variability5,7. Besides,
increased abundance may lead to lower population spatial
variability8, as a growing population typically expands from
optimal habitats to suboptimal habitats to ease intraspecific
competition9. Other than population dynamics, environmental
disturbances (e.g., changes in temperature) also shape population
spatial variability by inducing various survival rates in different
habitats7,10.

Although relationships between population spatial variability
versus age structure, abundance, and environment have been
described1,6, to our knowledge, no study has systematically
quantified causal effects of these factors on population spatial
variability, especially for marine ecosystems. Existing analyses on
determining causation are generally based on linear approaches
(e.g., correlation, regression, or structure equation modeling) that
can yield ambiguous results in complex-interdependent dyna-
mical systems, which are common in nature11,12. Here, we
employ convergent cross mapping12 (CCM) and S-map13, two
recently developed approaches specifically designed for nonlinear
dynamical systems, to quantitatively determine causal relation-
ships. These methods, in contrast to linear approaches, can dis-
tinguish causality from correlation by depicting underlying
mechanisms of a dynamical system12 (see “Methods” for details).

We quantitatively measure causal effects of age structure,
abundance, and environment on population spatial variability,
using a 25-year (1991–2015) biquarterly dataset of nine exploited
fish species (Supplementary Table 1) from the International
Bottom Trawl Survey (IBTS) in the North Sea. The population
spatial variability is measured by the coefficient of variation (CV)
of abundance across spaces (see “Methods” section). We test three
hypotheses: (1) increasing age diversity reduces population spatial

variability because a population with a diverse age structure can
occupy various habitats5,7; (2) increasing abundance reduces
population spatial variability because a population tends to
expand its occupancy when abundance increases9; and (3)
warming and spatially heterogenious temperatures increases
population spatial variability because unfavorable environmental
conditions can reduce local population size7,10. To test our
hypotheses, we firstly use CCM to identify causal variables of
population spatial variability, with consideration of potential
lagged effects. Next, we choose the most critical causal variables
and estimate their quantitative causal effects (direction and
influential strength) on population spatial variability at each time
step using S-map (see “Methods”). We also explore potential
causal effects of fishing mortality on population spatial variability
and confounding factors.

We identify that age diversity, abundance, and examined
environmental variables have causal effects on population spatial
variability for most study species using CCM. Our S-map results
suggest that decreasing age diversity enhances population spatial
variability. However, changes in abundance either increase or
decrease population spatial variability, which might depend on
aggregation tendency of the species. Warming and spatially het-
erogeneous temperatures tend to enhance population spatial
variability. Fishing may affect the population spatial variability,
either directly or indirectly by altering age structure or abun-
dance. These findings link population spatial structure with
population dynamics and environment for marine fish species.
Our results highlight the importance of considering population
spatial dynamics in stock assessments and fisheries management.

Results and discussion
Causal variables of population spatial variability. Based on our
CCM analysis, spatial variability of each species responded to
nearly all examined variables (Table 1). We presented empirical
evidence for causal effects of age diversity, abundance, and
environmental variables on population spatial variability from a
perspective of dynamical system instead of correlation. These
results were supported by previous observations that population
spatial structure adjusted in response to changes in age structure,
abundance, and environmental conditions2,6,14. Nevertheless, the
detected causal effects of examined variables on population spa-
tial variability were in general weak or moderate (Table 1). Such a
weakly linked complex causal network creates difficulties for

Table 1 Causal effect of examined variables on population spatial variability.

Species Common name Dimensionality
(E*)

Library variable: spatial CV of CPUE

Age diversity Abundance AMO Temperature CV of
temperature

Clupea harengus Atlantic herring 5 0.1796 (1) 0.0801 (1) 0.2801 (1) n.s. 0.2650 (5)
Gadus morhua Atlantic cod 6 0.4311 (1) 0.4269 (0) 0.5426 (0) 0.9168 (0) 0.7743 (0)
Melanogrammus
aeglefinus

Haddock 5 0.1989 (1) 0.3080 (3) 0.4653 (1) n.s. 0.2644 (6)

Merlangius merlangus Whiting 4 0.2965 (4) 0.2094 (2) 0.3767 (4) n.s. n.s.
Pleuronectes platessa Plaice 6 0.3363 (1) 0.1744 (1) 0.4648 (6) 0.8791 (6) 0.7908 (7)
Pollachius virens Saithe 2 0.0911 (2) 0.2703 (5) 0.1721 (1) 0.7269 (6) 0.6836 (5)
Scomber scombrus Atlantic mackerel 6 0.6309 (3) 0.1610 (8) 0.3101 (5) 0.9901 (0) 0.7468 (7)
Sprattus sprattus Sprat 7 0.1846 (3) 0.1944 (3) 0.1765 (2) 0.6039 (4) n.s.
Trisopterus esmarkii Norway pout 3 0.3935 (4) 0.3197 (4) 0.0620 (7) 0.1834 (2) 0.3052 (0)

Values in each variable column indicate causal effect of the variable on library variable. Larger values indicate stronger causal effects. Numbers in brackets indicate lag at which causal effect was
strongest for the corresponding variable. Causal effect was determined by convergence cross mapping (CCM; see “Methods”). In dynamical theory, if a time-series variable X(t) has causal effect on
another time-series variable Y(t), one can predict the shadow manifold of X(t) using that of Y(t). Here, we used shadow manifold of library variable (i.e., population spatial variability) to predict shadow
manifold of each examined variable. Predictive ability was measured by correlation coefficient (ρ) between predicted and observed data, and can be an indicator of causal effect. Only significant resutls
were shown (p < 0.05 in both one-sided Kendall’s τ test and Student’s t-test on ρ).
E* optimal embedding dimension of library variables, CV coefficient of variation, CPUE catch per unit effort, AMO Atlantic Multidecadal Oscillation, n.s. nonsignificant causal effect.
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traditional linear approaches, e.g., Granger causality, to decipher
causal information among time series12.

Overtime influential strengths of causal variables. After iden-
tifying causal variables, we quantified overtime influential
strengths of age diversity, abundance, and environmental vari-
ables on population spatial variability using S-map. S-map is an
algorithm that can reconstruct the underlying attractor describing
interactions among variables (see “Methods” for details of
reconstructing attractor governing the dynamical system). We
identified four of the nine study species having significant
attractor reconstruction (Fig. 1, Table 2). The remaining five
species either had nonsignificant attractor reconstruction (Sup-
plementary Table 2) or a lack of causal variables to reconstruct
the attractor (i.e., sprat (S. sprattus)). It should be noted that for
the species having nonsignificant attractor reconstruction in S-
map analysis did not mean that CCM-determined causal variables
were invalid. Instead, we inferred that in these species, some other
important causal variables not included in our analyses were

critical for reconstructing the attractor (see “Methodological
considerations” below). Based on our S-map results, we observed
several important patterns. First, for species with significant
attractor reconstruction that included age diversity (i.e., Atlantic
cod (Gadus morhua), plaice (Pleuronectes platessa), and Atlantic
mackerel (Scomber scombrus)), the overtime causal effects of age
diversity on population spatial variability were on average nega-
tive (Fig. 1a, b, d), which supported our first hypothesis. Second,
abundance overall negatively affected population spatial varia-
bility for plaice and Atlantic mackerel, supporting our second
hypothesis (Fig. 1b, d); however, an average of positive abundance
effect was observed for Atlantic cod (Fig. 1a). Third, temperature
and/or its spatial variability overall positively affected population
spatial variability for three species with significant S-map
reconstruction (Fig. 1b–d), which agreed with our third hypoth-
esis; in contrast, both temperature and spatial variability of
temperature had an average negative effect on spatial variability
of Atlantic cod (Fig. 1a). Finally, the Atlantic Multidecadal
Oscillation (AMO) had a positive effect for Atlantic cod (Fig. 1a),
but on average had a negative effect for plaice and Atlantic

a

c

b

d

CV of SSTSSTAMOAge
diversity

Abundance

CV of SBTSBTAMOAge
diversity

Abundance CV of SBTSBTAMOAge
diversity

Abundance

SBT

Fig. 1 Boxplot of overtime influential strengths of selected causal variables on population spatial variability. Influential strengths were coefficients of S-
map model estimated at each time step (see “Methods”). A positive S-map coefficient indicates a positive causal effect of the variable on population spatial
variability, and vice versa. Magnitude of S-map coefficient represents strength of causal effect. ρ indicates performance of S-map model. Significant S-map
results were detected for a Atlantic cod, b plaice, c saithe, and d Atlantic mackerel (p < 0.1, one-sided Student’s t-test on ρ). Causal variables were selected
according to embedding dimension and their rank of causal effects determined by CCM (see Table 1). AMO indicates Atlantic Multidecadal Oscillation.
SBT and SST indicate sea bottom and sea surface temperatures, respectively. CV indicates coefficient of variation. The bold line represents the median. The
lower/upper hinges correspond to the first/third quartiles. The lower/upper whisker extends from the hinge to the smallest/largest value no further than
1.5 times of interquartile range. Data are shown as dots.
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mackerel (Fig. 1b, d). Note that the estimated influential strengths
of selected causal variables varied through time for all species
(Supplementary Fig. 1), highlighting the nonlinear context-
interdependent behavior in dynamical systems15.

There are multiple ways to reconstruct the attractor for a
dynamical system using different combinations of causal
variables16,17. To test the robustness of aforementioned patterns,
we used various alternative combinations of CCM-determined
causal variables to reconstruct the attractor for dynamics of
population spatial variability and repeated S-map analyses (see
“Methods”). We additionally detected one significant S-map
result (see Supplementary Table 3 for saithe (Pollachius virens)),
when including spatial variability of temperature as a causal
variable. This result indicated that the spatial variability of
temperature positively affected population spatial variability for
saithe, which again supported our third hypothesis. In the
following parts, we discuss the influential strength of each causal
variable on population spatial variability.

Age diversity effects. Our dynamical approaches provided
empirical quantification that age diversity negatively affected
population spatial variability (Table 2, Supplementary Table 3).
That is, the more diverse age structure (i.e., higher age diversity) a
population had, the more homogeneous spatial structure (i.e.,
lower spatial variability) the population manifested (Fig. 2). This
causal relationship was supported by the observation that dif-
ferent age classes lived in different habitats (Fig. 3, see also
Supplementary Fig. 2). The observed age-dependent spatial dis-
tribution, also reported in other marine species18–20, suggested
that a diverse age structure enabled a population to occupy
diverse habitats, and to form a broad and homogeneous spatial
structure. Such homogeneous spatial structure provided bet-
hedging capacity for a species to alleviate harmful effects of
environmental disturbances at local habitats. Therefore, main-
taining a complete and diverse age structure would be regarded as
critical for a population to survive in a changing environment.

Abundance effects. Our second hypothesis that increasing
abundance reduces population spatial variability was observed in
plaice and Atlantic mackerel (Table 2, see also Supplementary
Fig. 3); this partially supported the observation in the previous
study7. The negative causation between abundance and popula-
tion spatial variability can be explained by the density-dependent
habitat selection theory. When abundance is low, the population
will aggregate at specific preferred habitats9, resulting in a higher
population spatial variability. However, as abundance increases to
a certain level at which the stress of intraspecific competition
becomes significant, the population will start moving into less

optimal habitats to maximize overall fitness21, thereby reducing
spatial variability of the population.

However, increasing abundance enhanced spatial variability of
Atlantic cod (Table 2, see also Supplementary Fig. 4). We
hypothesize that the relationship between abundance and
population spatial variability might be determined by the
aggregation tendency of a species, which can be measured by
Taylor’s exponent. In Taylor’s power law22, the mean (M) and
variance (V) of population abundance across spaces are
exponentially related: V= aMb. The exponent b represents
aggregation tendency of the population5,23; therefore, a larger
Taylor’s exponent indicated that a population would be more
aggregated when its abundance increases. With algebraic
manipulations, we can manipulate the equation as
V

1
2M�1 ¼ CV ¼ a0M

b
2�1, where CV is coefficient of variation

(spatial variability) and a′ is a constant. If b falls between one and
two, population spatial variability (CV) is negatively proportional
to abundance (M), as described in our second hypothesis.
Contrastly, if b is larger than two, population spatial variability is
instead positively proportional to abundance. Based on the
manipulated Taylor’s equation, we thus propose that the direction
of the abundance effects on population spatial variability depends
on the aggregation tendency of a population. If a species has a
stronger aggregation tendency (i.e., b > 2), its spatial variability
should enhance as abundance increases, and vice versa. Our
results, though with limited number of species, supported this
hypothesis. We identified a positive abundance effect on
population spatial variability for Atlantic cod, which had b > 2,
whereas the effect became negative for plaice and Atlantic
mackerel, which had b < 2 (see abundance effect in Table 2 and
Taylor’s exponent in Supplementary Table 1).

Our hypothesis of aggregation tendency provided a theoretical
explanation for previous contradictory observations on the
relationship between population spatial structure and abundance.
For example, some species (e.g., Atlantic mackerel) had an
extended spatial distribution in response to the increasing stock
size24, as suggested by density-dependent process. However, some
other species (e.g., cod) instead had a concentrated spatial
distribution when stock size increased25, probably because
aggregation may benefit the population spawning26. Our results
implied that response of spatial variability of fish species to
changing abundance may be regulated by both density-dependent
process and behavioral aggregation tendency. Certainly, more
data are needed to investigate this hypothesis.

Environmental effects. Increasing population spatial variability
with warming temperatures was observed in plaice, saithe, and
Atlantic mackerel (Table 2, see also Supplementary Fig. 5), which
supported our third hypothesis. The resulting heterogeneous

Table 2 Average overtime influential strengths of selected causal variables on population spatial variability.

Species Library variable: CV of CPUE θ ρ p-Value

Age diversity Abundance AMO Temperature CV of temperature

Gadus morhua (Atlantic cod) −0.3372 0.1370 0.2990 −0.6565 −0.0796 0 0.5100 <0.001
Pleuronectes platessa (Plaice) −0.1928 −0.7130 −0.4860 0.1340 0.4592 0 0.3705 0.0448
Pollachius virens (Saithe) 0.3470 0 0.3031 0.0241
Scomber scombrus (Atlantic
mackerel)

−0.0114 −0.4519 −0.0332 0.3111 0.4501 3 0.7568 <0.001

Influential strengths were estimated by S-map model at each time point during study period (see “Methods”), and were averaged over time. Causal variables were selected according to embedding
dimension and their rank of causal effects determined by convergence cross mapping (CCM; see Table 1). Only species with significant S-map results were shown (p < 0.1, one-sided Student’s t-test on
ρ).
CV coefficient of variation, CPUE catch per unit effort, AMO Atlantic Multidecadal Oscillation, θ nonlinearity of the dynamical system. If θ= 0, S-map model reduces to a linear vector autoregressive
model40; ρ performance of S-map model.
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spatial distribution may be because of local reduction or local
extinction of populations that were not adapted to warming
temperatures. This phenomenon was especially apparent for
species that moved less with changing temperatures, e.g., plaice
and saithe10. On the contrary, warming temperatures decreased
spatial variability of Atlantic cod (Table 2, Supplementary Fig. 6),
probably due to their relatively significant migratory ability in
response to changing temperatures10,27.

In addition, spatially heterogeneous temperatures increased
population spatial variability for plaice, Atlantic mackerel, and
saithe (Table 2, Supplementary Table 3). As temperature restricts
living areas of fish species, spatially heterogeneous temperatures
may force a population to form a heterogeneous spatial distribution
(Supplementary Fig. 7). Spatially heterogeneous temperatures can
also reduce survival of larvae and juveniles, when they move from a
spawning ground to a nursery ground28, leading to fragmented
spatial distribution of the population. Nonetheless, cod still
exhibited a more homogeneous spatial structure in response to a
more spatially heterogeneous temperature (Table 2, see also
Supplementary Fig. 8). We inferred that their stronger movement
in response to changing temperature10 might enable them to
inhabit suitable habitats more homogeneously.

In the present study, AMO had no consistent casual effect on
population spatial variability among species (Table 2). As a large-
scale environmental indicator, AMO represented outcomes of
complex interactions between atmosphere and ocean circulation
systems; therefore, the mechanism of AMO effect on population
spatial variability may not be straightforward29. It has been

documented that spatial distribution and abundance of fish
populations may be linked with AMO (refs. 2,30). Plankton
biomass and community, critical in determining survival, as well
as spatial distribution of fish larvae and recruitment31, are also
associated with AMO (ref. 30). Interactive effects of these factors
linked with AMO complicated the ultimate causal effect of AMO
on spatial variability of fish populations, which may have
contributed to the ambiguous causal effects in this study.

Fishing and confounding causal effects. Considering that
overfishing is a critical driver of age truncation and abundance
reduction1, we also examined whether and how fishing mortality
could indirectly affect population spatial variability by altering
age structure and/or abundance. To do so, we explored causal
effects of fishing mortality on age diversity and abundance,
respectively, and estimated the corresponding influential
strengths. These analyses could only be done at a yearly base in
accordance with annual fishing mortality data (see “Methods”).

Using CCM, we determined that fishing mortality causally
affected age diversity and/or abundance in five of the nine study
species (see Supplementary Tables 4 and 5 for causal effect of
fishing mortality on Atlantic cod, whiting (Merlangius merlan-
gus), plaice, saithe, and Norway pout (Trisopterus esmarkii)). The
detected causal effects for age diversity and abundance were less
significant compared to that for population spatial variability (see
CCM results in Table 1 versus Supplementary Tables 4 and 5).
This was attributed to insufficient time-series length when the
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Fig. 2 Population spatial distribution at the time when age diversity was highest (left) versus lowest (right). Populations tended to distribute more
evenly in space when their age diversity was higher. Only species with significant S-map results involving age diversity were shown (p < 0.1, see Table 2).
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data were shortened to be yearly base, causing a difficulty in
reconstructing the attractor. We further estimated the influential
strengths of CCM-detected causal variables on age diversity and
abundance using S-map, and averaged the influential strengths
over all significant lags of each causal variable to reduce
variability arising from short time series. In these S-map results,
fishing mortality had a negative effect on age diversity for Atlantic
cod and whiting (Supplementary Table 6), which partially agreed
with previous observations on age truncation associated with
fishing1, although the effect was on average slightly positive for
plaice. In addition, increasing fishing mortality was detected to
reduce the population abundance for Atlantic cod, whiting, and
saithe (Supplementary Table 7). The observed causal effects of
fishing mortality on age diversity/abundance suggested that

fishing may undermine population spatial structure (e.g.,
enhanced population spatial variability) via age truncation and
abundance reduction, given the identified negative causal effects
of age diversity and abundance on population spatial variability.
This could account for exploited species being more vulnerable to
environmental disturbance4,7,32, as fishing-induced heteroge-
neous spatial structure might weaken bet-hedging capacity of
these species1. Even worse, because responses of population
spatial variability to changing age diversity and abundance were
generally time-delayed (see ubiquitous-lagged causal effects in
Table 1), an undermined spatial structure may have a prolonged
recovery, even if age structure and abundance are restored.

We also included fishing mortality as a potential causal variable
of population spatial variability to test if fishing could directly

Longitude
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Fig. 3 Atlantic cod (G. morhua) as an example illustrating that different age classes had different spatial distributions. Each circle indicates average
abundance at a survey location during study period. Size of circles increases with abundance. Younger cod (age classes 0–3) were abundant in the
Skagerrak (the western North Sea), whereas older cod (age classes 4–6) were abundant in the northwest of the North Sea. Other species also had age-
dependent property in their spatial distributions (Supplementary Fig. 2).
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affect population spatial variability. According to CCM, fishing
mortality was a significant causal variable in five of the nine study
species (Supplementary Table 8). However, only Atlantic cod and
whiting had significant S-map results, with contradictory fishing
mortality effects (Supplementary Table 9). The nonsignificant
results of S-map analyses were attributed to the short time series
(only 25 time points) that cannot be used to successfully
reconstruct the attractor. Nevertheless, working within con-
straints of limited length of time series, there were indications
that fishing mortality might affect population spatial variability,
either through a direct path or an indirect path associated with
age structure and/or abundance.

It should be noted that causal effects of fishing, age structure,
abundance, and environmental variables on population spatial
variability were intertwined, reflecting the complexity of the
system. Taking Atlantic mackerel as an example, population
abundance positively affected age diversity (Supplementary
Table 6), whereas age diversity negatively affected population
spatial variability (Table 2). Therefore, it is not surprising that
abundance was detected to negatively affect population spatial
variability (Table 2). Similarly, we detected a negative causal effect
of temperature and spatial variability of temperature on age
diversity of Atlantic mackerel (Supplementary Table 6), and that
age diversity negatively affected population spatial variability
(Table 2). As such, both temperature and spatial variability of
temperature positively affected population spatial variability
(Table 2). Our findings indicated that changes in age structure,
abundance, or environmental variables affected not only popula-
tion spatial structure but also population dynamics, resulting in a
confounding causal network among these variables. We also
noted that other causal variables not explored in this study might
affect population spatial variability. For instance, according to
variance–mass allometry33, populations with smaller mean body
mass may have greater variance in their distributions. Since body
size of marine fishes may reduce as a result of overfishing1 and
warming temperatures34, exploited stocks are likely to become
more spatially variable and vulnerable to climate variability in a
warming environment32.

Methodological considerations. Although we determine causal
relationships and demonstrated quantitatively influential
strengths of age diversity, abundance, and environmental vari-
ables on spatial variability of marine fishes in the North Sea, some
caution is warranted when interpreting the results. First, the gear
used in IBTS was specifically designed for demersal species and
may not catch great quantities of pelagic species. In particular for
Atlantic mackerel, mainly relatively young individuals were
caught in IBTS, and thus the IBTS data may not represent the
whole stock (C. Needle, personal communication). Although this
limits the use of IBTS data to estimate the whole population
abundance for some species, it should have a less effect on the
findings of our study. At least, the interactions among population
spatial variability, age diversity, abundance, and environmental
variables uncovered by our methods were valid for that propor-
tion of the population we examined. Given that IBTS has a long
survey period and large spatial coverage, several studies have
shown the potential of using IBTS to study changes in population
spatial structure for pelagic species35–37.

Second, the examined causal relationships in this study were in
general not strong for all species (see Table 1 for moderate causal
effects), likely due to the limitation of time-series length. Also,
dynamics of population spatial variability cannot be fully
explained by age diversity, abundance, and selected environ-
mental variables (see Table 2 for moderate performance (ρ) of S-
map results). This may suggest that some other important

processes influencing population spatial structure were not
captured in our study. While we detected many significant causal
variables for population spatial variability using CCM (Table 1),
for some species, we could not successfully reconstruct the
attractor of population spatial variability, using these causal
variables in S-map analysis (only four of the eight species had
significant S-map results, and one other species had no sufficient
causal variables to reconstruct the attractor; see Table 1 and
Supplementary Table 2). This was not because the CCM-
determined causal variables were invalid, but because there
existed some other key variables dominating dynamics of
population spatial variability38. Therefore, using only the causal
variables examined in the present study to reconstruct the
attractor and to depict dynamics of population spatial variability
was not sufficient. For example, consider a hypothetical causal
network—spatial variability of a fish species is causally affected by
age diversity, temperature, and prey abundance. Suppose we have
only data for age diversity and temperature, but lack data for prey
abundance. In such a case, CCM may still successfully identify age
diversity and temperature each as one of the causal variables of
population spatial variability. This is because the lagged
coordinate embedding constructed by a single time series (e.g.,
age diversity or temperature) allows CCM to recover missing
information of a dynamical system (see “Methods”). However, it
is not possible for S-map (multivariate embedding) to successfully
reconstruct the attractor using only age diversity and tempera-
ture, because the third critical variable, i.e., prey abundance, is
missing. When characteristics (e.g., geometric shape) of the
attractor are mainly determined by the dominant causal variables,
using other causal variables to reconstruct the attractor can only
partially reveal the underlying dynamical system38, leading to
poor performance of S-map model. Therefore, a further
comprehensive examination of causal effects of other biological
factors, physical conditions, and ecological events should improve
knowledge regarding dynamics of population spatial structure. In
addition, a long-term and continuous survey covering a wide
range of space and age classes for marine fish species is warranted
for a thorough research on population spatial structure associated
with population dynamics.

Final remarks. Growing evidence has suggested that population
spatial structure is key to understanding population dynamics1,6,
and therefore should be included in fisheries management as a
complementary indicator to improve monitoring of stock sta-
tus39. Our findings highlighted potentially detrimental effects of
fishing on population spatial structure, which may be associated
with truncated age structure, as well as diminished abundance. In
addition, warming and fluctuating temperatures also had roles in
undermining population age structure, abundance, and spatial
structure. We therefore emphasize the importance of considering
population spatial structure in fishery management, particularly
on intertwining effects of changes in population dynamics
induced by fishing and environmental variability.

Methods
Fish data. To investigate dynamics of population spatial variability, we explored all
spatial–temporal surveys in the Database of Trawl Surveys (DATRAS) of the Inter-
national Council for the Exploration of the Sea (ICES). We considered only surveys
containing age-specific catch data for each species in each grid (i.e., subarea or sta-
tistical rectangle with a resolution of 0.5° latitude by 1° longitude defined by ICES).
For each species in a survey, to appropriately capture living areas of the species, we
removed grids at which catch data of the species was consistently zero throughout the
survey period. To avoid biased estimation on population spatial variability, we
removed time points in which the number of grids was <10. To ensure viability of
empirical dynamic modeling (EDM), we considered species having long enough
continuous time-series data (i.e., time-series length n ≥ 30)12,40. Eventually, we
identified nine exploited species from the IBTS in the North Sea satisfying our criteria,
including Clupea harengus, G. morhua, Melanogrammus aeglefinus, M. merlangus,
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P. platessa, P. virens, S. scombrus, S. sprattus, and T. esmarkii (Supplementary
Table 1). We used quarterly catch per unit effort (CPUE) data, i.e., the number of
individuals caught per hauling hour, in each grid in the North Sea (49.5°–61.5° N; 5°
W–13° E) from 1991 to 2015 in this study. Only data in the first and third quarters
(Q1 and Q3) were used because sampling frequency was disproportionally low in Q2
and Q4. We further collected biological information for each species, including life-
style and biogeography information from FishBase (http://www.fishbase.org/search.
php) and literature (Supplementary Table 1).

Population spatial variability. Population spatial variability was measured using a
unitless indicator of variability, namely CV of CPUEs over grids41. For CPUE, we
used data product “CPUE per length per subarea” of IBTS for all species. We
calculated population spatial variability as follows. First, we summed CPUEs across
length classes for each subarea and quarter,

CPUEq;s ¼
X
l

CPUEq;s;l; ð1Þ

where q, s, and l represent quarter, subarea, and length class, respectively. Thus, a
quarterly (Q1 and Q3) time series of total CPUE for each subarea was obtained.
Then, we calculated the spatial CV of total CPUE over subareas for each quarter,
and obtained a quarterly time series of spatial CV,

CVq ¼
σq
μq

; ð2Þ

where σq and μq are the standard deviation, and mean of CPUEq,s over subareas s
on quarter q, respectively.

Age structure. We quantified the completion of age structure of each species in
the living area using the Shannon index of age class distribution (i.e., age diversity).
We used data product “CPUE per age per subarea” of IBTS for all species and
calculated age diversity as follows. First, we summed CPUEs across subareas for
each age class and quarter,

CPUEq;a ¼
X
s

CPUEq;s;a; ð3Þ

where q, s, and a represent quarter, subarea, and age class, respectively. Then, we
calculated age diversity for each quarter,

Shannonq ¼ �
X
a

pq;a ln pq;a; ð4Þ

where

pq;a ¼
CPUEq;aP
aCPUEq;a

: ð5Þ

Abundance. We calculated total CPUE by summing CPUEs across length classes
and subareas for each quarter,

CPUEq ¼
X
s

X
l

CPUEq;s;l; ð6Þ

where q, s, and l represent quarter, subarea, and length class, respectively.

Environment. For environmental variables, we calculated spatial mean and CV of
temperatures over the study area for each quarter. We also collected AMO to
explore large-scale environmental effects. Regarding temperature, we considered
sea surface temperatures (SST) for pelagic species and sea bottom temperatures
(SBT) for demersal species, respectively, to appropriately capture causal effects of
temperature for species with disparate lifestyles. SBT data were available from
ICES, whereas SST and AMO data were collected from National Oceanic and
Atmospheric Administration.

Empirical dynamic modeling. In the dynamical system theory, a time series is a
projection from the motion of the attractor in multidimensional state space onto
one coordinate axis of variables associated with the dynamical system (refer to a
brief animation on tinyurl.com/EDM-intro). The attractor is a collection of all
trajectories and states governing dynamics of the system. In a dynamical system,
the state changes according to a set of rules (i.e., dynamical processes). Knowing
the process of the attractor is equivalent to knowing the behavior of the projected
time series. Although the attractor of a dynamical system is usually unknown a
priori, there is an empirical way to reconstruct a shadow attractor manifold that is
topologically invariant to the original attractor manifold42,43. Specifically, one can
reconstruct the shadow manifold under an embedding space consisting of lagged
coordinates from a single time series, i.e., <X(t), X(t− τ), …, X(t− (E− 1)τ)>,
where τ is the time lag and E is the embedding dimension. The use of lagged
coordinates to reconstruct the attractor manifold is also known as state-space
reconstruction. Since the reconstructed shadow manifold preserves mathematical
properties of the original manifold, several approaches based on state-space
reconstruction have been developed to investigate the dynamical system. CCM
(ref. 12) and S-map13, two tools of EDM built on state-space reconstruction, can

determine causal relationships and estimate quantitatively corresponding causal
effects between variables. We explain these two methods in the following sections.

Identification of causal variables of population spatial variability. In the theory
of dynamical system, two causally linked time-series variables are from the same
dynamical system. Both shadow manifolds reconstructed by the two time series are
topologically invariant to the original attractor manifold, and therefore can identify
the state of each other. If a time-series variable, Y(t), causally affects another
variable, X(t), information about the states of Y(t) will be recorded in X(t). As such,
one can use the information recorded in X(t) to recover Y(t). Based on this concept,
CCM tests causality by measuring the extent to which a causal variable has left an
imprint in the time series of an affected variable. The essential ideas are sum-
marized in the following brief animations: tinyurl.com/EDM-intro. Sugihara
et al.12 indicated that “Y(t) causes X(t)” can be determined if points on the shadow
manifold of X(t) (library variable) can predict (cross-map to) the contemporaneous
points on the shadow manifold of Y(t), and this prediction converges—meaning
that the cross-mapping skill ρ(L) improves with increasing library length (L) of X.
Here, ρ is the correlation coefficient between observed and predicted data and L is
the length of interval randomly subsampled from the time series (i.e., subsampling
size used to construct library). Convergence is determined by examining ρ under
various L. Here, L starts from the minimal library length, Lmin, which is equal to the
optimal embedding dimension (E*), to the maximal library length, Lmax, which is
equal to the length of the entire time series. We used simplex projection44 to
identify the optimal E* for reconstructing the attractor, with E ranging from 1 to 10
for each time series. To guarantee convergence, we applied the following two
statistical criteria40: (1) whether ρ(L) monotonically increased with L according to
one-sided Kendall’s τ test; and (2) whether ρ(Lmax) was larger than zero according
to one-sided Student’s t-test. Convergence requires that both Kendall’s τ test and
Student’s t-test are significant (p < 0.05). Detailed algorithm of CCM is in Sup-
plementary Materials of Sugihara et al.12.

We used CCM to test whether causal effects of age diversity, abundance, and
environmental variables on population spatial variability existed. Because causality
may occur with a lagged response45, we also tested causal effect of lagged variable,
with lag ranging from zero to eight quarters. To mitigate potential bias due to
randomness in CCM analysis, we performed CCM analysis 200 times for each
variable and retained the best lag at which ρ was the highest and often (95% of
times) passed the convergence test. All time series were normalized by substracting
mean and dividing standard deviation prior to any statistical analysis. The
significant long-term trend in time series was removed using simple linear
regression prior to analysis (i.e., by substracting the fitted value if the regression
coefficient was significant with p < 0.05). It should be noted that, although CCM
detects causations between variables in a pairwise manner, usage of lagged
coordinate embedding from a single time series in state-space reconstruction
implicitly incorporates influences of other causal variables in the dynamical system.
This is because information about the entire dynamical system is recorded in any
single time series17,43, even though these confounding variables are not explicitly
specified in the embedding model.

Estimation of the time-varying direction and influential strength of causal
effects. Although CCM can identify causality, it cannot quantify the direction and
influential strength of causal effects between variables. However, since the state of
the dynamical system contains information of all variables, influential strengths
between variables can be characterized by investigating the evolution of the state. In
dynamical systems, the next time step of a variable, say Xi(t), can be written as

Xi t þ 1ð Þ ¼ F Xi tð Þð Þ; ð7Þ

where F(·) denotes dynamics on the attractor. In a small neighborhood of Xi(t), F(·)
can be locally characterized by the Jacobian of Xi(t). That is, the next time step of
Xi(t) is the net local effect that each of the variables in the same dynamical system
has on Xi(t). Hence, the Jacobian elements (i.e., partial derivatives) define influ-
ential strengths between variables on the state. In dynamic systems, influential
strengths vary through time as the state evolves along the attractor15, which is
known as the state-dependent property. To obtain the unknown Jacobian at each
time step, an algorithm called S-map13,46 is introduced to sequentially reconstruct
the Jacobian in an empirical way. The essential idea of S-map is to estimate the
Jacobian at each successive state via a locally weighted multivariate linear scheme
that gives greater weights to vector points near the current state in the recon-
structed state space. That is,

x̂i t*þ 1ð Þ ¼ C0 þ
XE
j¼1

Cij xjðt*Þ: ð8Þ

where Cij is model coefficient and E is the embedding dimension of the state space.
S-map is conducted at each time step and gives greater weights to vector points
closer to the target vector point x(t*) on the attractor, which is unlike common
linear models that ignore the state-dependent property. Exact weights are a
function of the Euclidian distance d between vector points and x(t*) normalized by
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average distance d̅ given by

w dð Þ ¼ exp � θd
�d

� �
; ð9Þ

where θ ≥ 0 is a nonlinearity parameter determining the extent to which the model
relies on the region near the target vector point. A larger value of θ indicates that
the model is more state dependent and acts more like a nonlinear dynamical
system. Note that when θ= 0, the S-map model reduces to a vector autoregression
model40. In short, coefficient C in the S-map is the singular value decomposition
solution to the linear equation

B ¼ A � C; ð10Þ

where B is an n-dimensional vector of the predicted next time-step variable given
by

Bk ¼ w d x tkð Þ; x t*ð Þð Þð Þxi tk þ 1ð Þ; ð11Þ

and A is an n by E matrix of weighted variables given by

Akj ¼ w d x tkð Þ; x t*ð Þð Þð Þxj tkð Þ: ð12Þ
We applied the S-map algorithm to estimate the time-varying influential

strengths of the CCM-determined causal variables on population spatial variability.
Specifically, we firstly used population spatial variability and the CCM-determined
causal variables as coordinates to reconstruct the original attractor governing the
dynamical system based on the extended Takens’ theorem17. To satisfy the
embedding theory, number of embedded causal variables should be equal to the
optimal embedding dimension (E*) of the system (E* can be determined by
simplex projection as mentioned above). Hence, in addition to the target variable
(i.e., population spatial variability), we selected another E*− 1 critical causal
variables of the target variable determined in CCM analysis (Table 1) to reconstruct
the attractor. If E* was larger than the total number of causal variables, the
suboptimal E was used. Although E* is the best embedding dimension to
reconstruct the attractor, suboptimal E is also a practical embedding dimension
and can be used to describe essentially the behavior of the attractor44. Thereafter,
we used S-map to estimate influential strengths of each embedded causal variable
on population spatial variability at each time step46. The nonlinearity parameter θ
was tuned from zero to eight to identify the best θ for each S-map model.
Performance of S-map model can be measured by the correlation coefficient ρ
between predicted and observed data. We tested whether ρ is significantly larger
than zero using one-sided Student’s t-test. Notice that through S-map analyses,
intertwining effects among age diversity, abundance, and environmental variables
were examined simultaneously.

We noted that the number of significant causal variables for population spatial
variability might be greater than E*− 1. Therefore, there could be more than one
valid state-space reconstruction to represent the attractor. In the main text, we
presented results of state-space reconstruction using top E− 1 causal variables
(according to the rank of ρ in CCM analysis). However, to ensure robustness of our
conclusion regarding the direction of the causal effect of each variable, we further
examined all other candidate S-map models, using various combinations of
alternative CCM-determined causal variables as a sensitivity analysis (i.e., replacing
causal variables with those that were less strong, but still significant in CCM
analysis). We performed this additional analysis for saithe and Norway pout
because their number of significant causal variables for population spatial
variability exceeded E*− 1 (see Table 1 for E* and significant causal variables for
each species).

Aggregation tendency. Taylor’s exponent b is a common indicator for describing
aggregation tendency of a species, and normally lies between one and two. Larger b
indicates stronger aggregation tendency (i.e., a population becomes more aggre-
gated (with higher population variance) when abundance increases); b= 1 repre-
sents a random spatial distribution5,23,33. We calculated Taylor’s exponent b by
fitting a linear regression on the quarterly (Q1 and Q3) log-transformed variance
of CPUE (V) with log-transformed mean of CPUE (M) over subareas: log(V)=
log(a)+ b × log(M). Subareas with consistently zero CPUE throughout the study
period were removed prior to analysis to avoid including areas where a species
never inhabited.

Analyses involving fishing mortality. To explore potential indirect causal effect
of fishing on population spatial variability by affecting age structure and abun-
dance, we collected data of fishing mortality. Because only yearly data were
available for fishing mortality, all analyses involving fishing mortality were done on
a yearly base. That is, we averaged data over quarters in each year to obtain yearly
data for each time series prior to any analysis. We performed CCM analysis and
tested lagged variables as described above, but with lag up to four due to limited
time-series length. S-map was done similarly; however, to reduce variability arising
from the short time series in the S-map model, we averaged influential strengths of
each causal variable over all significant lagged terms.

Computation. All analyses were done with the statistical software R (version 3.5.0).
CCM and S-map analyses were implemented using the R package rEDM (version
0.6.9) (https://cran.r-project.org/web/packages/rEDM/index.html).

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
All raw data that support the findings of this study are publicly available. Fish survey data
are available at https://datras.ices.dk/Data_products/Download/Download_Data_public.
aspx. SBT was downloaded at https://ocean.ices.dk/HydChem/HydChem.aspx?plot=yes.
SST was accessed at https://www.esrl.noaa.gov/psd/data/gridded/data.cobe2.html. AMO
data were downloaded at https://www.esrl.noaa.gov/psd/data/timeseries/AMO/. Fishing
mortality data can be retrieved from http://standardgraphs.ices.dk/stockList.aspx by
specifying species, regions, and year. Life style of study species was accessed at http://
www.fishbase.org/search.php by specifying species name. Raw and compiled dataset have
been made publicly available at the repository https://doi.org/10.5281/zenodo.3759382.

Code availability
R-codes and documentation of all analytical procedures mentioned above have been
made publicly available at GitHub. Specifically, codes for parsing all surveys in DATRAS
are available at https://github.com/snakepowerpoint/compileDATRAS. Codes for
analyzing population spatial variability with EDM are available at https://github.com/
snakepowerpoint/SpatialVariability.
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