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Exploring the effect of network topology,
mRNA and protein dynamics on gene regulatory
network stability
Yipei Guo 1,2 & Ariel Amir 1✉

Homeostasis of protein concentrations in cells is crucial for their proper functioning, requiring

steady-state concentrations to be stable to fluctuations. Since gene expression is regulated

by proteins such as transcription factors (TFs), the full set of proteins within the cell con-

stitutes a large system of interacting components, which can become unstable. We explore

factors affecting stability by coupling the dynamics of mRNAs and proteins in a growing cell.

We find that mRNA degradation rate does not affect stability, contrary to previous claims.

However, global structural features of the network can dramatically enhance stability.

Importantly, a network resembling a bipartite graph with a lower fraction of interactions that

target TFs has a higher chance of being stable. Scrambling the E. coli transcription network,

we find that the biological network is significantly more stable than its randomized coun-

terpart, suggesting that stability constraints may have shaped network structure during the

course of evolution.
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Cells require different protein levels to survive in different
external environments. The expression of these proteins
within the cell are therefore highly regulated. An impor-

tant regulatory mechanism involves transcription factors (TFs),
which are themselves proteins that can either up or downregulate
the transcription of mRNAs coding for other proteins by binding
to enhancer or promoter regions of the regulated gene1. Despite
the importance of maintaining desired protein concentrations
within cells, factors affecting the stability of these concentrations
to perturbations have received little attention.

One approach of studying the stability of such systems with a
large number of interacting components was introduced by May
in the 1970s in the context of complex ecological communities2.
The idea is that in a n-species community, the dynamics of the
abundances Ni of each species may in general be described by a
set of ordinary differential equations:

dNi

dt
¼ f iðN1;N2; :::NnÞ ð1Þ

for i= 1, 2, ..., n, with corresponding steady-state solution Nss
i

such that f iðN
!ssÞ ¼ 0 ∀ i. The dynamics of small perturbations

about this steady-state xiðtÞ ¼ NiðtÞ � Nss
i , when linearized about

Nss
i , has the form:

d x!
dt

¼ A x!; ð2Þ

where A is the Jacobian matrix with elements Aij ¼ ∂f i
∂Nj

� �ss
. If all

the eigenvalues of A have a negative real part, the system relaxes
back to the steady-state upon perturbations and the steady-state is
said to be stable; if any of the eigenvalues have a positive real part,
the steady-state is unstable as the system will move away from it
(exponentially fast) when infinitesimally perturbed. To construct
A, one would need to precisely know the functions fi, which is
often hard to obtain. May’s approach was to model A as a ran-
dom matrix with independent, identically distributed off-diagonal
elements (with mean 0, standard deviation σ, and fraction of non-
zero elements C) and constant diagonal elements—a. In the
context of ecology, σ reflects the average interaction strength
between species, C is the density of interactions or the probability
that any two species interact, while a is the self-regulation term
which sets the relaxation time-scale of the system if there were no
other pairwise interactions. From random matrix theory (RMT)
and in particular the circular law for matrix eigenvalue dis-
tributions3,4, this system is stable if and only if a > σ

ffiffiffiffiffiffi
nC

p
. This

implies that the system becomes unstable above some critical size,
and that increasing a stabilizes the system and allows for stronger
interactions between species.

This approach has also been used to analyze other large
interacting systems. In particular, it has been used to argue why
weak repressions by microRNAs, thought of as effectively
increasing the degradation rate of mRNAs, confer stability to
gene regulatory networks5,6. However, such a framework does not
take into account the functional form of fi and in particular that
the matrix elements often depend on the steady-state solutions
themselves. These details of the model can be important—for
example, when competition for resources between ecological
species are explicitly modeled (using MacArthur’s consumer-
resource model), even when the interactions (i.e., preferences of
each species for the different resources) are completely random,
the spectrum of the Jacobian matrix that represents effective
pairwise interaction between species is no longer circular (but
rather, follows the Marchenko-Pastur distribution)7. Further-
more, transcriptional regulatory networks are not random but
instead have distinct structural features. The structure of inter-
action networks has been known to affect stability in other

models7–10. However, how these features affect the stability of
gene regulatory networks has not been explored.

Here, by analyzing a model that takes into account the tran-
scription of mRNAs from genes, translation of mRNAs into
proteins, and transcriptional regulation by proteins, we investi-
gate the stability of this large system of coupled mRNAs and
proteins in growing cells and find that while the mRNA degra-
dation rate can affect relaxation rate back to steady-state levels, it
does not affect whether the system is stable. Instead, stability can
depend strongly on the global structural features of the interac-
tion network. In particular, given the same number of proteins,
TFs, number of interactions, and regulation strengths, a network
with a lower fraction of interactions that target TFs has a higher
chance of being stable. In the limit where there are no TF–TF
interactions i.e. all TFs regulate proteins that are not TFs, it is
possible for the system to remain stable for arbitrarily large sys-
tem sizes, unlike random networks which become unstable when
system size becomes too large. By scrambling the E. coli. tran-
scription network, we find that the topology of real networks can
stabilize the system since the randomized network with the same
number of regulatory interactions is often unstable. These find-
ings suggest that constraints imposed by system stability may
have played a significant role in shaping the existing regulatory
network during the evolutionary process. By carrying out the
analysis for different physiological states the cell can be in (cor-
responding to different sets of dynamical equations) and with
different choices of parameter distributions, we also show that
our main results and conclusions are robust to the details of
the model.

Results
The model. Gene expression involves two major steps: tran-
scription and translation (Fig. 1a). Transcription is the process in
which mRNA is synthesized by RNA polymerase using DNA as a
template. The transcription rate of a gene i therefore depends on
the number of RNA polymerases n and its effective gene copy
number gi which takes into account both its copy number and
how strongly RNA polymerase can bind to the promoter of that
gene11. Due to the presence of TFs, gið c!Þ can in general depend
on the set of protein concentrations c! (Fig. 1a). We assume that
multiple TFs acting on the same gene act independently, with
their effects stacking multiplicatively. This allows for both OR-
and AND-gate-like combinatorial effects12, and can emerge from
a thermodynamic model of TF binding (Supplementary Note 1).
Therefore, we adopt the following form for transcriptional reg-
ulation throughout the paper:

gið c!Þ ¼ gi0
Y
j

ð1þ γijf ijðcjÞÞ; ð3Þ

where gi0 is the effective gene copy number of i if it were unre-
gulated (randomly drawn from a uniform distribution), and γij
controls the type and strength of regulation, i.e., how much gene
expression of i changes in the presence of the TF j. In particular,
γij > 0 if j upregulates i and −1 ≤ γij < 0 if j downregulates i. For
each regulatory interaction, we assume that the fold-change Ωij is
drawn from a uniform distribution between 1 and Ωmax, such that

γij ¼
Ωij � 1 if γij > 0 ðupregulatingÞ
1
Ωij

� 1 if γij < 0 ðdownregulatingÞ

(
ð4Þ

since this would allow gi(cj) to increase (if j upregulates i) or
decrease (if j downregulates i) by a factor of Ωij in the limit of
high cj. In Supplementary Note 5, we show that the main results
do not depend on the particular distribution P(Ω) used.

Motivated by experimental measurements of the relationship
between TF input and gene expression output showing a
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sigmoidal functional form of fij(cj)13,14, we take it to be a Hill
function

f ijðcjÞ ¼
chj

Kh
ij þ chj

; ð5Þ

with the Hill coefficient h > 0.
Following ref. 11, we assume a threshold number nc of RNA

polymerases above which the gene copy number is limiting the
transcription rate (Fig. 1b). When this is the case, the
transcription rate is proportional to gi and is independent of n.
If instead n < nc, it is the RNA polymerases that are limiting, in
which case the different genes have to compete for the limited
pool of RNA polymerases. The transcription rate of a gene i is
then proportional to both n and the fraction of RNA polymerases
working on that gene, the gene allocation fraction:

ϕið c!Þ ¼ gið c!ÞP
jgjð c!Þ : ð6Þ

Denoting the number of different genes by N, the dynamics of
mRNA mi for i= 1, ...N can therefore be described by the
following equation:

dmi

dt
¼

kmϕið c!Þn� mi
τm

if n< nc

kmgið c!Þns � mi
τm

if n≥ nc

(
ð7Þ

where km characterizes the transcription rate of a single RNA
polymerase, τm is the mRNA lifetime, and ns is the maximum
number of RNA polymerases per gene.

Similarly for the process of translation where ribosomes make
proteins using mRNA as a template, the translation rate depends
on the number of ribosomes r and the mRNA copy number mi.
As for RNA polymerases, there is also a threshold number of
ribosomes rc above which mRNA number is limiting and below
which ribosomes are limiting (Fig. 1c). The dynamics of protein
numbers pi for i= 1, ...,N, with pN−1= n corresponding to RNA

polymerases and pN= r corresponding to ribosomes, are there-
fore given by:

dpi
dt

¼
kp

miP
j
mj
r � pi

τp
if r < rc

kpmirs � pi
τp

if r ≥ rc

8<
: ; ð8Þ

where kp characterizes the translation rate of a single ribosome, τp
is the protein lifetime, and rs is the number of ribosomes per
mRNA when ribosomes are in excess.

Depending on whether the RNA polymerases and ribosomes
are limiting, there are four different cellular phases (Fig. 1b, c).
The regime where n ≥ nc and r ≥ rc (phase 3 of the model, where
the production rate of mRNAs and proteins are proportional to
gene and mRNA copy numbers respectively) has been widely
studied15–17, but has been shown to be inconsistent with
experimental observations in wild-type cells showing the
exponential growth of protein levels18,19. Instead, the regime
where n < nc and r < rc (phase 1 of the model) is the one where
wild-type fission yeast18 and mammalian cells appear to be in19.
We therefore focus on this phase for the rest of the paper. Note,
however, that the phase 3 regime has been experimentally
observed in defective budding yeast and mammalian cells that are
excessively large20, whereas the regime where RNA polymerases
are in excess (n ≥ nc) while ribosomes are limiting (r < rc) (phase 2
of the model) has been observed in mutant fission yeast18. We
will address these two phases in the SI. The regime where n < nc
and r ≥ rc (phase 4 of the model) is biologically unrealistic as
ribosomes are typically more expensive to make compared to
other proteins and hence having excess ribosomes while RNA
polymerases are limited would be inefficient21,22. This regime is
therefore not considered.

It will be convenient to consider the dynamics of the
concentrations of mRNAs cmi ¼ mi

V and proteins ci ¼ pi
V. In

bacteria23,24 and mammalian cells25, the volume of the cell V is
approximately proportional to the total protein mass. Hence, we

(a)

(b) (c)

mRNA

RNA polymerases 
are limi�ng ( < )

Gene copy numbers 
are limi�ng ( ≥ )

Γ =
∑

Γ =

Ribosomes are 
limi�ng ( < )

mRNAs are 
limi�ng ( ≥ )

protein

Γ =
∑

Γ =

Effec�ve gene copy number: 
= ∏ 1 +

Transcrip�onal 
regula�on by TFs

Transcrip�on 
(rate Γ )

Transla�on
(rate Γ )

[phases 1, 4]

[phases 2, 3]

[phases 1, 2]

[phases 3, 4]

Fig. 1 Schematic illustration of the gene expression model. a The dynamics of protein and mRNA concentrations are coupled through transcriptional
regulation, where some of the proteins (e.g., transcription factors) modulate the effective gene copy numbers gi and hence the transcription rate of other
genes. b If RNA polymerase is in excess, transcription rate Γm of gene i is proportional to its effective gene copy number gi. If instead RNA polymerase is
limiting, Γm is proportional to the gene allocation fraction ϕi= gi/∑jgj. c Translation rate Γp is proportional to mRNA number mi if mRNAs are limiting, and
proportional to the mRNA fraction mi/∑jmj if ribosomes are limiting. There are four different phases of the model depending on whether RNA polymerases
and ribosomes are limiting.
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assume for simplicity that each protein has the same mass and set
the cell density to be 1, such that V= ∑ipi. The dynamics for
concentrations in phase 1 are then given by:

dcmi

dt
¼ kmϕið c!Þcn � cmi kpcr þ

1
τ

� �
; ð9Þ

dci
dt

¼ kpcr
cmi

cmT
� ci

� �
; ð10Þ

where cmT= ∑icmi is the total concentration of all mRNAs and
1
τ ¼ 1

τm
� 1

τp
is the difference between mRNA and protein

degradation rates (which can be positive or negative). A summary
of the list of model parameters can be found in Supplementary
Table 1.

While these equations govern the dynamics of average
concentrations and hence do not capture stochastic effects
inherent in gene expression and in the binomial sampling of
molecules during cell division, these fluctuations do not affect the
average steady-state concentrations if the number of molecules is
large (see Supplementary Note 2, Supplementary Fig. 1). In fact,
these fluctuations can be considered as perturbations about
steady-state values, and we investigate the stability of the system
to such perturbations in the rest of the paper.

Effects of network features and topology on stability of the
system. To study how properties of the transcriptional regulatory
network affect the stability of the system, we first consider the
regime where the lifetime of mRNAs is much shorter than that of
proteins, which is typically true for wild-type cells26. In this limit
of fast mRNA degradation, the relaxation dynamics of mRNA is
much faster than that of proteins such that dcmi

dt � 0 at all times.
Eliminating the fast process (by substituting the steady-state
mRNA concentrations cmi ¼ kmcn

kpcrþ1
τ
ϕið c!Þ obtained from Eq. (9)

into Eq. (10)), the dynamics of protein concentrations can be
written as a set of N ODEs:

dci
dt

� kpcr ϕið c!Þ � ci
� �

: ð11Þ

The stability of the system therefore depends only on the eigen-
values of the N ×N Jacobian matrix A ¼ kpc

ss
r ðM� IÞ, where we

define the interaction matrix

Mij ¼
∂ϕi
∂cj

j c!¼ c!ss ; ð12Þ

with the steady-state protein concentrations given by cssi ¼
ϕið c!ssÞ (from Eq. (11)).

Denoting λM as the eigenvalues of M, the system is stable as
long as the maximal real part of these eigenvalues λM;rmax

is
smaller than 1 (such that all eigenvalues of A have a negative real
part). It is therefore useful to understand the structure of M by
breaking it into two parts using Eq. (6):

Mij ¼ cssi ðM1;ij �M2;ijÞ; ð13Þ
where

M1;ij ¼
∂log gi
∂cj

ð14Þ

captures the direct interactions between proteins, while

M2;ij ¼
∂log gT
∂cj

¼
X
k

cssk
∂log gk
∂cj

ð15Þ

is a rank-1 matrix that captures the indirect interactions arising
from competition for ribosomes.

It can be shown that both the structure of M (Eq. (13)) and the
fact that stability only depends onM still hold in the other phases,
despite the exact equations for protein dynamics being different
(see Supplementary Note 3). Therefore, even though the
simulations in the rest of this section are carried out in phase
1, our findings and conclusions also apply to the other phases.

Stability of the system scales with
ffiffiffiffi
N

p
for random regulatory

networks. We start by exploring the stability of fully random
regulatory networks, which we take to be our null model.

Since the maximum eigenvalue of a random matrix depends on
the standard deviation of its elements, we first carry out a naive
estimate of how the elements of M scale with N. With gi(c) given
by Eq. (3),

∂log gi
∂cj

¼ γij
1þ γijf ijðcjÞ

∂f ij
∂cj

: ð16Þ

Biologically, TF concentrations are often comparable to the values
of dissociation constants Kd for DNA binding26. Therefore, since
cj ~ 1/N, we also choose Kij ~ 1/N (Eq. (5)), which would allow
cells to maintain the full range of gene expression response. From

Eq. (5), this implies that fij ~O(1) and
∂f ij
∂cj

� N , and hence M1 and

M2 also scale with N (Eqs. (14), (15)). We therefore expect Mij ~
O(1) (Eq. (13)), and hence (from RMT), for λM;rmax

to scale

approximately as
ffiffiffiffi
N

p
for random interaction networks. λM;rmax

also increases with the strength of the interactions γ, implying
that the system will become unstable either when N exceeds a
critical number or the regulation strength becomes too high.
However, this argument neglects correlations between the
elements of M, which could potentially be relevant. In fact, we
will see in the later sections that the structure of M (Eq. (13))
plays an important role in influencing the stability of the system.

Therefore, to test if this scaling relation holds, we constructed
networks of a specified interaction density ρ by randomly
selecting ρN2 interactions from the N(N− 1) possibilities (where
we have assumed that ribosomes cannot act as TFs), and choose
half of the interactions to be upregulating with the remaining half
being downregulating.

By taking the ensemble average over the randomly drawn
networks, we indeed recover the

ffiffiffiffi
N

p
scaling (Fig. 2a), which is

also robust to the fraction of up- and downregulatory interactions
(see Supplementary Note 4, Supplementary Fig. 2a) and the
distribution of fold-changes P(Ω) (see Supplementary Note 5,
Supplementary Fig. 3). For sufficiently large N or Ωmax, we can no
longer find the fixed point of the system. Nevertheless, by
simulating the dynamics, we find that for interaction networks of
a given N and ρ, we get oscillatory, followed by chaotic behavior
as Ωmax is increased (Fig. 2b). Similar phenomena have also been
described and analyzed in models of neural networks27 and
ecological systems28. While certain biochemical circuits have been
known to generate oscillations such as in the cell cycle and the
circadian clock, the oscillatory dynamics observed here is of a
different nature—it does not come about from any specific fine-
tuning of the network but, rather, emerges from having a large
number of randomly and strongly interacting genes.

However, transcriptional regulatory networks are typically not
random. Instead, they are enriched for distinct structural features
such as the following motifs: feedforward loops (FFL), single-
input module (SIM), and dense overlapping regulons (DOR)
which do not contain any loops besides autoregulatory ones1,29.
In the next few subsections, we therefore explore the effects of
network topology on system stability.
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Random directed acyclic networks can also be unstable. Since
transcription networks as a whole resemble directed acyclic
graphs (DAGs)1,29, we explore the stability of such networks.

In systems where the Jacobian matrix reflects the presence of direct
interactions between components, the elements of the Jacobian
matrix Aij is 0 if j does not influence or regulate i. In such cases, if
there are no interaction loops involving 2 or more components (e.g.,
E regulates F which also regulates E), A can be written as a triangular
matrix for such a DAG and the eigenvalues are the diagonal elements
of the matrix, i.e., the self-regulation loops. The system is therefore
stable if there are no auto-activation among the components, i.e.,
there are no positive elements along the diagonal of A.

In our case, the presence of indirect interactions captured by the
additional M2 matrix (Eq. (13)) implies that even if the regulation
network is a DAG, the stability of the system is not determined
solely by the self-regulation loops. Instead, we find that if we draw
DAGs randomly (constructed by adding a connection only if the
resultant network is still acyclic, Fig. 2c), even if there are no
self interactions, the largest eigenvalue still scales approximately
with

ffiffiffiffi
N

p
, suggesting that it is still possible for such a network to go

unstable. Nevertheless, there is a negative offset in λM;rmax
compared

to the fully random case (Fig. 2a), implying that the lack of loops
does help to stabilize the system.

Bipartite structure can maintain stability of large networks. A
commonly found motif in the Escherichia coli transcription net-
work is the dense-DORs which consist of a set of regulators that
combinatorially control a set of output genes1,29,30. There are
several of these DORs in E. coli, each with hundreds of output
genes, and they appear to occur in a single layer, i.e., there is no
DOR at the output of another DOR. Such a structure can be
thought of as a bipartite graph in which there are two types of
nodes representing TFs and non-transcription factors (non-TFs),
and every directed edge go from a TF to a non-TF. Since such
graphs do not contain any regulatory loops (and are therefore
also DAGs), we expect them to be more stable than random
networks. However, they are a specific subset of DAGs in which
none of the TFs are themselves regulated. This is also a key
difference between these networks and bipartite, mutualistic
networks commonly studied in ecological models9,10. In this
subsection, we investigate the stability of such networks.

To study this problem, we first group proteins into two
categories: q TFs and N−q non-TFs, such that for any general
network the components of the Jacobian matrix have the
following structure:

M1 ¼
T1 0

R1 0

� �
ð17Þ

M2 ¼
T2 0

R2 0

� �
; ð18Þ

where T1 (T2) is a q × q matrix representing the direct (indirect)
effect of TFs on TFs while R1 (R2) is a (N− q) × q matrix
representing the direct (indirect) effect of TFs on non-TFs, with
their elements defined previously (Eqs. (13)–(15)). The non-zero
eigenvalues of M are therefore the eigenvalues of the sub-matrix
Q with elements:

Qij ¼ cssi ðT1;ij � T2;ijÞ: ð19Þ
When the network is sparse, each TF only regulates a small
fraction of the total number of genes. Since css ~ 1/N, the strength
of indirect interactions are therefore typically much weaker than
that of direct interactions (i.e., the non-zero elements of M2 are
much smaller in magnitude than that of M1, Eqs. (14), (15)).

When constructing random bipartite networks, we only allow
TFs to regulate non-TFs (Fig. 3a), implying that T1= 0. The
matrix Q therefore only consists of weak indirect interactions,
and we expect the maximal eigenvalue to be smaller than that of
random networks and DAGs. Moreover, since in this case Q is of
rank-1, it has a unique real eigenvalue λQ,b which can be shown to
be (see Supplementary Note 6):

λQ;b ¼ �
Xq
i¼1

ci
∂log gT
∂ci

; ð20Þ

where ∂log gT
∂ci

¼ PN
j¼1 cj

∂log gj
∂ci

as defined in Eq. (15) are the elements
of the M2 matrix (and therefore small when the interaction
density is low). The maximum eigenvalue of the interaction
matrix M is then given by λM;b ¼ maxðλQ;b; 0Þ, since 0 is also an
eigenvalue of M (see Eqs. (17, 18)).

This expression (Eq. (20)) implies that unlike for fully random
networks and random DAGs, the stability of bipartite networks
can depend strongly on the ratio of up- and downregulating
interactions (see Supplementary Note 4). In particular, there is a
limit on the total strength of down-regulation (relative to that of

rand (Ω = 1.5)
rand (Ω = 2)

DAG (Ω = 1.5)
DAG (Ω = 2)

(a) (c)

(b)

DAG

0.5

lo
g
1
0

,

log10

Fig. 2 Stability of random interaction networks. a For random interaction
networks (red markers,`rand'), the maximal real part of the eigenvalues of
the interaction matrix λM;rmax

scales with
ffiffiffiffi
N

p
. Surprisingly, for random

directed acyclic networks (blue markers,`DAG'), λM;rmax
also scales

approximately with
ffiffiffiffi
N

p
. In both of these cases, increasing the interaction

strength from Ωmax ¼ 1:5 (circles) to Ωmax ¼ 2 (triangles) increases λM;rmax
.

These results suggest that the system will become unstable (i.e.,
log 10ðλM;rmax

Þ exceeds 0, indicated by the black dashed line) when N or
Ωmax becomes too large. Each data point is obtained from an average of 10
randomly drawn networks, with error bars indicating the interquartile range.
Each random network is constructed by randomly selecting ρN2

interactions from N(N− 1) possibilities, with half of the interactions chosen
to be upregulating and the remaining half to be downregulating. The
construction of DAGs is described in (c). For each regulatory interaction,
fold change is chosen uniformly between 1 and Ωmax. [Other parameters:
ρ= 0.01, h= 1]. b When systems go out of stability, dynamics of protein
concentrations c exhibit oscillatory (left, Ωmax ¼ 20) followed by chaotic
behavior (right, Ωmax ¼ 200) as interaction strengths are increased. [Other
parameters: N= 200, ρ= 0.2, h= 1, fully random network, time t is in units
of 1/kp.] c Random directed acyclic networks are constructed by randomly
drawing connections between proteins (red circles represent TFs, blue
circles represent non-TFs). If a drawn connection creates a loop (e.g., the
gray arrow with a cross on it), it is rejected.
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up-regulation) for the system to be stable. For example, if the
majority of the interactions are upregulating, λQ,b should be
negative and hence λM,b must be 0. On the other hand, λM,b must
be positive when the fraction of downregulations is sufficiently
high. This tendency for inhibitory (activating) interactions to
destabilize (stabilize) the system comes from the indirect effect
that a regulator has on itself: a slight increase in the concentration
of an inhibitor from its steady-state value will reduce the gene
copy number and hence mRNA levels of the regulated gene. The
mRNAs of the inhibitor therefore make up a larger fraction of the
total mRNA in the cell. Since all mRNAs compete for the shared
pool of ribosomes, this in turn causes the inhibitor concentrations
to increase further. This positive feedback also exists in the other
phases, although its physical origin may be different (see
Supplementary Note 4, Supplementary Fig. 2b).

Indeed, by numerically constructing multiple instances of a
bipartite network and varying the fraction of inhibitory interac-
tions Pneg, we find that λM,b= 0 when Pneg is below a critical value
that is approximately (but slightly greater than) 0.5 (Fig. 3b).
Importantly, within this regime, the value of λM,b= 0 is
independent of both N and the strength of interactions Ωmax
(Fig. 3b, c). This suggests that such a bipartite network structure
can help to maintain and enhance the stability of the system,
especially for large N and Ωmax.

Scrambling the interactions of E. coli transcriptional regulatory
network can destabilize the system. Real transcription networks,
however, are not strictly bipartite graphs—there are auto-
regulatory elements as well as TFs that regulate other TFs. To
investigate how relevant network stability is to biological net-
works, we obtained the E. coli transcriptional regulatory network
from ref. 31. The network consists of u= 5654 regulatory inter-
actions (of which up= 3187 are upregulating), with q= 211 TFs
regulating N= 2274 genes. We compared its stability with that of
randomly constructed networks with the same N, density of
interactions ρ ¼ u

N2 � 0:0011, and ratio of positive (activating) to
negative (inhibitory) regulation.

We first explored two different ways of scrambling the original
network: (1) randomly choosing u directed connections out of the
N(N− 1) possible connections, and (2) fixing the number of TFs
q and randomly choosing u directed connections out of qN
possibilities. The second method of scrambling is motivated by

the fact that q≪N and the stability of the system is governed
solely by the q × q matrix Q representing how TFs affect TFs (Eq.
(19)). For each drawn interaction network, we randomly choose
up of the interactions to be upregulating (γij > 0) and the rest to be
downregulating (γij < 0). We draw the fold-change Ωij of each
regulatory interaction from a uniform distribution between 1 and
Ωmax ¼ 1000. This choice of Ωmax is motivated by the fact that
TFs have been shown experimentally to change target protein
levels by 100–1000 fold13.

We find that with the real network, the system always
converges to a stable fixed-point regardless of the regulation
strengths (Fig. 4a). In contrast, for the randomly constructed
networks (both with and without keeping q fixed), the probability
of the system becoming unstable drastically increases when the
interactions become too strong (Fig. 4a). This loss of a stable fixed
point can give rise to either an oscillatory (Fig. 4b) or chaotic
behavior (Fig. 4c). This suggests that for typical regulation
strengths and density, the interaction network cannot be random,
and that certain structural features of real networks are important
for stability.

Network stability depends on the density of TF–TF interactions.
Since it is the maximal eigenvalue of the q × q sub-matrix Q (Eq.
(19)) that determines the stability of the system, and direct reg-
ulatory interactions are typically stronger than the indirect
background effects, we expect a higher density of direct interac-
tions among TFs to destabilize the system. This suggests that
what matters for stability is not only the number of TFs and the
total number of regulatory interactions, but also the fraction of
those interactions that target TFs.

We therefore analyzed the composition of regulatory interac-
tions in the E. coli transcription network, and found that there are
(i) us= 134 self-regulations (of which 42 are activating), (ii) ut=
373 TF-other TF interactions (of which 201 are activating), and
(iii) un= u− us− ut= 5148 TF-nonTF interactions (of which
2944 are activating) (Fig. 5a). In comparison, the scrambling
method that maintained both the number of TFs and the total
number of interactions gives a smaller number of self-interactions
(〈us〉= 2.5) and a larger number of direct TF-other TF
interactions (〈ut〉= 522) than in the real network.

To investigate if this could be the origin of the enhanced
stability of the E. coli regulatory network, we tried another

(a) (b) (c)

TFs

non-TFs

Bipar�te

Ω = 2

Bipar�te

Random

DAG

Ω = 1.5

,

1
−

,

Fig. 3 Stability of bipartite networks. a When constructing a bipartite interaction network, we group the proteins into transcription factors (TFs, red
circles) and non-TFs (blue circles), and only allow directed regulatory interactions to go from a TF to a non-TF. b For bipartite networks, there is a critical
value for the fraction of inhibitory interactions Pneg (that is slightly > 0.5) below which the maximal real part of the eigenvalues of the interaction matrix
λM;rmax

¼ 0 and above which λM;rmax
>0. In the regime where λM;rmax

¼ 0 (which can be considered to be deeply stable since it is far from the point
λM;rmax

¼ 1 where the system becomes unstable), this value of λM;rmax
stays the same even when the number of different proteins N (star markers vs. circles)

or interaction strengths Ωmax (star markers vs. squares) are increased. c When there is an equal fraction of up/downregulatory interactions Pneg= 0.5,
λM;rmax

is independent of both N and Ωmax for bipartite networks (green markers). This is in contrast to fully random networks (‘Random’, red markers) and
random directed acyclic graphs (‘DAG’, blue markers) where the system approaches the instability limit (λM;rmax

¼ 1) as N or Ωmax (circles to triangles) is
increased. This implies that a bipartite network structure can maintain and enhance the stability of the system as N or Ωmax is increased. In both (b) and
(c), each data point is obtained from an average of 10 randomly drawn networks, with error bars indicating the interquartile range. [Other parameters: h=
1, ρ= 0.01 for fully random and random DAGs, number of TFs for bipartite networks q= 0.1N].
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scrambling method with the composition of the interactions kept
fixed. In particular, after setting the first q= 211 (out of N=
2274) proteins to be TFs, we randomly draw the numbers of
interaction pairs within the three categories (self, TF-otherTF,
and TF-nonTF) by choosing each TF and its target separately.
The sign of the interactions are then randomly assigned while
maintaining the fraction of positive/negative interactions within
each of these categories. We find that this scrambling procedure,
which fixes the composition of regulatory interactions (in
addition to N, q, and ρ), significantly increases the probability
of the network having a stable fixed point (Fig. 4a).

Direct interactions among TFs can either be auto-regulatory
loops or TFs regulating other TFs. We explored the effects of
both of these factors, and found that assuming up- and

downregulations to be equally likely, a random network is almost
always stable when the density of TF-other TF interactions ρq ¼

ut
qðq�1Þ is sufficiently low (Fig. 5b). Above this threshold value of ρq,
the probability of the system not exhibiting a stable steady-state
increases with ρq (Fig. 5b). This effect is observed regardless of the
number of self-interactions or whether un is kept fixed (Fig. 5b).

While this implies that systems with a small number of TF–TF
interactions are almost always stable, it does not mean that having
a high density of TF–TF interactions will necessarily lead to an
unstable system. This can be seen from the fact the probability of
the system is stable does not drop sharply with ρq (Fig. 5b)—there
are still systems with a relatively high density of TF–TF
interactions that are still stable. This suggests that in the high
ρq regime, the details of the interactions become important. For
such a network with a large number of TF–TF interactions to be
stable, the type and strength of those interactions will need to be
more fine-tuned.

The phenomenon that a small ρq promotes stability is
consistent with the stability of bipartite networks (ρq= 0) and
the fact that direct regulatory interactions are typically much
stronger than the indirect background interactions. Nevertheless,
since Q (which has contributions from both T1 and T2, Eq. (19))
is not a sparse matrix even when ρq is small, we do not expect the
maximal eigenvalue λM;rmax

to scale with ρq the way it does for a
q × q random matrix with density ρq. Indeed, we find numerically
that the presence of T2 can affect λM;rmax

(Supplementary Note 7,
Supplementary Fig. 4), suggesting that the indirect coupling
between proteins can also play a role in influencing the stability of
the system.

Effect of degradation rates on protein level stability. So far, we
have been working in the limit of fast mRNA degradation, where
the stability of the system is governed only by the interaction
matrix M (Eq. (12)). In this regime, since M is independent of
degradation rates 1/τm and 1/τp (see Eqs. (12, 6, 3)), these do not
affect whether the system is stable. The relaxation rates are also
independent of τm and τp, with the relaxation rate in the absence
of interactions given by (from Eq. (11)):

β0 ¼ kpc
ss
r : ð21Þ

However, it is not clear if this insensitivity (of both stability and
relaxation rates) to τm and τp still holds outside of the τm≪ τp

)
P(
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)

Fig. 4 Comparing the E. coli transcriptional regulatory network with random networks of the same density. a The actual E. coli network does not become
unstable even when the maximum regulation strength Ωmax is increased (blue stars). In contrast, as Ωmax increases, the probability P(stable) of the system
having a stable fixed point decreases for scrambled networks of the same interaction density ρ= 0.0011, regardless of whether the number of transcription
factors (TFs) q= 211 is kept fixed (yellow circles) or not (red squares). However, scrambling the network while maintaining the same number of TF-other
TF, TF-nonTF, and self interactions can significantly enhance the probability of the system is stable (green triangles). Each of the data points represents an
average over 15 sets of 10 regulatory networks, with error bars indicating the interquartile range. [Other parameters: h= 2]. b A typical example of
oscillatory dynamics in protein concentrations c when the system no longer has a stable fixed point. [Parameters: Ωmax ¼ 1585, h= 2]. c An example of the
system going unstable and exhibiting chaotic behavior when the real network is scrambled at time t= 5 × 106 marked by the dashed vertical line.
[Parameters: Ωmax ¼ 1000, h= 5]. In both (b) and (c), time t is in units of 1/kp.
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Fig. 5 Effect of density ρq of transcription factor (TF)-otherTF
interactions on stability. a In the real network analyzed, there are us= 134
self-regulations (of which 42 of them are activating), ut= 373 TF-other TF
interactions (of which 201 of them are activating), and un= 5148 TF-nonTF
interactions (of which 2944 of them are activating). The total number of
interactions is given by u. b A randomly constructed network is almost
always stable when ρq is sufficiently low. Above a threshold value, the
probability of being stable (P(stable)) decreases with ρq. This is true with
(red and green circles) or without (blue circles) self-interactions, and
regardless of whether it is the total number of interactions u (red circles) or
the number of TF-nonTF interactions un (green and blue circles) that is kept
constant. Each data point is an average over 15 sets of 10 regulatory
networks, with error bars indicating the interquartile range. [Parameters:
N= 2274, q= 211, h= 2, Ωmax ¼ 1000.].
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regime. Within the framework of RMT, a more negative self-
regulation term typically increases the relaxation rate and hence
has a stabilizing effect2. Here, we ask if this is the case by
investigating how mRNA and protein degradation rates affect the
stability of the system and its relaxation timescale. In particular,
can faster mRNA degradation rates help to stabilize a system that
would otherwise be unstable if mRNAs degrade too slowly?

Values of mRNA and protein degradation rates do not affect
whether the system is stable. To investigate how the degradation
rates of proteins and mRNAs affect the stability of the system
when τm is not too small, here we consider the full set of 2N
equations (Eqs. (9, 10)) and study how the eigenvalues of the
(2N × 2N) Jacobian matrix J varies with τm and τp.

To compare the relaxation rates of the full system with the
protein relaxation rates when there are no interactions, we work
with the transformed Jacobian matrix:

~J ¼ 1
β0

J: ð22Þ

For an arbitrary regulatory network with a corresponding
interaction matrixM (Eq. (12)), we find that the eigenvalues ~λ of ~J
are given by (see Supplementary Note 3):

~λ ¼ 1
2

�ω±
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2 þ 4λMð1þ ωÞ

p� �
� 1; ð23Þ

where λM are the eigenvalues of M as before, and ω is a
dimensionless quantity given by:

ω ¼ 1
τβ0

; ð24Þ

which reflects the difference between mRNA and protein

degradation rates 1
τ ¼ 1

τm
� 1

τp

� �
.

Since on average cell volume increases exponentially with rate
(see Eq. (8)):

μ ¼ kpϕr �
1
τp

; ð25Þ

a growing cell has to satisfy the condition 1
τpkpϕr

< 1. Therefore,

since τm≥ 0, we have ω ≥−1. The expression for ~λ (Eq. (23))
therefore implies that the system is stable if and only if λM;rmax

≤ 1,
regardless of the value of τm and τp (Fig. 6a). We find that despite
differences in the details of the model, this conclusion still holds
in the other phases (see Supplementary Note 3).

Therefore, unlike what has been argued in the literature and
what one might expect from RMT, changing mRNA nor protein
degradation rates has no effect on whether the overall system is
stable. If steady-state protein concentrations are unstable because
λM;rmax

is too large (e.g., when interactions are too strong),
increasing mRNA or protein degradation rates can never help to
stabilize the system.

Importantly, this finding also implies that our results for how
structural features of the transcription network affects stability
holds outside the regime of fast mRNA degradation, since
stability only depends on M.

Increasing mRNA degradation rate can improve response times,
but only up to some limit. Besides system stability, another
quantity of biological interest is the response time of the system to
perturbations, which is especially relevant for cells experiencing
changes in nutrient conditions32,33. Since this relaxation timescale
is determined by the slowest eigenvalue of the Jacobian matrix,
here we discuss how the maximal real part of the eigenvalues ~λrmax

changes with τ.

The expression for ~λ (Eq. (23)) implies that when the system is
stable (λM;rmax

<1), the rate at which the system relaxes to steady-
state initially increases as ω increases from −1, but eventually
plateau off− in the ω→∞ limit (where τm≪ τp), ~λ ! λM � 1
(Eq. (23), Fig. 6a). This implies that there is some benefit to
having fast mRNA degradation in terms of response times, but
once mRNA degrades much faster than proteins, further
increasing mRNA degradation rate no longer affects the response
time of the system. The eigenvalue spectrum in this τm≪ τp limit
appears to consist of two circular regions, one for the dynamics of
mRNAs and the other for that of proteins (Fig. 6b), reminiscent
of the RMT’s circular law. Increasing τm only shifts the
eigenvalues corresponding to the mRNA sector and hence does
not affect ~λrmax

. This is consistent with the fact that when τm≪ τp,
the dynamics of the overall system is governed only by the
protein sector (Eq. (11)). Therefore, the slowest relaxation rate
back to steady-state levels depends only on M and increasing
mRNA degradation rate no longer improves the response time.

Discussion
In systems with a large number of interacting components, the
question of stability is often an important one, as results from
RMT predict instability when the system size N becomes too large
or interactions become too strong. In the context of gene
expression, transcriptional regulation is crucial for cells to adapt
to different environmental conditions by changing their gene
expression levels. It is therefore important for transcriptional
regulatory networks (TRNs) to be able to accommodate a large
number of regulatory interactions without the system going
unstable. However, we find here that similar to the intuition
provided by RMT, λ � ffiffiffiffi

N
p

for a fully random regulation net-
work, suggesting that the system will go unstable as the number
of genes exceeds a threshold. In fact, based on typical values for
the density of actual regulatory networks and interaction
strengths, we find that the system has a high probability of being
unstable if the TRN is randomly constructed.

Besides the number of genes, and the density and strengths of
interactions, there are other factors that can affect the stability of

= 10−10

= 0.4

= 0.5

̃

Im
(
̃ )

Re( )

Fig. 6 Effect of degradation rates on stability. a The system is stable if and
only if the maximal real part of the eigenvalues of the interaction matrix
λM;rmax

� 1, regardless of the value of ω which increases with mRNA
degradation rates (Eq. (24)). The scaled eigenvalues ~λ ! λM � 1 in the
limit of fast mRNA degradation rate ω→∞ (Eq. (23)). b Eigenvalue
spectrum for different degradation rates τ. When mRNA and protein
degradation rates are comparable, all eigenvalues fall within a circular
region (red). On the other hand, when τm≪ τp, the eigenvalue spectrum
approximately resembles two circular regions, one corresponding to the
dynamics of mRNAs and one for that of proteins. In this limit, increasing
mRNA degradation rate only shifts the eigenvalues for the mRNA sector to
more negative values, leaving the maximal real part of the eigenvalues
approximately unchanged, ω= 0.5 (green) vs ω= 0.4 (blue).
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the system, one of which is the network topology. This aspect is
particularly relevant in this system since TRNs are far from being
random but instead consist of recurring motifs. While the
properties of these specific motifs have been widely studied and
shown to be important for specific functions such as adaptation,
robustness, and fast response to environmental changes1,29,30,
how they contribute to the overall stability of the network is less
clear. We find here that global structural features of the network,
which are fundamentally shaped by many of these motifs, can
play a huge role in determining the stability of the system. In
particular, given the same number of proteins, TFs, interaction
density, and regulation strengths, a network that resembles a
bipartite graph with a lower density of TF-otherTF interactions ρq
has a higher chance of being stable. The significance of ρq fun-
damentally arises because of two main factors: (i) the eigenvalues
of the Jacobian matrix and hence the stability of the system about
its steady-state are governed only by the TF sector (i.e., how
perturbations in TF concentrations affect TFs), and (ii) for a
sparse regulatory network, the indirect background interactions
arising from competition for ribosomes between different genes
are typically much weaker than the direct regulatory interactions.

TRNs are also known to be scale-free, having a power-law out-
degree distribution. This is consistent with the fact that most TFs
only regulate a small number of genes, but there are TFs (often
referred to as master regulators) that regulate a very large number
of genes. Within a more abstract model of gene regulatory
dynamics, the presence of these outgoing hubs has been shown to
significantly increase the probability of the system reaching a
stable target phenotype when the interaction strengths are
allowed to vary while the network topology is kept fixed34. Here,
we find that having a low ρq can already significantly stabilize the
system without the need to control the degree distributions.
Nevertheless, having just a few master regulators may contribute
to the network having a low ρq if for instance most of the reg-
ulations on TFs are carried out by the master regulators (and
non-master regulators predominantly regulate non-TFs).

Besides the structural features of the network, another factor
that could affect stability is the degradation rates of mRNA and
proteins. Based on RMT, one may expect faster degradation to
stabilize the system. This has in fact been argued to be the case5,6.
However, by taking into account the dynamics of protein con-
centrations and how it couples to the dynamics of mRNA levels,
we find that this is not the case. Instead, the stability of the system
depends solely on the regulatory network and the strengths of
those regulations—if the system is unstable, it will be unstable
regardless of how fast mRNA or protein degrades. This highlights
the importance of taking into account key aspects of the inter-
actions (through the form of the dynamical equations) when
analyzing the stability of large coupled systems, similar in spirit to
studies of ecological models where explicitly considering inter-
actions mediated through competition for nutrients can give
drastically different results from assuming random pairwise
interactions between species7. This prediction can also potentially
be tested in the lab by varying the degradation rates of mRNAs
(e.g., by using genetically modified RNases) or proteins (e.g., by
using genetically modified proteases) in the cell and observing the
dynamics of protein concentrations.

From an evolutionary perspective, there are many possible
factors (such as the range of gene expression levels, environ-
mental conditions, response time32,33, level of unwanted cross-
talk35, etc.) that drive the addition or removal of regulatory
connections. Our findings suggest that in addition to these con-
siderations, another fundamental factor is the stability of the
overall network. For example, there could be many ways of
achieving a certain task such as allowing the cell to switch
between two desired gene expression levels in two different

nutrient conditions, but the only ones that can survive are those
that also maintain the stability of the system. In other words, the
stability of the system may have played a role in shaping current
existing regulatory networks through the evolutionary
process. Our approach can therefore provide insights into the
design and evolutionary constraints for a functional regulatory
network, which may potentially be useful for guiding the con-
struction of synthetic genetic circuits36–38. In the future, the
ability to experimentally engineer a large, random regulatory
circuit within cells could also allow testing of the results we have
described.

In addition to transcriptional regulation, gene expression is
also regulated at the post-transcriptional (e.g., through small-
RNAs or micro-RNAs) and post-translational (e.g., through
post-translational modifications) level. Our framework can be
extended to take into account these effects (see Supplementary
Note 8 for an example). How the stability of the system is
affected by the coupling between these different forms of reg-
ulation with potentially different network structures is an
interesting question that we leave for future work. Besides
stability (determined by the eigenvalues of J), in the future, it
could also be instructive to investigate the spread of perturba-
tions within the regulatory network (i.e., the eigenvectors of J).
This is analogous to the study of how concentration pertur-
bations propagate in protein–protein interaction networks
within the cell39.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The E. coli. transcriptional regulatory network data that support the findings of this study
is available in the supplementary files of the paper (ref. 31): https://doi.org/10.1073/
pnas.1702581114. This data used for analysis is also available in a MATLAB data file on
GitHub repository40: https://github.com/yipeiguo/TRNstability.

Code availability
All simulations and data analysis are carried out using codes written in MATLAB
R2019a. These can be found on GitHub repository40: https://github.com/yipeiguo/
TRNstability.
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