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Quantitative interpretation explains machine
learning models for chemical reaction prediction
and uncovers bias
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Organic synthesis remains a major challenge in drug discovery. Although a plethora of

machine learning models have been proposed as solutions in the literature, they suffer from

being opaque black-boxes. It is neither clear if the models are making correct predictions

because they inferred the salient chemistry, nor is it clear which training data they are relying

on to reach a prediction. This opaqueness hinders both model developers and users. In this

paper, we quantitatively interpret the Molecular Transformer, the state-of-the-art model for

reaction prediction. We develop a framework to attribute predicted reaction outcomes both

to specific parts of reactants, and to reactions in the training set. Furthermore, we demon-

strate how to retrieve evidence for predicted reaction outcomes, and understand counter-

intuitive predictions by scrutinising the data. Additionally, we identify Clever Hans predictions

where the correct prediction is reached for the wrong reason due to dataset bias. We present

a new debiased dataset that provides a more realistic assessment of model performance,

which we propose as the new standard benchmark for comparing reaction prediction models.
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Organic synthesis remains a challenge in small molecule
drug design, sinking time in the design-make-test cycle
and potentially limiting the complexity of chemical

space being explored1,2. The challenge of synthesis planning lies
in searching through myriad of possible reactions to find optimal
routes, and in predicting whether each possible reaction is indeed
feasible and high yielding for the particular substrate in question.
The problem of efficient search in synthesis has been recently
addressed, inspired by innovations in computer science on
searching and gameplay3–7. However, accurately predicting the
outcome of chemical reactions remains a hurdle8–10.

The current state-of-the-art in reaction prediction is the
Molecular Transformer11, which employs the transformer neural
network architecture that was first introduced for neural machine
translation12. The input to the model is a text representation of
the chemical structures of the reactant and reagent, and the
model performs machine translation to predict the most likely
output molecule with a probability score. The Molecular Trans-
former achieves a 90% Top-1 accuracy on the USPTO dataset of
organic reactions that were text mined from US patents13 and
filtered14. Recent work shows that thorough dataset augmentation
improves model performance by allowing it to consider different
equivalent SMILES representations15.

However, a key stumbling block in the Molecular Transformer
is the lack of interpretability. Why the Molecular Transformer
predicts one reaction outcome over another, and which training
set reactions it finds most similar when reaching a particular
prediction, are both unclear. Quantitative interpretability is
crucial to both model users and model developers.

For model users, interpretability is important because chemical
reactions are highly contextual, with important anthropomorphic
metadata that the model overlooks. For example, reactants,
reagents and products are only a part of the reaction. The reaction
conditions, the scale of a particular reaction (e.g. discovery
chemistry or scale up), and scientific focus of the project (e.g. total
synthesis, medicinal chemistry or methods development) are
some of the context that a skilled chemist can employ to interpret
and understand the reaction.

For model developers, physical organic chemistry principles
explain chemical reactivity and selectivity. As such, probing
whether rationales outputted by the Molecular Transformer are
congruent with physics allows developers to interrogate whether
the Molecular Transformer is getting the correct prediction for
the right reasons, and design model improvements based on those
insights.

In this paper, we develop a suite of methods that quantitatively
interprets the Molecular Transformer by attributing predictions
to the input chemical structure and the training data. We illus-
trate our two-prong approach via a series of sentinel examples,
showing how we uncovered what the model is learning, what it
finds difficult, and explains its failure modes. Our method dis-
covers hidden biases in the training data that hinder general-
ization performance and masks model shortcomings, which we
resolved by introducing a new unbiased train/test split.

Results
Quantitative interpretation. There are three key factors
determining the prediction of a machine learning model: the
architecture, the training data and the input. Neural network
models are often considered as black-boxes because of the com-
plex ways these three factors interact to yield a prediction.

To interpret model prediction, we first need to define what
interpretability means. We suggest interpretability is the ability to
discover associations and counterfactuals between input and
output, and the ability to query evidence in the data supporting a
certain outcome. Our approach follows the accepted scientific

process: a scientific theory usually identifies factors that are
related to a certain outcome and conversely how the absence of
those factors is related to the absence of outcome. Furthermore,
the investigator needs to show pieces of evidence that support the
theory.

We employ integrated gradients16 as a rigorous method for
attributing the predicted probability difference of two plausible
products of a selective chemical reaction to parts of the input. The
attributions show how much each substructure is contributing to
the predicted selectivity of the model. This is illustrated in Fig. 1b.
The values of the attributions are compared to the value each
subgroup would receive if the probability difference would be
distributed evenly across the input. The parts of the structures
getting higher integrated gradients (IGs) than the uniform
attribution (ua) are considered important. For further description
of our adaptation of IGs see Methods section.

Attributing the predictions of neural networks to most similar
training data points is less widely researched. To achieve this goal,
we developed a new method based on the latent space similarity
of the reactions. We used the outputs of the Molecular
Transformer encoder averaged over the tokens to achieve a
fixed-length vector representation of the reactions. The most
similar training reactions according to the model were then
identified using the Euclidean distance of these latent space
vectors. A schematic overview of our method is shown in Fig. 1c.
Details can be found in the Methods section.

We validate our interpretations in two ways. The first is via
falsification. If the integrated gradients attributions are chemically
unreasonable, i.e. predictions are correct for the wrong reasons,
we design adversarial examples that force the model into wrong
predictions. The second is by identifying causes for the prediction
in the training data. If a prediction is wrong, we interrogate
whether a similarly incorrect entry is in the training data.

Investigation of specific reaction classes. We investigate in detail
three reaction classes that are commonly used in medicinal
chemistry. Through these examples, we illustrate each of the three
branches in Fig. 1a. We first examine the selective epoxidation of
alkenes which is an example where the Molecular Transformer is
producing the right prediction for the right reason. We then turn
to the Diels–Alder reaction, which is a scaffold-building trans-
formation widely used in synthesis. We show that the Molecular
Transformer is not able to predict this reaction. Following the
bottom branch of Fig. 1a, we investigate it using data attribution
and find that the USPTO dataset contains very few instances of
Diels–Alder reactions, likely explaining why the model is not able
to predict the outcome correctly.

Finally, we consider the Friedel–Crafts acylation reactions of
substituted benzenes. We show that the Molecular Transformer
predicts the right product for the wrong reason and validate our
interpretation using a number of adversarial examples. We also
demonstrate with the help of an artificial dataset how this
behaviour is the result of dataset bias.

In light of the identified pathologies, we re-examine the
reported 90% accuracy of the Molecular Transformer and
demonstrate that it is partly the result of scaffold bias in the
dataset. We propose a new train/test split that is free from this
bias, and show that the performance of the Molecular
Transformer decreases. We also show that the same issue exists
for graph models as well by retraining one of the best reported
graph model and observing a similar drop in accuracy.

Epoxidation. The oxidation of alkenes to form epoxides is an
important intermediate reaction in many synthesis plans17. The
common oxidant in these reactions are peroxy compounds. The
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most widely used example of them is mCPBA, which is a versatile
reagent appearing 2052 times in the USPTO dataset. This is in
the high data regime where we would expect the model to do well
due to the large number of different training examples available.

Epoxidation reactions can be regioselective, with more
substituted alkenes reacting faster because they are more
electron-rich17. A typical example reaction showing this type of
selectivity is shown in Fig. 2a.

The Molecular Transformer is able to predict the product with the
correct selectivity, giving it a probability score of 0.43. The probability
score of the alternative incorrect product was less only by 0.025. This
is a case where the model predicts two similarly plausible outcomes,
so IGs can help to judge whether or not a prediction can be trusted.
Since the probability difference is close to 0, the sign of the
attributions at different parts of the input is in itself interesting and
contains information regarding the favoured outcome.

Figure 2a shows the IG attributions of the different parts of the
input. In this case the positive attributions favour the correct
product while the negative attributions favour the incorrect
product. The IGs show that the two methyl substituents circled
with blue are significantly contributing to the correctly predicted
selectivity. The attributions on the other parts of the molecule are
harder to interpret. This can be the result of the model being
uncertain in the prediction leading to larger gradients along the
path integral during the calculation of the attributions.

To validate the interpretation that the model has learnt this
selectivity, we generated the Molecular Transformer predictions
for two further examples from the literature as shown in Fig. 2b.
The first example is very similar to the one examined in detail
above and the model is consistently predicting the correct
product. The second example is more challenging for the model
for a number of reasons. First the reagent is not mCPBA but
dimethyldioxirane which appears much less frequently, only 14
times in the training data, secondly both double bonds are

substituted, and the difference is made by a more subtle
chemistry, the ester group being electron withdrawing. The
model is able to predict the correct outcome here as well
confirming that the predictions are correct for the right reason.

Fig. 1 Schematic illustration of the attribution workflow. a Overview of our workflow to interpret the Molecular Transformer. b Schematic of how the
predicted probability difference between two products are attributed back to the reactant-reagent string in order to interpret the model’s understanding of
selectivity. The IG attributions below the reactant SMILES are compared to the uniformly distributed probability difference (ua) below. c Schematic of how
the latent space encoding of reactant-reagent strings are used to infer the learnt similarity between query reactants and those from the training set.

Fig. 2 IG attributions highlighting correct reasoning. a The model
correctly predicts the product of a typical epoxidation reaction, and shows
significant positive attributions to the two methyl group that are responsible
for the selectivity. b We validate the model’s knowledge on two unseen
epoxidation reactions from chemical literature39.
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Diels–Alder. The Diels–Alder reaction transforms a conjugated
diene and an alkene (called dienophile) to a six-membered ring
with a double bond17. There are very few limitations on the
character of the diene. It only has to be flexible enough to take up
an s-cis conformation. The dienophile, on the other hand, should
have carbon–carbon double bonds conjugated preferably with an
electron withdrawing group. A typical example of a Diels–Alder
reaction used as a test-case is shown in Fig. 3a.

The Molecular Transformer was unable to predict the
regioselectivity of this reaction, and in fact the predicted product
was clearly wrong with the actual possible products getting 0
probability scores. Since the prediction is obviously wrong, we
followed the bottom branch of the workflow at Fig. 1a and
generated the most similar training reactions to see what causes
this erroneous prediction.

Figure 3b shows the Top-3 most similar reactions from the
training set based on the model encoder output similarities. The
most similar training reaction (i) is an erroneous reaction, whilst
the second and third are carbon–carbon bond formations, but via
Grubbs methathesis18 rather than cycloadditions. This means that
the model has not learnt a good representation of Diels–Alder
reactions in the latent space.

To investigate if the cause of this was a lack of training data, we
devised a reaction template corresponding to the [4+ 2]
cycloaddition and found that there were only seven reactions
matching it in the entire USPTO database. This example
illustrates how attribution to data can be useful for identifying
erroneous predictions caused partly due to erroneous data and
partly due to the scarcity of training examples.

Friedel–Crafts acylation. Friedel–Crafts acylation reactions are an
example of electrophilic aromatic substitution19. In these reac-
tions a hydrogen on an aromatic ring is substituted by an acyl
group. In the case of a benzene ring with a single substituent,
there are three different hydrogen positions where this substitu-
tion can happen. The electronic and steric character of the sub-
stituent on the ring determine the selectivity of these reactions.
An example of a selective Friedel–Crafts reaction is shown in
Fig. 4a where according to the patent the para product is formed
with a yield of 90%20. In this reaction that acyl group is primarily
substituting the hydrogen in the para position compared to the –F
substituent. The transformation is correctly predicted by the
Molecular Transformer.

The IG attributions indicate that the importance of the fluorine
(–F) for this reaction is completely neglected by the model. A
much larger attribution is given to the reagent suggesting
that the model attributes this selectivity to the reagent rather
than the true directing group. Guided by the attributions, we
replaced the fluorine by a number of typical meta directing
groups to create adversarial examples. We observe that the model
(wrongly) predicts the para product. In this case, negative
attributions favour the meta product and positive attributions the
para product. We do not find any correlation between the
attribution values and the directing effect of the substituent. From
this, we can conclude that the model has not learnt the selectivity
in the case of Friedel–Crafts acylation reactions on substituted
benzene rings.

Interestingly in our third example, the attribution on the meta
directing group is negative, meaning that according to the model
the amide group (correctly) favours the formation of the meta
product. This agrees with chemical principles, but the model is
nonetheless still predicting the para to be the major product.
We hypothesize that this might be due to biases in the training
data—Fig. 5a shows that there are many more para substitution
reactions than meta in the training dataset; overlaps in the Venn
diagram denotes cases where the benzene ring has more
than 1 substituent. This could result in the model being biased
towards predicting para substitutions even in the presence of
meta directing groups, as the model can achieve very high (98%)
accuracy on the training set by always predicting the para
product.

Revealing the effect of bias through artificial dataset. To
investigate how imbalance in the training data affects the test set
performance, we construct three artificial training sets using
reaction templates for meta and para Friedel–Crafts substitutions.

The first training set is balanced, containing the same number
of para and meta products. The second dataset contains 10%
meta and 90% para products, whilst the third dataset has ca 1%
meta and 99% para products. This last ratio is closest to the ratios
of the USPTO dataset. The test set for all models contains an
equal number of meta and para reactions.

Figure 5b reveals that the Molecular Transformer is highly
susceptible to learning dataset bias. When the model is trained on
the balanced dataset, it rapidly converges to predicting equal
amounts of para and meta substitution reactions, confirming that
the bias is not caused by neural network architecture limitations.
The model trained on the biased dataset containing only 10%
meta reactions in the training set is not able to get rid of the bias
fully, but with longer training it is mitigated. For the highly biased
training set the model is not able to learn to predict any meta
products.

This numerical experiment confirms that the Molecular
Transformer is guilty of the Clever Hans effect—it appears to
know chemical reactivity only because it learns hidden bias in the

Fig. 3 Data attribution explains erroneous prediction. a The model makes
an obviously incorrect prediction on a typical example of a Diels–Alder
reaction with challenging selectivity. b Attribution to the USPTO training
data shows that the model either completely fails to recognize Diels–Alder
reactions or that no Diels–Alder reaction is present in the dataset.
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dataset. This is analogous to the bias observed in neural machine
translation, where a pronoun indicates the gender of a word, but
the model disregards it when making the translation due to the
presence of gender stereotypes in the training data21.

Uncovering scaffold bias. Our case study of the Friedel–Crafts
acylation reveals the sensitivity of the Molecular Transformer to
dataset bias. We turn to examine another source of bias—com-
pound series bias, or scaffold bias22. This is the phenomena where
very similar molecules appear in both the training and the test set.
This leads to ML models achieving high accuracy on the held-out
set, which does not necessarily correlate with the true general-
ization performance of the models. This is particularly acute for
drug discovery datasets as medicinal chemists typically design
molecular ‘series’ by adding various functional groups to a central
chemical ‘scaffold’. In chemical reaction datasets, scaffold bias
manifest itself as similar molecules undergoing very similar
transformations.

To gain further insight into this phenomenon, we apply a 50:50
random train/test split to the full USPTO dataset and inspect
reactions from one set that have structurally similar products to
those from the other set. We define the ’structural similarity’ of
two molecules by calculating the Tanimoto similarity σ between
the Morgan fingerprints of the respective molecules23. Figure 6
reveals that many training and test set reactions are remarkably
similar as measured by both σ as well as the Tanimoto similarity
of the reaction difference fingerprints of the reaction24.

We find that 57–93% of reactions from the test set contain a
structurally similar product to a reaction from the training set.
This would not be problematic if the data points involved
different reactants and reagents reacting via different mechanisms
to form the same product. However, this is not the case—
reactions with similar products often also share reactants and
undergo similar chemical changes. This means that using a
random train/test split to assess the performance of reaction
prediction models could be a misleading indicator of their ability
to generalize. Indeed, this reconciles the seeming contradiction

Fig. 4 IG attributions revealing incorrect reasoning and guiding the design of adversarial examples. a The model correctly predicts the major para
product of a typical Friedel–Crafts acylation, but low attribution is given to the para directing –F group. b The model is fooled into incorrectly predicting the
para product when the –F is replaced by meta-directing groups. The low attributions given to the directing groups indicate that the model has not learnt
their importance.
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between the reported 90% top-1 accuracy of the Molecular
Transformer and our findings above regarding the model’s
fragility to reactions involving chemical selectivity.

To account for this drastic scaffold bias, we propose that
datasets for training machine learning reaction prediction models
should be split by the Tanimoto similarity of the reaction
products. In other words, it should be ensured that no reactions
in the test set have a product that is within Tanimoto similarity σ
of any product from a training set reaction. We implement this by
first conducting a random split of the dataset, and then
transferring all reactions that fall foul of the Tanimoto similarity
criteria from the test set to the training set—the proportion of the
initial random split is adjusted until the desired final train/test
ratio is obtained.

The intent of such a dataset split is to remove structural bias,
but we must also make sure that the distribution of different
reaction types in the train and test sets is still similar. This is
important because we would like the test set score to reflect how
well the model learnt the chemistry contained in the training set,
and we are less interested in extrapolation to unseen reaction
types. To characterize the new Tanimoto-split dataset, we used
open-source template extraction code25, and we inspected the
distribution of reaction types in both the training and test sets for
the case of the random and Tanimoto-split datasets (see
Supplementary Note 1). We find that the distribution of reaction

templates is not substantially perturbed and for both random and
Tanimoto-splits there are no reaction templates present in the test
set that are not contained in the training set, i.e. all reaction types
in the test set are ’seen’ by the model during training. In fact,
Tanimoto-splitting increases the number of unique templates in
the test set from ~3k to ~4.9k, suggesting that this splitting
method can produce test sets that better represents the
distribution of reaction types from the full dataset (~26k
templates) compared to a random split. This is similar to an
importance sampling scheme that helps sampling the tails of the
distribution as well.

We apply this technique to USPTO with σ= 0.6 and σ= 0.4,
and train the Molecular Transformer on these two datasets. We
also train the WLDN5 model of Coley et. al.25, which is a widely-
used graph-based machine learning reaction prediction model.
This model explicitly represents molecules as graphs and considers
reactions as series of graph edits instead of the Molecular
Transformer’s text-based translation of SMILES strings.

Table 1 shows that the model performance of both the graph-
based model and the Molecular Transformer significantly
decrease upon debiasing the dataset, but Molecular Transformer
continues to outperform WLDN5. These results show that
scaffold bias affects both graph-based and sequence-based
models, confirming that this bias is intrinsic to data and
independent of model architecture. Importantly, this demon-
strates that there is significant scope for improvement in the
performance of reaction prediction, and that the 90% accuracy
obtained for a randomly split dataset does not necessarily
translate to real-life applications.

Discussion
We developed a framework for quantitatively interpreting the pre-
dictions of Molecular Transformer, a state-of-the-art model for
predicting the outcome of chemical reactions. We show that
the model makes predictions based on patterns it recognizes and the
statistics of the training data, but this does not necessarily coincide
with the underlying chemical drivers of reactivity. This can result in
erroneous predictions. Attributing the predicted probability to parts
of the input allowed us to foresee these failure modes.

Through this interpretation framework, we discover that the
model is susceptible to the Clever Hans effect, where the correct
outcome is reached by learning bias. For example, the dataset
contains orders of magnitude more para than meta electrophilic
aromatic substitution reactions, and the Molecular Transformer
frequently arrived at the correct test set prediction by simply
memorising this fact. We believe that the inclusion of additional
physical insight into models, as done in recent work incorpor-
ating explicit reaction mechanisms for reaction prediction26 and
machine-learning regio-selectivity prediction27, could be an
effective way of increasing model robustness against dataset bias.
A possible way to accomplish this in Transformer models is via
the augmentation of token embeddings with physical descriptors.
Moreover, future efforts should focus on benchmarking other
graph-based synthesis prediction tools such as the recent
MEGAN architecture as well28.

We have also shown that incorrect predictions can be the result
of erroneous training data points. This can be revealed using our
method to attribute model predictions to training data. This
method can also aid experimental chemists using the Molecular
Transformer. The references corresponding to the most similar
training reactions can be used to impute experimental conditions.
This principle can be used in many scientific machine learning
applications where the training data is generated via text-mining,
which is known to lead to loss of important metadata, like
reaction conditions.

Fig. 5 The effect of biased training data on the predictions of the
Molecular Transformer. a The number of para Friedel–Crafts acylation
reactions far outweigh those of meta or ortho reactions. b Dataset bias is
reflected in the model predictions. The figure shows the proportion of para
(solid line) and meta (dashed line) predictions on a balanced test set as a
function of the number of training epochs for different biased training sets.
The error bars shown indicate the standard deviation in the results from
training an ensemble of 10 randomly initialized models. The proportion of
meta and para predictions does not always add up to 1, because it takes a
number of iterations for the model to learn the SMILES syntax and we
discount invalid predictions.
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Finally, we have shown that scaffold bias is a phenomena present
in the published literature on reaction prediction. Many of the
reactions in the test set have almost identical twins in the training
set. This leads to an overestimation of the generalization perfor-
mance of the models as reported in the literature. We have re-
trained two of the leading models the Molecular Transformer and
the graph-based WLDN5 model on our new Tanimoto-split dataset
and found that the Top-1 accuracy of the models dropped
significantly.

Our work highlights the importance of understanding and
evaluating scientific machine learning models beyond looking at
their accuracy on standard benchmark datasets. By rigorously
applying interpretability techniques, we reveal how systematic
weaknesses of the models can be uncovered, proving insights that
facilitate the work of model developers. We believe further work
into the use of input attribution and interpretability tools to
critically analyse machine learning models for retrosynthesis, as

well as other areas of computational science, is vital and necessary
for continued refinement of predictive models.

Methods
Input attribution. To unpack the Molecular Transformer we decided to focus our
efforts on reactions containing selective chemical transformations, which means
that they have multiple plausible outcomes. These reactions are most fit for
identifying if the model is making the predictions on true chemical basis because
the underlying chemical causes are well established. Our general framework of
interpreting chemical reactions is shown in Fig. 1a.

Once a suitable chemical reaction with two possible target molecules is chosen
the Molecular Transformer probability scores of the products are generated. The
difference in probability score between the true and the incorrect but plausible
products is then attributed back to the reactant-reagent inputs.

Recently there were many methods developed and applied successfully for
attributing the predictions of neural networks to parts of the input. Some of the
most notable examples are LIME, SHAP, layer-wise relevance propagation (LRP)
and integrated gradients16,29–31. These methods are designed to propagate back the
output of the models in a fair way to determine the contribution (importance) of
each of the input features to the prediction. There are several methods that have
their roots in cooperative game theory and are proven to yield fair attributions as
defined by the axioms of fairness16. For machine learning models where the
gradients are not readily available, there are so-called Shapley-values and the closely
related SHAP method30. For models such as the Transformer where the gradients
are easy to evaluate the integrated gradients (IGs) method is a more natural choice16

though other methods such as LRP have also been applied successfully32. The IGs
method has also been applied previously for interpreting language models in natural
language processing applications and for designing adversarial examples in the
context of question answering33. A graphical illustration of IGs is shown in Fig. 1b.
Our approach builds on the work of McCloskey et al. 34, who used IGs to
understand binding prediction by graph neural networks on artificial datasets. We
extend the method to Transformer architectures, and use it in the context of
reaction predictions on real experimental data.

IGs are calculated by evaluating the path integral of the gradient of the output
with respect to the input along a straight line path in the input space from a non-
informative baseline to the input of interest.

Given a neural network denoted by the function F : Rn ! ½0; 1�, the input
x 2 Rn and the baseline input x0 2 Rn the IG attribution of feature i is given by

IGiðxÞ ¼ ðxi � x0Þ
Z 1

α¼0

∂Fðx0 þ αðx � x0ÞÞ
∂xi

dα ð1Þ

Fig. 6 Near-identical training and testing reactions during random splitting of the dataset. Randomly splitting USPTO results in a large number of near-
identical reactions shared between train/test sets. 78% of reactions in the test set have products that are within Tanimoto similarity 0.5 of a product in the
training set following a 50:50 random split. By eye, it can be seen that many reactions with similar products (differences are highlighted by shading) have
similar reagents and follow near-identical reaction mechanisms. This intuition is confirmed by the similarly high similarity of the reaction difference
fingerprints from the reactions. The equivalent proportions are 93% and 57% for Tanimoto similarity >0.4 and >0.6, respectively.

Table 1 Evaluation of reaction prediction models on different
train-test splits.

Model Top-1[%] Top-3[%] Top-5[%]

Original
Molecular Transformer 90.4% 94.6% 95.3%
WLDN5 85.6% 92.8% 93.4%

Tanimoto similarity <0.6
Molecular Transformer 80.9% 88.2% 89.6%
WLDN5 75.9% 86.2% 88.8%

Tanimoto similarity <0.4
Molecular Transformer 74.6% 82.9% 84.5%
WLDN5 69.3% 80.9% 84.1%

The performance of the best ML models on various USPTO train/test splits are shown.
The accuracy of the best-performing model is highlighted in bold.
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In the case of the Molecular Transformer x is the N × 256 dimensional
embedding of the input SMILES string of length N and x0 is the embedding of the
‘.’ token taken N times. This token is used in the SMILES language to separate
different molecules and hence on its own bears no chemical information making it
an ideal baseline choice. To obtain the total contribution of each of the input
tokens the attributions are summed along the 256 dimensional embedding vectors.

Finally to make the attributions easier to interpret, we devised a few simple rules
to map the token level attributions to chemically meaningful substructures.
Reagents like sulphuric acid or meta-Chloroperoxybenzoic acid (mCPBA) are fed
into the model by their full SMILES strings but in reality they act as single units as
far as the reaction is concerned. Their attributions are more meaningful to look at
as a whole rather than token by token. A related problem is with the attributions
corresponding to special characters in SMILES like numbers or parentheses. To
resolve this, we consider rings as single units and their attribution is calculated by
summing over the ring atoms and numbers. This way the information about the
relative positions of the ring substituents will also be included in the attribution of
this part of the structure. Branches are also considered as single units and their
attribution is the sum over their atoms and the parentheses specifying them.

For the attributions to be meaningful it is important to look at reactions where
there are two possible products that have non-zero probability scores according to
the model. This is crucial since for the prediction of a single product every token of
the reactant is important, since missing a remote carbon would also result in a
wrong prediction. By looking at the probability difference of two plausible products
this effect can be eliminated and the attributions highlight the groups driving the
chemical selectivity (according to the model). In particular, canonical SMILES for
both products should be used to ensure the probability scores are non-negligible.

Finally, to determine if a particular group is important according to the model,
we compare its attribution to the attribution that would fall onto it, if the
probability difference was distributed evenly across the input tokens. Substructures
that get substantially higher attribution than uniform are most important for the
model when it favours one product over the other.

Training data attribution. Attributing the predictions of neural networks to
training data can serve as a tool for explaining predictions as well as gaining
understanding of the models inner workings35. In cases when a model predicts
something very unexpected to humans attributions to parts of the input can be
difficult to make sense of. Sometimes it can be much more illustrative to see a
couple of example inputs that the model finds similar. Usually seeing a number of
similar examples can help humans identify patterns that may serve as the basis of
the model’s prediction. This can either result in the discovery of new trends or laws
in the scientific domain or it can reveal biases that the model has learnt. In the
latter case this information can be used to improve the model or the dataset.

To create a successful method for attribution to data the most crucial element is
the careful design of a similarity measure. The similarity should be defined such that
it measures how similar two input data points are according to the model. For
different neural network architectures different choices of similarity measures can be
appropriate. In the case of feed-forward or convolutional architectures a natural
choice is to define a fingerprint vector for each data point that consists of the neural
networks layer outputs (activations) concatenated together. This similarity measure
has been shown to be useful for judging the reliability of toxicity models predictions
by comparing molecules not in the training set36. In the case of the Molecular
Transformer, which has an encoder-decoder architecture the output of the encoder
layers can be used as a basis for comparing data points. Since the encoder hidden
states have a non-fixed length we take the average of them across the input tokens to
obtain a fixed-length 256 dimensional vector representation for each of the reactions.
Averaging is expected to work because of the relatively large dimensionality of the
latent space. The size of the vocabulary of the USPTO dataset is 288 so there are
almost as many orthogonal directions in the latent space as there are possible
different input tokens. This is expected to lead to minimal loss of information upon
averaging. For each reaction in the training set the 256 dimensional hidden state
vector is generated and the matrix of training set reaction hidden states is saved as a
binary. When a new example input is given to the model, it is passed through the
Transformer encoder and the average hidden state vector of it is calculated. A
schematic diagram depicting the method is shown in Fig. 1b. The similarity score of
the input reaction vector u to a training set vector v is calculated by

scoreðu; vÞ ¼ 1
1þ k u� v k ð2Þ

The top-n most similar reactions from the training set are returned.

Training data. The training data used in this study was obtained by the text
mining work of Lowe13, where organic reactions were extracted from US patents
filed between 1976 and 2016. The dataset was filtered by Jin et al.14 to remove
duplicates and some of the erroneous reactions, which resulted in a set of ca
480,000 organic reactions. This dataset though much cleaner, it still contained a
large number of erroneous reactions whose sole product were halogen ions, nitric,
sulphuric or phosphoric acids, etc. We found that if these reactions are present in
the training set the Molecular Transformer is learning them resulting in cata-
strophic overfitting and unchemical predictions in some cases. To eliminate this

effect, we deleted a further ca 8000 reactions to obtain a dataset of 471,791 reac-
tions. We used 377,419 for training, 23,589 for validation and 70,765 as a hold-out
test set. The training set was augmented by an equal number of random equivalent
SMILES strings following the protocol of Schwaller et al.11. We trained a Molecular
Transformer model as described in the original paper and were able to achieve
88.8% Top-1 accuracy on the test set, similarly to the original paper. This model
was used throughout the interpretability experiments.

An important aspect of the training data is that since it was extracted from
patented reactions it naturally contains a number of biases. Firstly there are no
negative results included meaning that any combination of reactants and reagents
in the dataset leads to a well-defined product. This is in contrast to reality where
often there is no reaction, or the product is a mixture of many different
compounds. This bias will always be reflected in the machine learning models
predictions. A further bias stems from the distribution of reaction types in the
dataset. Most of the patented reactions come from the medicinal chemistry
community leading to reactions popular amongst medicinal chemists being over-
represented. This bias can be useful since the model learns the kind of reactions
medicinal chemists like using37 but it also hinders generalization because popular
reactions are not necessarily better as has recently been shown in the case of
inorganic chemical reactions38.

Generation of the artificial dataset. To investigate how bias in the training data
affects the Molecular Transformer, we generated an artificial dataset of electrophilic
aromatic substitution reactions using SMARTS templates. Each reaction consists of
a benzene ring singly substituted with a directing group reacting with an acyl
chloride to form either a para- or meta- acylated product.

Ten benzyl compounds with para directing groups (fluorobenzene,
chlorobenzene, isopropylbenzene, tert-butylbenzene, N-phenylacetamide, N-
phenylpropionamide, phenol, ethoxybenzene, isopropoxybenzene, sec-
butylbenzene) and ten benzyl compounds with meta directing groups (N,N,N-
trimethylbenzenaminium, (trifluoromethyl)benzene, benzaldehyde, acetophenone,
methyl benzoate, ethyl benzoate, benzonitrile, nitrobenzene, methyl
benzenesulfonate, ethyl benzenesulfonate) were used. The –R groups for the acyl
chlorides were generated by enumerating straight carbon chains of length 2–8 with
0–1 C=C double bonds also using SMARTS templates. Acyl chlorides were
obtained by placing an acyl chloride group onto a random sp3 carbon on each of
the -R groups. The acyl chlorides are enumerated with the benzyl compounds to
generate valid chemical reactions.

We vary the proportion of para:meta reactions in the training dataset and
observe how the Molecular Transformer performs on a test set with an 1:1
proportion of para:meta reactions. We construct a ‘Balanced’ dataset which has a
1:1 ratio of para:meta reactions (3100:3100) by enumerating all acyl chlorides with
all benzyl compounds. We also create a ‘Biased’ dataset which has a 9:1 para:meta
ratio (2790:310) by performing a 10:1 random split on the acyl chlorides so that less
meta reactions are present. Finally we generate a ‘Severely Biased’ dataset with
100:1 para:meta ratio (3000:30), which is closest to the observed ratio in USPTO,
by performing a 33:1 random split on the acyl chlorides and also only keeping three
meta-directing benzyl compounds (benzaldehyde, (trifluoromethyl)benzene, and
nitrobenzene).

The test set has an equal proportion of para and meta reactions generated using
the three meta directing benzyl compounds from the ‘Severely Biased’ training set
and three para directing ones (fluorobenzene, N-phenylpropionamide, and
ethoxybenzene), together with –R groups from enumerating straight carbon chains
of length 9–10 with no double bonds. This resulted in a test set with 177 para and
177 meta reactions.

Tanimoto-splitting USPTO. Morgan fingerprints of radius 3 with 1024 bits were
used to featurize the reaction products from USPTO. For the σ= 0.6 splitting, the
initial dataset was randomly split 70%:30% and the ratio after Tanimoto splitting
was 89.1%:10.9%. For the σ= 0.4 splitting, the initial dataset was randomly split
30%:70% and the ratio after Tanimoto splitting was 91.7%:8.3%.

Data availability
The USPTO dataset used to train the machine learning models is publicly available13,14,
and Tanimoto similarity-based train/test splits of USPTO can found in the GitHub repo
MTExplainer.

Code availability
All code used for implementing the attribution tools for the Molecular Transformer,
generating the artificial Friedel–Crafts dataset, and Tanimoto-splitting USPTO can be
accessed in the GitHub repo MTExplainer. The transformer implementation was built on
top of the OpenNMT-py package.
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