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Antagonistic odor interactions in olfactory sensory
neurons are widespread in freely breathing mice
Joseph D. Zak 1,2✉, Gautam Reddy3, Massimo Vergassola 4 & Venkatesh N. Murthy 1,2✉

Odor landscapes contain complex blends of molecules that each activate unique, overlapping

populations of olfactory sensory neurons (OSNs). Despite the presence of hundreds of OSN

subtypes in many animals, the overlapping nature of odor inputs may lead to saturation of

neural responses at the early stages of stimulus encoding. Information loss due to saturation

could be mitigated by normalizing mechanisms such as antagonism at the level of receptor-

ligand interactions, whose existence and prevalence remains uncertain. By imaging OSN axon

terminals in olfactory bulb glomeruli as well as OSN cell bodies within the olfactory epi-

thelium in freely breathing mice, we find widespread antagonistic interactions in binary odor

mixtures. In complex mixtures of up to 12 odorants, antagonistic interactions are stronger and

more prevalent with increasing mixture complexity. Therefore, antagonism is a common

feature of odor mixture encoding in OSNs and helps in normalizing activity to reduce

saturation and increase information transfer.
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The number of distinct types of sensory neurons is usually
far smaller than the number of distinct stimuli that an
animal needs to detect, necessitating individual neurons to

be receptive to multiple stimuli. This feature is especially relevant
in the olfactory system where the number of odorous molecules
vastly exceeds the repertoire of receptor types1–3. Further, the
olfactory world at any instant consists of complex mixtures of
odorants, with individual olfactory receptors encountering mul-
tiple odorants at once (Fig. 1a). Therefore, how multiple ligands
interact at single odorant receptors will define the mode of coding
in, and the capacity of, the olfactory system. A large fraction of
the olfactory sensory neurons (OSNs) in mammals express a
family of odorant receptors that are G-protein coupled recep-
tors4–6. If the ligand-receptor binding kinetics are modeled with a
single affinity parameter, simultaneous activation by multiple
ligands will be simply determined by the relative affinities, until
saturation7–10. However, it is becoming increasingly clear that
more complex interactions can occur.

Recent theoretical work has shown that a variety of nonlinear
interactions among multiple ligands at the same receptor can
readily arise with a simple two-step model of receptor activation11

(Fig. 1b, c). Experimental work in vitro in OSNs has suggested the
existence of nonlinear interactions, especially antagonism or
partial antagonism12–20. However, the prevalence of these inter-
actions, especially in living animals within the constraints of
natural sniffing dynamics, has not been explored. At a more basic
level, evidence for multistep receptor activation has also been
sparse. For example, odorants with different affinities for a given
receptor could also have distinct maximal activation if their
efficacies are different17, but few studies have systematically
explored this aspect.

Elucidating the principles of mixture interactions in OSNs is
important for understanding odor coding. Odor identity and
abundance are widely accepted to be represented by a combina-
tion of OSNs21–23. While each odorant activates a discrete pattern
of sensory inputs, there can be considerable overlap in patterns of

OSN activation corresponding to different odorants24–27. Since
naturalistic odor stimuli are complex blends of many odorants,
even relatively simple odor blends may saturate a large fraction of
the complement of OSNs, thereby limiting their information
coding capacity. More generally, even before saturation sets in,
nonlinear interactions among multiple odorants in a given OSN
may pose challenges for downstream decoding of odor
identity28,29.

We systematically characterize mixture interactions at OSNs in
their native environment using two-photon imaging of calcium
responses to odor stimuli. Imaging populations of OSN axon
terminals in the olfactory bulb glomerular layer affords excellent
signal-to-noise ratio and direct access to information conveyed to
the brain. We also adapted a method to chronically image OSN
somata in the olfactory epithelium of freely breathing mice, which
allows us to bypass any influence of top-down neural feedback
and to directly access the result of odor transduction. By deli-
vering odors individually and in binary mixtures at concentra-
tions that varied over three orders of magnitude, we uncover
evidence for multistep activation of ORs and for widespread
antagonistic interactions. We also find such antagonistic inter-
actions in responses to complex mixtures containing up to 12
components in single OSNs. Our data strongly support a role for
mixture suppression of OSN activity as a normalizing mechanism
in olfactory stimulus encoding, which could enhance odor
information transfer.

Results
Antagonism measured in the glomerular layer of the OB. Odor
responses in OSNs can be measured with excellent sensitivity in
the glomerular layer of the olfactory bulb, where axons of a given
receptor type converge, allowing signal averaging. We used OMP-
GCaMP3 mice and imaged axonal calcium responses through a
cranial window over the dorsal surface of both olfactory bulbs.
For two odorants, Methyl tiglate and Isobutyl propionate (Fig. 2a;
Table 1), we measured odor responses in glomeruli across a range
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Fig. 1 Schematic of signal transduction and nonlinear odor mixture interactions in OSNs. a Schematic of sensory transduction in OSNs. Odors generate
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of concentrations spanning three orders of magnitude. We then
made a binary mixture of the two odorants and measured OSN
responses at the same glomeruli (Fig. 2b, c). When plotting the
responses as a function of concentration, the mixture con-
centration at each point represents the sum of the two individual
odors—this applies to all experiments where concentration series
are used. From nine mice, we identified 334 glomeruli that
responded to either of the odors, or the mixture of the two. For
this odor pair, many glomeruli reached different saturation levels
for the same odor (Fig. 2c).

To estimate antagonism at each glomerulus, we first calculated
the average response to the three highest odor concentrations of
each individual odor (Fig. 2c, d). We then tested whether the
observed mixture responses for the same three concentrations
were significantly below the linear sum of the response to the
mixture components (rank-sum test of trial replicates). Signifi-
cant mixture suppression was found in 80.5% (277/344) of
glomeruli that responded to at least one odor (Fig. 2e, f).

There are, however, two important considerations in inter-
preting our result. First, it remains possible that the largest
calcium signals observed for individual odors may represent the

average maximum physiologically-bounded firing rate across all
OSNs of a common type. Similarly, the largest signals we
observed for individual odors may be bounded by calcium
indicator saturation. Given these constraints, it is plausible that
the observed mixture responses can never reach the linear sum of
the two mixture components and are simply bounded by the
largest response observed for either component alone. To account
for this possibility, we compared the observed mixture responses
and maximum response for either odor. When using this more
conservative metric, we found evidence for antagonism in 41.7%
(144/344) of the glomeruli (Fig. 2e-f). These data indicate that,
even by a conservative measure, antagonism is widespread in
OSNs. Lastly, to ensure that our observations were not only
relevant to the highest odor concentrations, we measured the
fraction of antagonistic interactions on a sliding scale (Fig. 2g).
We found that regardless of odor concentration, antagonism was
present in a constant fraction of glomeruli. These data cannot be
easily explained by one-step competitive binding models, and
provide further evidence that odorant- binding to and activation
of odor receptors may be decoupled, as predicted by our earlier
theoretical work11.
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Fig. 2 Optical measurements of antagonism in OSN axon terminals. a Experimental setup. Odor responses in OSN axon terminals were measured at
olfactory bulb glomeruli through a cranial window. b Example image of glomeruli and selected ROIs from one of nine mice in this dataset. Responses for
two odors (Methyl tiglate and Isobutyl propionate) and their mixture from selected glomeruli are shown on right as ΔF/F time courses. Colored circles
correspond to ROIs in image. Red bar under traces denotes odor delivery time. Scale bar in image is 50 µm. c Example dose response curves from four
selected glomeruli. Each point is the average of 3–5 trials. Odor concentrations are normalized to the largest measured concentration (see Methods). For
each point, odor mixtures are the summation of both individual odors. d Data from 20 randomly selected glomeruli. Each point is the mean of the three
largest responses from each odor. Error bars are SEM. e Left, comparison of the observed mixture response against the linear sum of both mixture
components or (right) against the maximum response generated by either mixture component. f Cumulative distribution of rank-sum test P values
obtained for 334 glomeruli for linear sum comparison (black) and comparison to maximum component response (grey). Red dots mark P values < 0.05.
g Fraction of glomeruli that showed significant antagonism in each of six concentration bins. Each bin contains three adjacent concentrations.

Table 1 Odor information related to Figs. 2, 4 and 6.
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In these experiments, glomerular responses were highly non-
overlapping for the odor pair tested. To ensure that antagonism
did not arise from unique interactions between these two odors,
and to demonstrate generalization of the phenomenon with other
odor pairs, we repeated our experiments using another odor pair,
Ethyl valerate and Allyl butyrate (Fig. 3a; Table 2). This pair was
specifically selected because of their highly overlapping OSN
activation (Fig. 2b). Mixture interactions for this pair of odors
were in close agreement with those estimated above for the other
odor pair. Using the same approach that we previously described,
from 226 glomeruli in five mice, we found antagonism in 76.6%
(173/226) of glomeruli when comparing the summed responses
and 25.7% (58/226) when comparing against the maximum
(Fig. 3e, f). Again, the fraction of glomeruli that exhibited mixture
suppression was concentration invariant (Fig. 3g).

Across all glomeruli from both odor pairs where saturating
responses were observed for an odor, we could then fit response
curves using Eq. (1) (see Methods). We used stringent criteria
that ensured only well-activated glomeruli were included by
imposing thresholds on the mean-squared error from the best fit
parameters. When comparing the fits from glomerular responses
to the odors used in Fig. 2 (Fig. 4a; also see Table 1), the
distribution and mean Hill coefficients were similar (2.67 ± 0.16,
n= 48 for Methyl tiglate and 2.53 ± 0.32, n= 22 for Isobutyl
propionate; P > 0.05, Rank-sum test; Fig. 4b). Early experiments

with synthetic calcium indicators or intrinsic imaging of
glomeruli estimated Hill coefficients to be close to 1, but more
recent experiments appear to measure higher values9,10. We then
compared the Hill coefficients obtained from the curves fit to the
mixture responses (mean= 2.21 ± 0.16, n= 30; Fig. 4d) with
those from each of the components alone. We found no
differences in any of the comparisons (P > 0.05, Rank-sum test).

When we fit the glomerular responses to the odor pair used in
Fig. 3 (Fig. 4c; also see Table 2), the distribution and the means of
the Hill coefficients were remarkably similar (2.36 ± 0.19, n= 44
for Ethyl valerate and 2.29 ± 0.21, n= 39 for Allyl butyrate; P >
0.05, Rank-sum test; Fig. 4d), and comparable to those for the
odor pair discussed above. We again compared the Hill
coefficients extracted from the data fit to the glomerular mixture
responses (mean= 2.26 ± 0.22, n= 32; Fig. 4d) to each of the Hill
coefficient distributions from the mixture components and found
no differences across all comparisons (P > 0.05, Rank-sum test).

Imaging odor responses in individual OSNs. Our glomerular
imaging results suggest that mixture suppression through
antagonism is widespread. However, an alternative mechanism
that could produce such an effect may operate through GABAb-
or D2-mediated suppression of OSN axon terminals30–33.

To avoid circuit interactions between different OSNs, we
directly imaged OSN somata in situ in the olfactory epithelium34,
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Fig. 3 Antagonism in OSN axon terminals for odors with overlapping activation patterns. a Experimental setup. Same as Fig. 1, but for an odor pair with
overlapping response profiles (Ethyl valerate and Allyl butyrate). b Image of glomeruli and selected ROIs from one of five mice in this dataset. Odor
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Table 2 Odor information related to Figs. 3 and 4.
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where there is no evidence for efferent modulation that is directly
linked to olfactory circuitry35. We first characterized the odor
tuning and response dynamics of individual cells to determine
whether the response properties of sensory neurons in the
dorsal recess (zone 1) of the olfactory epithelium36,37 are
congruent with those observed in glomeruli in the dorsal
olfactory bulb, and to ensure that we sample from a hetero-
geneous population of OSNs. We used a panel of 32
monomolecular odors (see Table 3) that activate glomeruli on
the dorsal olfactory bulb across a wide range of densities (Fig. 5a,
d, f). We then imaged individual cells in the epithelium (Fig. 5b)
and compared their tuning to glomeruli in the olfactory bulb.
Across odors, there was a strong relationship between the fraction
of activated glomeruli and individual OSNs (r= 0.750, P < 0.0001,
Fig. 5e). We found a similar relationship when we compared the
mean response magnitude at both imaging sites across all
glomeruli and somata (r= 0.598, P < 0.003, Fig. 5g). These data
provide new functional evidence that support anatomical data for
a conserved zonal organization between the olfactory epithelium
and the olfactory bulb37.

We also found that the calcium response kinetics across all
OSNs in a field of view are highly diverse, and that the response
waveform for individual cells is remarkably stable across trials of
the same odor when respiration is stabilized (Supplementary
Fig. 1). Together these data suggest that a diverse and
heterogeneous array of receptor subtypes are present within a
relatively restricted patch of olfactory epithelium.

Antagonism in individual sensory neurons. Given that OSNs in
the dorsal recess share many of the same odor tuning char-
acteristics as dorsal olfactory bulb glomeruli, we tested whether
antagonism could be observed at the single-cell level using the
odor pair we used for imaging glomerular responses. We repeated
the experiment described in Fig. 2 and collected data from 964
individual sensory neurons using the odor pair, Methyl tiglate
and Isobutyl propionate (Table 2). We again detected nonlinear
interactions between the odors (Fig. 6b, c). Mixture-suppression
was readily observed in individual cells (54.6% (527/964) for sum
comparison and 22.0% (212/964) maximum comparison; Fig. 6e,

f). The fraction of cells that showed mixture suppression was
smaller than in the glomerular data, which may be attributed to
noise from two sources. First, the measured signal at glomeruli
represents the population response across all ~10,000 OSNs of a
common subtype, compared with single OSN cell bodies in the
epithelium imaging. The second source of noise may arise from
image acquisition, through the number of pixels contributing to
the measured signal. While we typically imaged 10–20 densely
packed glomeruli per field of view, in the epithelium, we imaged
dozens to hundreds of sparsely arranged cells, thereby sub-
stantially reducing the number of pixels contributing to our
signal.

To ensure that our observations did not arise from more noisy
measurements at the single-cell level, we measured the fraction of
mixture responses that exceeded the linear prediction of the
mixture components, a phenomenon known as synergy. We first
measured the fraction of mixture responses that exceeded
maximum of either of the mixture components. We found only
11.8% (114/964) of OSNs exceeded the maximum response of
either component (Fig. 6e, f); however, it should be noted that for
synergy to occur the measured OSN response should exceed the
linear summation of the response of both odor components. In
our dataset, we found only 5/964 cells where the mixture response
was significantly greater than the sum of the mixture compo-
nents. Both fractions are well below those we measure for
antagonism and consistent with previous reports that antagonism
is the predominant mixture interaction when compared with
synergy38.

We also fit the odor responses in individual OSNs and
compared the extracted Hill coefficients to those obtained by
imaging populations of OSN at their axon terminals (Supple-
mentary Fig. 2). We predicted that the fits for individual OSNs
may be sharper, and therefore have larger Hill coefficients than
glomerular fits because measurements from glomeruli average
hundreds of OSNs that may have heterogenous odor sensitivities.
However, when we made these comparisons, we found no
difference between individual OSN and glomerular Hill coeffi-
cients for the same odors (Methyl tiglate, OSN mean= 3.31 ±
0.76, n= 6, glomerular mean= 2.67 ± 0.16, n= 48; Isobutyl

0

1

2

3
Ethyl valerate

0

1

2

3
Allyl butyrate

0

1

2
EV +AB mixture

EV AB mix

0

2

4

6

H
ill

 c
oe

ffi
ci

en
t

ΔF
/F

0

1

2

3

4
Methyl tiglate

0

1

2

3

4
Isobutyl propionate

0

1

2

3

4
MT+ IP mixture

10–3 10–2 10–1 10–0

Odor concentration

10–3 10–2 10–1 10–0

Odor concentration

10–3 10–2 10–1 10–0

Odor concentration

10–3 10–2 10–1 10–0

Odor concentration

10–3 10–2 10–1 10–0

Odor concentration

10–3 10–2 10–1 10–0

Odor concentration

ΔF
/F

MT IP mix

0

2

4

6

H
ill

 c
oe

ffi
ci

en
t

5 5
a b

c d

ele pro uiT

erh A eal tmV

n.s.

n.s.

Fig. 4 Hill coefficients of odor responses in OSN axon terminals. a Example response curve fits from individual OSNs for odors in Table 1 and their
mixture. b Hill coefficient distributions from the individual OSNs plotted in part (a) (n= 48 for Methyl tiglate, n= 22 for Isobutyl propionate, n= 32 for MT
+ IP mixture; P > 0.05 for all comparisons; two-sided rank-sum test). Data are presented as mean ± SEM c Example response curve fits from individual
OSNs for odors in Table 2 and their mixture. d Hill coefficient distributions from the individual OSNs plotted in part (c) (n= 44 for Ethyl valerate, n= 39 for
Allyl butyrate, n= 30 for EV+AB mixture; P > 0.05 for all comparisons; two-sided rank-sum test). Data are presented as mean ± SEM.

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-17124-5 ARTICLE

NATURE COMMUNICATIONS |         (2020) 11:3350 | https://doi.org/10.1038/s41467-020-17124-5 | www.nature.com/naturecommunications 5

www.nature.com/naturecommunications
www.nature.com/naturecommunications


propionate, OSN mean= 2.65 ± 0.16, n= 42, glomerular mean=
2.53 ± 0.32, n= 22; MT+ IP mixture, OSN mean= 2.67 ± 0.37,
n= 48, glomerular mean= 2.26 ± 0.22, n= 32; P > 0.05 for all
comparisons, Rank-sum test).

Antagonism in complex odor blends. After establishing that
antagonism is a prevalent feature of odor mixture encoding in
OSNs, we next wanted to understand the relationship between the
complexity of an odor blend (that is, the number of elements in

Table 3 Odor information related to Figs. 5 and 7 .
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the mixture) and non-linearities in OSN responses. We imaged
single OSN responses to 16 monomolecular odors (odor index
1–16 in Table 3), as well as random blends of 2, 4, 8, or 12 odors
from this panel (Supplementary Table 1; Fig. 7c). When con-
structing complex odor mixtures, the concentration of each odor
component was the same as when delivered alone. From the OSN
responses to each of the single odors, we then made linear pre-
dictions for each of the mixture complexities. Our choice of odors
for this experiment was motivated by several previous studies that
demonstrate their efficacy and diversity in activating OSNs that
presumably signal through GPCR signaling pathways39–41, as well
as past behavioral work14,42, which demonstrates that mixtures of
these odors can be perceived and distinguished by mice despite
their overlapping OSN activity patterns.

For all mixture complexities, we routinely observed OSN
responses that were far less than the linear prediction made by the
summation of the individual mixture components (Fig. 7d).
However, OSNs may never achieve the response predicted by
linear summation, due to either firing rate or indicator saturation.
To account for this possibility, for each OSN, we fit the data
across all mixture complexities with a sigmoid with an initial
slope of 1 and reaching an asymptote at the top 0.05 quantile of
all observed mixture responses (n= 100). For each cell, we then
calculated the deviation of each mixture response from the
sigmoidal fit estimating the maximum response, or the linear
prediction. We considered mixture responses that fell below the
sigmoidal fit to be representative of antagonism (black line;
Fig. 7d), while response that fell above the sigmoid represented
synergistic interactions.

We observed nonlinear mixture responses in OSNs at all
mixture complexities, although both the frequency and magni-
tude of such interactions increased with mixture complexity
(Fig. 7f, n= 1800, n= 1596, n= 1861, n= 1948 OSN-odor
mixture pairs, for 2-, 4-, 8-, and 12-part mixtures, respectively).
For this analysis, we only considered OSN-mixture pairs where

the predicted OSN response was >0 ΔF/F. Importantly, mixture
suppression was not the result of large trial-to-trial variability
where a single trial strongly influenced the mean as the error
for each mixture complexity was well below the sigmoidal fit to
the data (Supplementary Fig. 3). For this analysis, we pooled the
OSN responses for each mixture complexity and subsampled
the distributions to test the significance of the observed
nonlinearities against a null distribution. 200 random responses
for each mixture complexity were selected and compared with
distributions with a vanishing mean and the same standard
deviation using a Kolmogorov–Smirnov test. This process was
then repeated 100,000 times. Distributions of the P values
obtained from these comparisons at each mixture complexity are
shown on the right in Fig. 7f. For each mixture complexity
we found >99% of all bootstrapped comparisons resulted in
P values < 0.05.

To even more rigorously test our data, we performed an
additional analysis where we compared OSN responses to odor
mixtures against their maximum response to any of the mixture
components alone (Supplementary Fig. 4). In close agreement
with our prior analysis, we again found that likelihood, and the
magnitude of mixture suppression in OSNs was related to the
number of odor components contained within a mixture.

To exclude the possibility that a small number of cells most
strongly contribute to the antagonism we observe, we normalized
all measurements from each cell to the asymptote of the sigmoidal
fit to the data and repeated our analysis. Here, we again observe
that antagonism increases with mixture complexity (Fig. 7g). As a
further confirmation of our finding, we repeated this experiment
in OSN axon terminals in the glomerular layer. We collected data
from 39 glomeruli in four mice. We again observed strongly
nonlinear mixture interactions that increased with mixture
complexity (Supplementary Fig. 5; n= 673, n= 637, n= 733,
n= 750 glomeruli-odor mixture pairs, for 2, 4, 8, and 12-part
mixtures respectively). Together, our results demonstrate that
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input to the olfactory system may be normalized through mixture
suppression of OSN activity.

Discussion
It has been known for some time that individual odorant
receptors can respond to multiple odors23,43, so a reasonable
question is how these receptors will respond to natural stimuli,
which are almost always mixtures of odors. Odor mixture inter-
actions have been described behaviorally for many decades44–46.
One form of interaction is where binary (and larger) mixtures
tend to have reduced perceived intensity (suppression). Odors
can also be masked or harder to identify in mixtures, which could
be due to reduced sensation of specific components. The origin of
this perceptual odor suppression in mixtures is uncertain. Some
of it could arise at the periphery, including at the receptors
themselves. We recently proposed a simple model based on the
two-step activation of odorant receptors, and noted that even a
modest decorrelation of binding affinity and activation efficacy
across odors could lead to antagonistic interactions, which will
lead to mixture suppression11. In other words, odors that bind the
most tightly to odor receptors may not strongly activate the odor

receptor complex and the downstream signaling cascade that
ultimately generates OSN output.

Here, we have used direct imaging of OSN somata, as well as
more conventional glomerular imaging, to show that mixture
suppression (by inference antagonistic interactions) is wide-
spread. We adapted a method first reported by Iwata et al.34, to
directly image the somata of OSNs in vivo, in freely breathing
mice. We obtained responses of OSNs to a diverse array of
odorants and found that the statistics of population responses
were similar to that obtained for glomeruli. Interestingly, inhi-
bitory responses were more easily detected in glomeruli than in
OSN cell bodies, which might reflect glomerular averaging of
heterogeneous responses of OSNs47. This OSN imaging method is
likely to be valuable for understanding the fundamental proper-
ties of sensory coding and modulation at the periphery, especially
with chronic imaging.

Previous studies using binary mixture stimuli have offered
conflicting evidence for nonlinear interactions17,24,48,49. Evidence
for relatively linear summation of odor responses to mixtures has
been offered by studies that have imaged glomerular responses at
low spatial and temporal resolution48–50, but these studies did not
systematically vary the concentration of odorants. Extracellular
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spike recordings from single rat OSNs have indicated that a
simple competitive binding model can explain the responses in
about half the cases17. In the rest of the cases, more complex
interactions including antagonism (competitive or non-competi-
tive) and masking were needed to explain the observations17.
Insect olfactory receptors also exhibit such nonlinear
interactions51,52. Recently, we offered a principled explanation for
all these different effects using a model that decouples the binding
affinity of odorants to receptors and their activation efficiency11.
Then, depending on the statistics of these properties in the
repertoire of odorants encountered by an animal, the population
of odorant receptors could exhibit varying degrees of antagonism
or synergy.

In this work, we used binary mixtures and concentration
variation over three orders of magnitude, to find that suppressive
mixture interactions were remarkably widespread. We first
demonstrated mixture suppression with glomerular imaging.
Since glomerular responses are averages of many hundreds of
OSN axons, they will overlook any heterogeneity. Glomerular
responses may also be influenced by lateral interactions within
the olfactory bulb networks, particularly due to GABAb-mediated
presynaptic inhibition that can alter OSN calcium signals33,53.
However, there is strong evidence that GABAb-mediated reduc-
tion of OSN responses are largely intraglomerular30, which will
simply serve as an automatic gain control, hence insensitive to the
identity of the odorant. As an additional check, we chose two
distinct odor mixtures with differing extents of overlap in glo-
merular activation. We found remarkably similar mixture effects
for both pairs of odorants, which indicates that lateral interac-
tions among glomeruli are unlikely to affect our conclusions.

To circumvent circuit and feedback interactions, we imaged
OSNs directly and found that binary mixture suppression was just
as widespread as observed with glomerular imaging. Since these
interactions were observed at the earliest stages of odor encoding,
in OSNs, the most likely source of mixture interactions is odorant
receptors themselves. Evidence of antagonistic interactions in
OSNs has been reported previously16–18,54,55, and we advance
these prior observations by providing evidence for widespread
occurrence of this phenomenon. Going beyond binary mixtures,
we used odor blends of increasing complexity, up to 12 compo-
nents, to ask how mixture responses compared with the expected
linear summation of individual responses (below saturation). This
allowed us to ask how OSNs respond to more complex mixtures.
It has been previously hypothesized that such nonlinearities in
peripheral coding may be a mechanism to increase precision and
specificity of encoding complex odor stimuli11,12,17,54. Indeed,
using more naturalistic odor delivery conditions, we found that
the degree of mixture suppression was greater with increasing
number of components, which is expected from statistical con-
sideration of antagonistic interactions11. This feature can be
rationalized as increasing normalization of population responses,
which we have shown previously to allow greater information
transfer about odor identity, when saturation threatens degra-
dation of information11.

An important point regarding the odors we used in this study
is that many of the odors share common molecular features (e.g.,
ester groups). A reasonable assumption is that there should be
some molecular overlap between odors for antagonism to occur,
due to the necessity of interactions between odor molecules and
the binding pocket of olfactory receptors. However, in our panel
we did include several odors that did not contain an ester group.
When these non-ester odors were delivered as binary mixtures, in
combination with ester containing odors, mixture suppression
was still observed (Supplementary Fig. 6). These additional data,
along with our previous observation that narrowly tuned ORNs
show strong mixture suppression (Fig. 7d), argue that antagonism

is indeed a fundamental feature of mixture encoding in ORNs
and is not a unique feature restricted to those that are sensitive to
a single functional group.

Beyond our theoretical observations, there are other more
recent experimental studies that report related effects18–20. Our
work is unique in the following regard: (1) we report responses
from a large set of OSNs in intact, freely breathing mice,
responding to vapor phase odorants inhaled physiologically, (2)
we report fast, real-time responses with a variety of odorants and
using both OSN and glomerular imaging and (3) we report
responses to mixtures of high complexity (up to 12 odors), well
beyond just binary mixtures.

Given this widespread existence of normalization, what
advantage would a similar phenomenon at the level of sensory
transduction itself confer to the system? First order stimulus
processing within the olfactory bulb is critically related to the
activity of OSN inputs56–59. Having normalization occur early in
the sensory hierarchy helps avoid saturation early on and pre-
serve more information about the stimulus to be conveyed
downstream. Indeed, in our previous work, we demonstrated
using information theoretic calculations that a target odorant
embedded in a complex mixture can be more easily detected with
antagonistic interactions that lead to sparser representation11.
The improved performance with antagonism exists for a wide
range of receptor tuning widths (i.e., the average number of
activated glomeruli per single odorant). Importantly, normal-
ization at the level of receptors leading to sparser, more infor-
mative representation, comes for free without additional circuit
burden.

Methods
Experimental model and subject details. Adult heterozygous OMP-GCaMP3
mice60 of both sexes were used in this study. All animals were produced from a
breeding stock maintained within Harvard University’s Biological Research
Infrastructure. All animals were between 20 and 30 g before surgery and singly
housed following any surgical procedure. Animals were 2–6 months old at the time
of the experiments. All mice used in this study were housed in an inverted 12 h
light cycle and fed ad libitum. Animals were housed at 22 ± 1 °C at 30–70%
humidity. All the experiments were performed in accordance with the guidelines
set by the National Institutes of Health and approved by the Institutional Animal
Care and Use Committee at Harvard University.

Olfactory bulb craniotomy. A craniotomy was performed to provide optical access
to both olfactory bulbs. Mice were first anesthetized with an intraperitoneal
injection ketamine and xylazine (100 and 10 mg/kg, respectively) and the eyes were
covered with petroleum jelly to keep them lubricated. Body temperature was
maintained at 37 °C by a heating pad. The scalp was shaved and then opened with a
scalpel blade. After thorough cleaning and drying, the exposed skull was gently
scratched with a blade, and a titanium custom-made headplate was glued on the
scratches with Loctite 404 Quick Set Adhesive. The cranial bones over the OBs
were then removed using a 3 mm diameter biopsy punch (Integra Miltex). The
surface of the brain was cleared of debris. The surface of the brain was kept moist
with artificial cerebrospinal fluid containing in mM (125 NaCl, 5 KCl, 10 Glucose,
10 HEPES, 2 CaCl2 and 2 MgSO4 [pH 7.4]) and Gelfoam (Patterson Veterinary).
Two 3mm No. 1 glass coverslips (Warner) were glued together with optical
adhesive (Norland Optical Adhesive 61) and adhered to the edges of the vacated
cavity in the skull with Vetbond (3M). C&B-Metabond dental cement (Parkell,
Inc.) was used to cover the headplate and form a well around the cranial
window61,62. After surgery, mice were treated with carprofen (6 mg/kg) every 24 h
and buprenorphine (0.1 mg/kg) every 12 h for 5 days. Animals were allowed to
recover for at least 3 days. Prior to each imaging session, animals were anesthetized
with a mixture of ketamine and xylazine (90% of dose used for surgery) and body
temperature was maintained at 37 °C by a heating pad. Respiration was measured
through an airflow sensor (Honeywell)63 during most experiments and maintained
between 0.5 and 1.5 Hz (traces in Supplementary Fig. 1f).

Olfactory epithelium thinned skull procedure. Mice were anesthetized using the
same procedure and all pre-surgical methods through head plate implantation are
the same as the craniotomy. The cranial bones over the olfactory epithelium were
thinned with a dental drill and blade until transparent34. The thinned area of skull
was then covered with cyanoacrylate adhesive (Loctite) and a class coverslip was
implanted in the adhesive. Dental cement was then used to form a well over the
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thinned section of skull. Following a recovery period, the thinned bone procedure
allowed for chronic imaging of the epithelium for several weeks.

Multiphoton Imaging. A custom-built two-photon microscope was used for
in vivo imaging. Fluorophores were excited and imaged with a water immersion
objective (20×, 0.95 NA, Olympus) at 920 nm using a Ti:Sapphire laser (Mai Tai
HP, Spectra-Physics). Images were acquired at 16-bit resolution and 4–8 frames/s.
The pixel size was 0.6 μm OSN somata imaging and 1.2–2.4 μm for imaging glo-
meruli. Fields of view ranged from 180 × 180 μm in the epithelium to 720 × 720 μm
in the glomerular layer. The point-spread function of the microscope was measured
to be 0.51 × 0.48 × 2.12 μm. Image acquisition and scanning were controlled by
custom-written software in LabView (National Instruments). Emitted light was
routed through two dichroic mirrors (680dcxr, Chroma and FF555- Di02, Sem-
rock) and collected by a photomultiplier tube (R3896, Hamamatsu) using filters in
the 500–550 nm range (FF01–525/50, Semrock).

Odor stimulation. Monomolecular odorants (Sigma or Penta Manufacturing) were
used as stimuli and delivered by custom-built 16 channel olfactometers controlled
by custom-written software in LabView61. For binary mixture experiments, the
initial concentration series for each odor was between 0.08 and 80% (v/v) in
mineral oil and further diluted 16 times with air. For all experiments, the airflow to
the animal was held constant at 100 mL/min and odors were injected into a carrier
stream. The relative odor concentration was measured by a photoionization
detector (PID; Aurora Scientific) and normalized to the largest detected signal for
each odor. To create mixtures, air-phase dilution was used, and the total con-
centration of each odor was held constant. The measured mixture signal in the PID
was nearly a perfect linear summation of the signal measured for each odor alone
(Supplementary Fig. 7). For all experiments, odors were delivered 2–6 times each.

For experiments characterizing the odor tuning of olfactory epithelium, the
odor panel consisted of: (1) Ethyl tiglate (2) Allyl tiglate (3) Hexyl tiglate (4) Methyl
tiglate (5) Isopropyl tiglate (6) Citronellyl tiglate (7) Benzyl tiglate (8) Phenylethyl
tiglate (9) Ethyl propionate (10) 2-Ethyl hexanal (11) Propyl acetate (12) 4-Allyl
anisole (13) Ethyl valerate (14) Citronellal (15) Isobutyl propionate (16) Allyl
butyrate (17) Methyl propionate (18) Pentyl acetate (19) Valeric acid (20) (+)
Carvone (21) (−)Carvone (22) 2-Methoxypyrazine (23) Isoeugenol (24) Butyl
acetate (25) Valeraldehyde (26) Isoamyl acetate (27) Methyl valerate (28) Octanal
(29) 2-Hexanone (30) Methyl butyrate (31) 2-Heptanone (32) Acetophenone. See
Supplementary Fig. 7 for PID measurements. For experiments measuring complex
mixture responses in the olfactory epithelium, odors 1–16 were used from the panel
above. Additional odor information is available in Table 3 and Supplementary
Table 1.

Data analysis. Images were processed using both custom and available MATLAB
(Mathworks) scripts. Motion artifact compensation and denoising was done using
NoRMcorre64. For experiments imaging OSN axon terminals in the olfactory bulb,
regions of interest (ROIs) were manually selected by outlining glomeruli in max-
imum projection images. For epithelium imaging, the CaIMaN CNMF pipeline65

was used to select and demix ROIs. ROIs were further filtered by size and shape to
remove merged cells. For all mixture experiments, the peak ΔF/F signal was cal-
culated by finding the peak signal following odor onset and averaging with the two
adjacent points. The mean ΔF/F signal in the 20 frames following odor onset was
used for odor tuning experiments. To account for changes in respiration frequency
and anesthesia depth, correlated variability across replicates was corrected for14.
Thresholds for classifying responding ROIs were determined from a noise dis-
tribution of blank (no odor) trials from which three standard deviations were used
for responses. Across all datasets, only ROIs with at least one significant odor
response were included for further analysis. Measurements of binary mixture non-
linearities used individual trial replicates of the three highest odor concentrations
used in each experiment.

Data fitting. We further analyzed the response curves from 344 glomeruli corre-
sponding to Methyl tiglate, Isopropyl propionate, and their mixture, 226 glomeruli
corresponding to Ethyl valerate, Allyl butyrate, and their mixture, and 964 ORNs
corresponding to Methyl tiglate, Isopropyl propionate and their mixture. The
observed Ca2+ fluorescence response R(c) was fit using a sigmoid function against
log odor concentrations delivered over three orders of magnitude using the
equation:

R cð Þ ¼ bþ Rmax=ð1þ e�nðlog c�logKÞÞ: ð1Þ

The four free parameters that are fit to the data are b, Rmax, Κ and n. Here b is
interpreted as the baseline response for blank odors, Rmax is the response above
baseline at saturating concentrations, Κ (commonly referred to as the dissociation
constant) is the reciprocal of the binding affinity and n is the Hill coefficient. To
account for noise and variability in the data, we used four criteria to select the fitted
curves (all units are ΔF/F): (1) The total squared deviation of the data from the best
fit sigmoid shouldn’t be too large. We used a threshold of 0.1 to ensure rejection of
highly noisy data. (2) The maximum value over all concentrations should be >0.4
ΔF/F, (3) Binding affinity should be within the range of the concentrations used

and (4) the hill coefficient cannot be below 0.75 or above 6 to exclude unreasonably
sharp fits.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
The data that support the findings of this study are available from the corresponding
author upon reasonable request.

Code availability
The code used for analysis and figure generation of this study are available from the
corresponding author upon reasonable request.
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