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Enantio-sensitive unidirectional light bending
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Structured light, which exhibits nontrivial intensity, phase, and polarization patterns in space,
has key applications ranging from imaging and 3D micromanipulation to classical and
quantum communication. However, to date, its application to molecular chirality has been
limited by the weakness of magnetic interactions. Here we structure light's local handedness
in space to introduce and realize an enantio-sensitive interferometer for efficient chiral
recognition without magnetic interactions, which can be seen as an enantio-sensitive version
of Young's double slit experiment. Upon interaction with isotropic chiral media, such chirality-
structured light effectively creates chiral emitters of opposite handedness, located at different
positions in space. We show that if the distribution of light's handedness breaks left-right
symmetry, the interference of these chiral emitters leads to unidirectional bending of the
emitted light, in opposite directions in media of opposite handedness, even if the number of
the left-handed and right-handed emitters excited in the medium is exactly the same. Our
work introduces the concepts of polarization of chirality and chirality-polarized light, exposes
the immense potential of sculpting light's local chirality, and offers novel opportunities for
efficient chiral discrimination, enantio-sensitive optical molecular fingerprinting and imaging
on ultrafast time scales.
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hirality, or handedness, is a ubiquitous geometrical

property found in both light and matter. Mirror reflection

transforms a chiral object into its opposite counterpart,
with our left and right hands being a typical example. These
mirror twins are called enantiomers, and symmetry dictates that
they behave identically unless interacting with another chiral
object. Chirality is of tremendous importance in nature and
distinguishing molecular enantiomers is vital, stimulating major
research efforts aimed at increasing the efficiency of enantio-
discrimination by relying on effects that occur within the electric-
dipole approximation, see e.g.1~12.

Here we describe a new highly enantio-sensitive phenomenon,
which relies on structuring light’s handedness in time and space,
to effectively control the handedness of local emitters in the chiral
medium, complementing the rich family of vectorial light
structures!3-2°. It allows us to realize a chiral version of Young’s
double slit experiment, which ‘bends’ the non-linear optical
response of a chiral medium in an enantio-sensitive and molecule-
specific manner.

Results

The chiral double-slit Gedankenexperiment and polarization
of chirality. The chiral Young’s double-slit experiment involves
two chiral emitters of opposite handedness at points r; and r,
separated by a distance d=|r; —r,|. Since chiral emitters of
opposite handedness are characterized by fields of equal amplitude
emitted out of phase®8, the emitted fields at these two points are:
P, = (Ag+ EAe®)e 9t and P, = (A — EAei®)e— 1!, where A, is a
common non-chiral sensitive component of the emitted field, A is
the amplitude of each chiral-sensitive component, ¢ is the phase
delay between the chiral and achiral components, and &==*1
defines the handedness of the slit at position r;. The interference
term defining the position of maxima and minima of the inter-
ference pattern (Fig. la) is proportional to cos(kdsin @ — ¢,,),
where ¢, is the relative phase between the two slits, and yields the
following expression for the position of the interference maximum
of m-th order:

28A - Aysing

kdsin6,, = ¢,, + 2nm, tan ¢,; =
A2 A2

(1
Eq. (1) shows that the interference pattern is shifted to the right or
to the left, depending on the sign of & Note that since the two
chiral emitters have opposite handedness, the overall medium,

| /A |

/l‘

which realizes this double slit experiment, is achiral. However, the
spatial arrangement of the two chiral slits breaks the parity sym-
metry of the interference pattern. Indeed, the achiral component
of the emission coming from the two slits is an even function of
coordinates, while the enantio-sensitive component of the emis-
sion from the two slits is an odd function of coordinates. Super-
position of these even and odd functions breaks the parity
symmetry, leading to unidirectional deflection of the emitted light
described below. Importantly, the way parity is broken, i.e. whe-
ther the first slit is left-handed and the second slit is right-handed,
or vice versa, defines the direction of light deflection. To char-
acterize the spatial arrangements of chiral slits in an overall achiral
medium, we introduce the concepts of polarization of chirality and
chirality dipole.

Figure 1b,c illustrate the concepts of polarization of chirality
and the chirality dipole, in analogy with the polarization of
charge. Figure 1b shows a one-dimensional arrangement of
alternating positive and negative charges +q. When the charges
are uniformly distributed, the medium is not polarized. It
becomes polarized as we modify their positions, creating dipoles
d. = gry, where r, is the vector connecting the nearby negative
and positive charges. Consider now a similar racemic distribution
of chiral emitters, or other chiral units, of alternating handedness,
Fig. 1c. Just like the neutral medium of charged particles, this
racemic distribution is unpolarized if the distances between
consecutive chiral units are the same. If we modify them, e.g. by
shifting the right-handed units to the left, we create dipoles of
chirality, and the medium acquires polarization of chirality.

The chirality-polarized chain of alternating left- and right-
handed emitters in Fig. 1c constitutes a multi-slit version of the
chiral Young’s double slit experiment. Symmetry dictates that
the spatial dependence of the achiral component of the emitted
light field should follow an even periodic function of x, e.g.
G(x)A, cos(kx), while the chiral component should follow an odd
periodic function, e.g. £EG(x)Ae™ sin(xx), where x is a coordinate
along the line connecting the slits and the envelope |G(x)|?
describes the intensity distribution of emitters in the linear chain.
The interference of these even and odd contributions in k-space
shifts the interference pattern toward negative or positive
k-vectors (see Methods for further details). That is, the emitted
light will bend to the left or to the right from the center of the
envelope |G(x)|2, depending on the sequence in which the chiral
slits alternate, encoded in the sign of & Thus, even though the
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Fig. 1 Chiral Young's double slit Gedankenexperiment. a The superposition of the achiral component of the emission (even with respect to the center,
left panel) and the enantio-sensitive component of emission (odd, central panel) leads to enantio-sensitive bending of the emitted light (right panel).
b Mono-dimensional (1D) arrangement of charged units that is: charged and unpolarized, neutral and unpolarized, and neutral and polarized. ¢ 1D
arrangement of chiral units that is: chiral and unpolarized, achiral and unpolarized, and achiral and polarized. d Sketch of the handedness of a light field

that is chirality-polarized along the spatial coordinate r;.
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total amount of left-handed and right-handed emitters under the
envelope is the same, their interference leads to the enantio-
sensitive outcome, just like its double slit version.

One way of creating chiral emitters with controlled handedness
and positions is to structure the handedness of locally chiral light
fields to engineer the chirality dipoles introduced above. Light’s
local handedness A(r) is determined by the handedness of the
chiral Lissajous figure drawn by the tip of its electric field vector
F(#) in time at any point r. It can be quantified via the chiral
correlation functions introduced in2® (see Methods).

Suppose that light’s h(r) changes sign from one point to
another, so that it is left-handed at one point, right-handed at
another, and achiral in between (see Fig. 1d). Such spatial
structuring of h(r) imparts phase and amplitude gratings onto the
nonlinear optical response of chiral molecules of a given
handedness. As a result, the nonlinear response of isotropic
chiral matter, e.g. randomly oriented chiral molecules, captures
the spatial distribution of the field’s handedness and realizes the
desired sequence of chiral emitters (slits).

The chiral-sensitive components of the fields emitted by
neighbouring slits are out of phase with each other, while the
relative phase between the chiral and achiral emission components
are determined by the molecule and the structured light. Moreover,
such phase profile will “bend” the emitted light, shifting the
interference pattern to the left or to the right, depending on the
molecular handedness. Indeed, for the same h(r), a medium of
randomly oriented molecules of opposite handedness will realize
opposite sequences of emitters: if left molecular enantiomers
generate the sequence RL RL RL..., then right molecular enantiomers
generate the sequence LR LR LR...

Formal approach. A formal approach (see Methods) allows us to
quantify the enantio-sensitive light bending, the chirality dipoles,
as well as the more complex spatial distributions of chirality and
their consequences. Fundamentally, the chirality dipole and
higher order chirality multipoles characterize the distributed
handedness of a racemic object, with the chirality dipole being its
first moment. In our case the racemic object is the driving field.
Its interaction with homogeneous chiral media results in a non-
linear far-field response that records the structure of the driving
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field in k-space (rather than in r-space). Accordingly, the dis-
tributed handedness encoded in the far-field response is the one
with respect to k-space. Indeed, the first and higher-order

moments of the k-space handedness h(k), namely
h= / I’k kh(k), h; = / &’k kik;...h(K), )

describe the enantio-sensitive part of the far-field intensity (see
Methods). Note that the zeroth momentum,

hy = / &k h(k),

which describes the enantio-sensitive contribution to the inte-
grated light intensity, is equal to zero for a racemic object. But
even if hy =0, enantio-sensitive effects remain. For example, if
light is racemic, ho = 0, but chirality polarized, i.e. h # 0, we will
see enantio-sensitive unidirectional deflection in the nonlinear
optical response.

We now illustrate this general analysis with a specific example
and demonstrate that racemic, chirality-polarized light can be
used to induce the enantio-sensitive light bending and discrimi-
nate chiral molecules with high efficiency. Chirality-polarized
light can be created using two beams propagating in the xy plane,
at small angles a = £5° with respect to the y axis, as shown in
Fig. 2a. Both contain a fundamental field, linearly polarized in the
plane of propagation, and a weak second harmonic component
polarized orthogonal to this plane. In the overlap region, the total
electric field is elliptically polarized in the xy plane at frequency w,
and it has a weak, linearly polarized, 2w frequency component
along z,

F(x, t) = R{[F, ()% + iF,(x)f]e ' + F(x)e 2“9z} (4)
where the two-color phase delay ¢ = % ;%, which controls the
relative phase between the chiral and achiral responses, is
determined by the two-color phase delays in the individual
beams, ¢; and ¢, (see Methods). The spatial modulation of the
three orthogonal polarization amplitudes, F,, F, and F,, is
described in Methods. The electric field vector, at a given point
in space, draws a chiral Lissajous figure in F-space. Figure 2b
shows that the field’s transverse spin S,, o« F; x F, o F,F,z and

(€)

Fig. 2 Chirality polarized, but racemic, light. a Two non-collinear beams carry an w field, linearly polarized in the xy propagation plane, and an orthogonally
polarized 2w field, with the same two-color delay in both beams. b Normalized 2w-field amplitude (F5,, blue line) and transverse spin (S, « FF,, red line).
¢ Local handedness of the light field, characterized by its fifth-order chiral correlation function h®>). The colors encode the phase of h(>) and thus the field's
handedness, which is controlled by the relative phase ¢ (see Eq. (4) and Methods); purple: arg{h‘s’} = 2¢ 4 0.57, green: arg{h‘5’} = 2¢ — 0.57. Since the
chirality integrated over x is equal to zero, the light is racemic. The gray arrows indicate the direction of polarization of chirality. We have used the following
laser parameters: @ = 0.044a.u. (1 =1030nm), FV = F® = 0.0146a.u,, F(Z?U/Ffj) = F%/Ff) = sin(a); 2a =10" is the angle between the beams, the focal

diameter is 200 um, and ¢, = ¢2)

w,2w"
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Fig. 3 Enantio-sensitive nonlinear response of chiral matter to chirality-polarized light. a Amplitude of the achiral and chiral components of the nonlinear
response driven by the space-time light structure presented in Fig. 2 in randomly oriented left-handed (upper panel) and right-handed (lower panel)
fenchone molecules at frequency 12w; the phase is encoded in the colors. b Amplitude (black) and phase (blue) of the total nonlinear response in the near
field resulting from adding the achiral and chiral components of (a) for left-handed (upper panel) and right-handed (lower panel) fenchone. Laser
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parameters are the same as in Fig. 2 with ¢ = 0.44n.

F,, = F,z change sign at different positions. As a result, the sign
of their product S,, - F,,, which determines the sign of light’s
handedness, changes periodically in space (see Fig. 2c). This
spatial distribution of the field’s handedness in the near field is
recorded in the nonlinear response of the medium (see Fig. 3). In
the lowest order of non-linearity, the strength of the local
enantio-sensitive response is controlled by the chiral correlation
function26 h®) « S,,, - F»,|F,|? (see Methods) shown in Fig. 2c.
We see a periodic structure, like that envisioned in Fig. 1d. The
overall light field has mirror symmetry with respect to the yz
plane (up to a global time shift) and is achiral. However, its
handedness is polarized, with the x-component of the dipole of
chirality (Eq. (2)) equal to:

fzx o cos(¢p, — ¢1)ei(¢l+¢2) (5)

where ¢; and ¢, are the two-color phase delays in each of the two
beams (see Fig. 2 and Methods). The difference ¢, — ¢; controls
the amplitude of h, which maximizes for ¢, = ¢,. The phase of h
is controlled by ¢;+ ¢,. This gives us control over the
polarization of the field’s handedness: we set ¢; = ¢, to maximize
its strength, and then vary ¢;, ¢, synchronously to control the
orientation of h in the complex plane. Note that the polarization
of the field handedness in position space, evident in Fig. 2c, leads

to a non-zero value of [h(®)xdx, which is proportional to flx for
this definition of the unit cell (see Methods).

Numerical results. We now quantify the interaction of the
chirality-polarized light field in Fig. 2 with chiral matter. We
consider a fundamental wavelength of 1030 nm with an intensity
of 75-1012 W-cm™2 in each beam; the second harmonic
intensity is 100 times weaker. As the two-color phase delays ¢,
and ¢, control the spatial distribution of light’s handedness, they
should remain constant across the interaction region. This con-
dition can be fulfilled using a thin gas-jet target?”>28. We assume
randomly oriented chiral molecules in the gas phase, as in recent
chiral HHG experiments?%-30, In the liquid phase, one needs to
ensure that the medium is sufficiently thin so dispersion does not
modify significantly the two-color phase delays in the interaction
region.

Figure 3 shows the nonlinear response of left- and right-
handed randomly oriented fenchone molecules driven by this
field at frequency 12w, which is polarized along z (for other
harmonics, see Supplementary Information). The total
response (Fig. 3b) results from adding the contribution from

the achiral and enantio-sensitive components (Fig. 3a) of
emissions coming from all ‘slits’ (see Fig. 1 for two slits). Since
the enantio-sensitive component of the response is odd with
respect to x, the effect of exchanging the molecular enantiomer is
equivalent to reversing the polarization of chirality of the field,
which can be done by shifting the two-color phase delay in both
beams (see Eq. (5)). The response at odd harmonic frequencies,
shown in the Supplementary Information, is polarized along x
and it is not enantio-sensitive.

Note that the single-molecule response, at a given point in
space, can be enantio-sensitive in intensity because the driving
field is locally chiral. However, since the overall light field is
achiral, the total intensity signal, obtained after integration over x,
is identical in left- and right-handed molecules. Still, the direction
of polarization of the field’s handedness is imprinted on the
phase of the nonlinear response, which depends strongly on the
molecular handedness: the slope of the phase dependence on x is
positive for right-handed molecules and negative in left-handed
molecules, see Fig. 3b. The strength of this effect is controlled by

the dipole of chirality h,, which determines the deflection angle
(see Methods).

Figure 4a shows the harmonic 12 intensity in the far field. The
total (angle-integrated) intensity is the same for left- and right-
handed molecules, as in the near field (see Fig. 3b). However,
the direction of emission is highly enantio-sensitive: while the
left-handed molecules emit harmonics to the left (toward negative
x), the right-handed molecules emit harmonics to the right
(positive x). We control the enantio-sensitive direction of
emission by controlling the polarization of the field’s handedness
in our setup (see Eq. (5)). Figure 4b shows that chiral dichroism
_ LO-1(p)

I (A+Ir(B?
ultimate efficiency limit of 200%. We find giant enantio-
sensitivity in the direction of emission of all even harmonics
(see Supplementary Information).

We can define the left-right asymmetry in the harmonic

%, where I is the intensity of

harmonic emission to the left (f<0) and to the right (8> 0)
from a medium of either left-handed (I=1I;) or right-handed
(I=1Ig) molecules. This angle-integrated quantity reaches very
high values for all harmonic numbers, as shown in Fig. 4c. The
direction of harmonic emission is correlated to the enantiomeric

excess of the medium ee = gigﬂ with Cr and C; being the
R L

concentrations of the right- and left-handed molecules, see

resolved in the emission angle, CD(f5) reaches the

emission as A =2
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Fig. 4 Enantio-sensitive light bending. a Far-field high-harmonic emission at frequency 12w from left-handed (blue) and right-handed (red) randomly
oriented fenchone molecules as a function of the emission angle. Field parameters are the same as in Fig. 3. b Chiral dichroism resolved on direction,
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central emission peak. d Mean value of the emission angle as a function of the enantiomeric excess.

Fig. 4d. The expectation value of the emission angle is then
given by

_ eely
T L +ee?

B (6)

where I}, I, and I; are angle-integrated quantities that do not
depend on ee (see Methods). Eq. (6) allows us to quantify small
values of enantiomeric excess in macroscopic mixtures (see
Methods).

Discussion

Polarization of chirality is a powerful concept which allows one to
engineer highly efficient chiral interactions of racemic objects,
taking advantage of the flexibility in shaping the local chirality of
light. In particular, the spatial dependence of the field’s transverse
spin S, (r) and the electric field component F,, (r) parallel to it
can be controlled separately. Here one can benefit from modern
light shaping techniques including polarization shaping in space
and time31-33. In contrast, in standard circularly polarized light,
this opportunity is limited, since its electric and magnetic com-
ponents are locked to each other. A non-zero dipole of chirality is
present in any locally chiral field*® where the field’s transverse
spin S, (r) and F, (r) have opposite parity.

Besides its application as a method for enantiomeric recogni-
tion, one can envision shaping light’s handedness and polariza-
tion so that they experience superoscillations®*, creating sub-
wavelength distribution of chiral and achiral emitters and
enabling collective effects, such as sub-radiance, in chiral media®°.
The giant enantio-sensitivity to chirality polarized light may also
be exploited to identify racemic aggregates of chiral matter
exhibiting complex chirality patterns in space, and to quantify
their degree of polarization of chirality. Finally, polarization of
chirality can also be used for efficient separation of opposite
enantiomers in racemic mixtures by extending the proposal of
Ref. 23 to chirality polarized light, which would allow one to

bypass the use of mechanical transition gratings and weak mag-
netic interactions.

Methods

Chiral diffraction by N slits. We start with diffraction by a single extended slit
across which the phase varies linearly. This is the simplest extension of the double
slit model introduced in the main text amenable for continuous distributions. In
this case consider a dipole distribution of the form

P(x) = Glx)e' =, @)

where G(x) = |P(x)| and x determines the linear variation of the phase across the
slit. Note that this is equivalent to having an achiral response A;(x) = G(x) cos(kx)
and a chiral response £A(x)e"® = iEG(x) sin(xx) as discussed in the main text.
Under the usual approximations, the far field image associated to such dipole
emission is given by

E(9) o P(k,)e " = Glk, — Ex)e™", ®)

where k, = ksin 0, k = w/c, c is the speed of light, 0 is measured with respect to the
perpendicular connecting the slit and the screen (as usual), and P(k,) and G(k,) are
the spatial Fourier transforms of P(x) and G(x), respectively. Equation (8) shows
that the chiral contribution bends the far field image to positive or negative angles
depending on the chirality & of the emitter. For small 6, the amount of bending is
given by

AO ~ Ex/k. ©)

In the case of N=2M + 1 identical slits with their centers separated by a
distance L we have

sin (Nk,L/2)

—sin(ka/Z) g(kx — fK)e*lmz.

n=M
P(x) = ZMPO(x —nlL), E() x (10)
where Py is given by Eq. (7). That is, we get the same result as for a single slit
multiplied by the usual N-interference term that has peaks separated by 60 = A/L
for small 6 and A = 27/k. This N-chiral-slits model has a direct parallel in the non-
collinear setup proposed in the main text and resulting in Fig. 4a. In that case the
achiral and chiral responses can be modelled as PA°H(x) ~ G(x)F,(x)e" and
PH(x) ~ fg(x)Fx(x)Fy(x), respectively, with G(x) a highly nonlinear function of
the intensity, and the field amplitudes F;(x) given according to Egs. (25)-(27). For a
relative phase of 77/4 between chiral and achiral responses, the corresponding
replacements yield Af = £60 and 86 = 2a/j for the j-th harmonic.

Chirality dipoles and multipoles: a formal approach. Formally, the enantio-
sensitive optical response to chiral light originates from the interference of two
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contributions to the light-induced polarization P, = PA®Y + PCH at a given fre-
quency w, one of them not sensitive to chirality (PAH), and the other unique to
chiral matter (PSH), which is out of phase in media of opposite handedness. The
microscopic intensity |P,|? is sensitive to the interference of P (r) and PAH (r) at
the same point r through the term PA#*(r) . P¢H(r) + c.c. This interference
encodes the distributed handedness of light or matter (or both). That is, the near-
field response records the distributed handedness locally. In contrast, the far-field
signal provides access to the interference of the chiral and achiral contributions
from the whole interaction region and is sensitive to spatial correlations of PACH (r)
and PSH (r + ') (see Methods for details). The far-field signal maps the distribution
of handedness on observables such as the enantio-sensitive direction of light
emission and the enantio-sensitive shape of the emission pattern on the screen. If
the interaction region is thin, e.g. as usual in experiments with gas jets?”:?$, these
observables are simply the different moments of the enantio-sensitive component
of the intensity distribution in the reciprocal space, which is proportional to the
real part of

~ACH*

G, k) = P2 (1) - P (k). 1

(The subscript w indicates that we consider far-field signals centered at frequency w
with bandwidth Aw <« w, hence Ak < k; we omit this subscript below for brevity.)
For example, the enantio-sensitive contributions to the total intensity and the
average direction of emission are given by the zeroth and first moments of the
distribution, respectively:

2]

(AI,) o /d3k GK) + cc., (k)= /d3k k,G(k) + c.c. (12)
The enantio-sensitive shape of the emission pattern on the screen is given by the
higher moments:

(kij ) = /d3k kik;...G(k) + c.c., 13)
Egs. (12)-(13) describe the multipoles of the enantio-sensitive intensity distribu-
tion in k-space. The different moments of G(k) reflect the fact that handedness may
have non-trivial distributions both in coordinate and reciprocal space.

If the handedness of matter is distributed uniformly, then G(k) reflects the
distributed handedness of light h(k), i.e. G(k) oc h(k) (see below for the definition
of h(k)). The enantio-sensitive contribution to light intensity, the direction of light
emission, and the shape of the light spot on a screen will then encode zero, first,
and higher order moments of h(k), respectively:

hy = /d3k , h(k), h= /d3k Kh(k), h; = /d3k kik...h(k). (14)
The enantio-sensitive contribution to the total intensity is only non-zero if light’s
handedness is non-zero on average, hy = 0. But even if hy = 0, enantio-sensitive
effects remain. For example, if light is racemic, hy = 0, but chirality polarized, i..
h # 0, we will see enantio-sensitive unidirectional deflection in the nonlinear
optical response.

In general, the distributed handedness of racemic objects manifests itself in an entire
array of tensorial enantio-sensitive observables. Their measurement requires acquisition
of N-dimensional data sets, where N is the rank of the corresponding tensor.

Spatial correlations of achiral and chiral responses. Here we show how the

spatial correlations of chiral and achiral responses manifest in the far field

observables. Rewriting Eq. (11) using the cross-correlation theorem, we find the

relationship between the corresponding quantities in coordinate space:
G,(r) = / S PACH () . PCH(Y 1 1), (15)

Using Egs. (11) and (15), the Plancherel-Parseval identity, the property

F {837 f(x)}(k) = (ik)" F{f(x)}(k) for Fourier transforms F, and the chain rule for

partial derivatives, we get

/ kik... k,GUdk = (i)’ / pcitny. L9 i,pc”(r’)d%/
or} arj arq
39 9
_(_an ACH* (/Y CH ¢/ 3.
= (—i) /P (r') 737,-737]»”' —arqP ' + 1)), _d’r
20 9

_(_an 3/2
= (=i)"(2m) arar, " o, G(1)l—g,

(16)
where 7 is the number of components of k multiplying G(k) on the left hand side.
Thus, the far-field enantio-sensitive observables can be generated using the

spatial correlator G, (r) of the achiral and chiral fields emitted by the chiral
medium. For example, the enantio-sensitive contribution to the total intensity of
the emitted light is proportional to the scalar %{G,(r = 0)}, the direction of
emission is proportional to the vector %{iVG,,(r)|,_, }» the shape of the emission

pattern on the screen requires tensorial observables and is characterized by higher

order derivatives such as .‘R{i a%i a% Gw(r)hzo}- Thus, the correlator G,(r) and, in

particular, its derivatives, presenting vectorial and tensorial quantities, reflect the
distribution of relative handedness of light and matter across the interaction region.
The vector ) { iVGm(r)lr:(]} is sensitive to polarization of chirality, the higher order
tensors encode chirality quadrupoles, octupoles and higher multipole moments.

Connection between G, (r), G, (k) and light's handedness in reciprocal space
h, (k). Let us consider the interaction of an optical field that has an arbitrary
distribution of chirality with chiral matter whose handedness is uniform in space,
e.g. an ensemble of randomly oriented chiral molecules. In this case, G,(r), the
coordinate space counterpart of G, (k), gives us direct access to the distributed
handedness of light. This statement is completely general. Here, we illustrate it
using the lowest-order multiphoton processes that record the handedness of syn-
thetic chiral light. In the lowest order, the achiral pathway is given by a linear
response, and the chiral pathway is associated with an even-order nonlinear
process!226, For example, in a three-color field with frequencies w, w, and w; =
w; + ws, the linear response PACH(r) at the frequency ws interferes with the second
order response Pg{" (r) at the same frequency:

PA (1) = (@, )R, (1), a7

P (r) = 4@ (wy; 0y, @) |F,, ()X F, (1)].

(18)

Here X(l)(w3) and X(Z)(w3; w;, w,) are the linear and quadratic molecular suscept-
ibilities averaged overall possible molecular orientations. The chiral response
appears already in the dipole approximation”-3¢ and r enters as a parameter
characterizing the spatial distribution of the field in the interaction region. The
chiral response Pg{ (r) is proportional to the pseudoscalar handedness of matter

%@ and the pseudovector field H(w2|}+w2 (1) = |F, ()xE, (r)| (see Ref. 36). (Note
that in the case of the two-color chirality polarized field shown in Fig. 2¢, the
pseudovector field H(ﬁg(r) is proportional to the field’s spin S,, o Fj, x F, o F.F,z,
see Eq. (28) below).

If the handedness of matter is distributed uniformly, then G, (r) reflects the
distributed handedness of light: G, (r) is sensitive to the spatial correlations

between the components of its pseudovector field and electric field at frequency
w3 = W, + Wy

G, (1) / d’YF (¢) - H, 4, (' +1). (19)
Its k-space counterpart Gw3 (k) is proportional to the light's handedness at
frequency ws, Gw3 (k) o ;lws (k), which is given by the scalar product of its
pseudovector field and electric field in k-space:
h,, () =H, ., &) F, (k). (20)

Chirality-polarized light. Here we detail the non-collinear optical setup presented
in Fig. 2. Our setup contains two non-collinear laser beams (n = 1, 2) that pro-
pagate in the xy plane, at small angles + « with respect to the y direction.

F,(r,t) = e P/ RF, et 4 F, o=z}

@1

where p,, is the radial distance to the beams’ axis, @ is the radial waist, k, , =
«[ % sin(@)X + cos(a)y] is the propagation direction, x = 2%, A is the fundamental
wavelength, w is the fundamental frequency, €, , = cos(a)X F sin(a)y is the
polarization vector of the fundamental field, and ¢, is the two-color phase delay. In
the overlap region, x = p; =~ p, for small a, and the total electric field F=F; +F,
can be written as

F(r,t) =F, (x,y)e ™ + F,, (x,y)e " + c.c., (22)

where
F,(x.y) =F, [Fx(x)fc - iFy(x)ﬂ s (23)
Fy, (x,) = Fy, Fo(x)2e"(579), (4)

K, = Ksina, K, = kcosa, and ¢, = @ That is, the total electric field is ellip-
tically polarized in the xy plane at frequency w and it has a linearly-polarized 2w
component along z. The x dependence of the field is given by

F,(x) = cos otcos(xxx)e_"'z'/‘:’Z , (25)
F,(x) =sina sin(xxx)e’/’i/"”2 , (26)
F,(x) = cos(2x,x + 2(/)7)87;)’2’/&}2‘ (27)
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Moments of the field handedness relevant for the far field intensity. In gen-
eral, the induced dipole produced by a field with frequencies w and 2w in an
isotropic medium is given by?¢ P,, = PACH 4 PSH, where P4SH = y(UF,, is the
linear achiral response at frequency 2w, PSH = yH, is the lowest order non-
linear chiral response at frequency 2w, and

H,, = [F, xF][F, - F,]. (28)

If the medium is homogeneous then the field (22) yields G, (k) = x™*x®h,, (k)
[cf. Eq. (11)], where h,, (k) = F;, (k) - H,, (k) (see Eq. (20)) is the handedness of
the reciprocal space form of the field. Using Eqs. (23)-(27) we obtain

hy (&) = C[B(k, + 21, )¢ — 8(k, — 2x,)e 2 18(k, — 2,)3(k,),  (29)

4 .
where C = FZ;;F < (27)* sin(4a)e*$+ . (For a finite interaction region the infinitely

narrow peaks represented by Dirac deltas widen accordingly). The overall phase of
hy, (k) is controlled by ¢, and its magnitude by the amplitudes of the fields F,, Fq»
and the angle 2 between the beams. /i, (k) has peaks at k= (+2i,, 2x,,0). The
asymmetry between these two peaks is controlled by the parameter ¢_. The zeroth
and first moments of I~12w(k) are given by [cf. Eq. (2)]

hy = 2iCsin(2¢_),

(30)

h = 4C(cos(2¢_), isin(2¢_),0). (31)

The effects of these moments on the far field intensity distribution follow from
Eq. (12)

(AL) o R{Y Wy Dhy} = 2|y ¥ C|sin(2¢_) sin (24, + ¢,,), (32)
(k) = R{yV*y“n}
= 4|X“)*X(4)C‘ [cos(2¢7) cos(2</5+ +¢u),— sin(2¢7) sin(2¢+ + (bM),O],
(33)
where ¢, is a molecular phase defined by y*y® = [y(V*y(¥|¢ix Note that the y

component of (k) simply reflects (AI,,) and that ¢_ and ¢ control the molecule-
independent and the molecule-dependent parts of the response, respectively.

Moments of the field handedness relevant for the near field intensity. Ana-
logously to how the enantio-sensitive contribution to the intensity in the far field is
determined by the interference between 13ACH(k) and ISLH(k), the intensity in the
near field is determined by the interference between PACH(r) and PCH(r) at the
same point in space. Such interference term is proportional to the chiral correlation
function introduced in Ref. 2% h,,(r) = Fj (r) - H,,(r). Note that, despite the
notation, h,,(r) is not the inverse Fourier transform of ;IZM(k). For the field in Eq.
(22) the lowest (fifth) order correlation function is given by

W) = — zi;leFZw{ sin(4a) [sin (4KXx + 2¢7) - sin(2¢7)]

+ sin(2a) [sin(6xxx +2¢_) — sin(2rc,x — 2¢7H }eid

(34)

hG)(x) is shown in Fig. 2d. Its zeroth moment of is equal to that of /,, (k) in
Eq. (30) because of the Plancherel-Parseval identity (see also Ref. 2). Its first
moment for a single unit cell (see Fig. 2d) depends on the definition of the unit cell.
For the central unit cell shown in Fig. 2d (three unit cells are shown) we get

Ax/2 1
*h®(x)dx = — ———iF:F, %+ (Ax)? cos(2¢_
/—Ax/Z 24(37.[) @ 2w ( ¢ )

where Ax = 1/(2sin &) and we assumed « < 1. Thus, for such definition of the
unit cell, the first moment of #)(x) has the same dependence on our control
parameters ¢_ and ¢, as the x component of h.

(35)

Calculation of high harmonic generation in fenchone. We have computed the
high harmonic response of a gas-phase medium of randomly oriented left- and
right-handed fenchone molecules using a similar procedure to that employed in
Refs. 37:38. The dipole response in the near field (Fig. 3) is calculated by averaging
over molecular orientations:

D(x,Nw) = -//DQD‘(X7 Nw) dQ da (36)
where x is the near-field coordinate, N is the harmonic number, w is the funda-
mental frequency, and Dg, is the dipole moment associated with a given molecular
orientation in the frequency domain, which depends on the solid angle Q and on
the angle a. Integration over Q) and « was performed using the Lebedev
quadrature of order 17 and the trapezoid method. The single-channel dipole
response associated with each molecular orientation D, was evaluated using the
saddle-point method, following the recipe described in%’, which allows us to split
Dg, in three terms:

D, (x, Nw) = a5 (x, Nw) - ah ¥ (x, No) - aj (x, Nw) 37)

which describe strong-field ionization, propagation in the presence of the strong
laser field, and radiative recombination. Let us briefly describe the procedure used
for evaluating each term. The dependence on x and Nw is omitted for the sake of
simplicity.

Strong-field ionization amplitudes are evaluated using the following expression:

a[un — < 2m
o \is(t,, ;, p) /ot

where t; = t{ + it/ is the complex ionization time, p is the canonical momentum,
which is related to the kinetic momentum via k() = p + A(¢), here A(t) is the

vector potential: F(t) = — 0A(t)/dt, F{\¥;} is the Fourier transform of the initial
state wave function ¥;, and

1/2
)emmmwmwm (38)

/ 1
sttt = [ dilp+ A@F + e~ ©) 39
o
where Ip is the ionization potential.
Electron propagation in the continuum is described via
3/2
2 St
arr — —iS(t],t},p) 40
Qa i(t, — t,) € (40)
where t, = t; + it/ is the complex recombination time.
Recombination amplitudes are given by
1/2
Qe — 2 ¢S L PN, grec k(%)) (41)
o @St . p)/at? e

where dif is the photo-recombination matrix element, computed numerically
using the static-exchange density functional theory (DFT) method37:41-45,

The intensity of macroscopic harmonic emission in the far field (Fig. 4) is
calculated from the near-field response of the medium (Eq. (36)) using the
Fraunhofer diffraction equation:

(42)

00 . 2
1(8, Nw) « (Nw)* / D(x, No)e "B dx

where f3 is the divergence, i.e. the angle of emission with respect to the y axis, and ¢
is the speed of light. The mechanism responsible for the strong enantio-sensitivity
in the direction of light emission is general and independent of the particular
molecular system. Thus, one should expect to find similarly strong enantio-
sensitivity in other chiral molecules, and also when computed using different
theoretical approaches.

Relation between the emission angle and the enantiomeric excess. The z-
polarized component of the (even) harmonic radiation in a given point in the far
field, for a given harmonic number, is given by

1+ ee 1—ee
Fulee,B) = FouFo()+ > ay(B) + = aF,(B) = Fa, Fo(B) + ce a Fy(f)
(43)
where ee = éz;‘c‘i is the enantiomeric excess, Cg and C; being the concentrations of

left and right-handed molecules, the achiral contribution F,,F, depends linearly on
F,,» and the chiral contribution from left- and right-handed molecules aFg and «Fy,
(Fr= —Fp) depend linearly on «, for weak F,, and a. The harmonic intensity in a
given point in the far field is thus given by

I(ee, f) = F3,1,(B) + ee aF,,Iz(B) + ee* a*Ix(p) (44)
where L,(8) = [Fa(B)12 Ir(B) = |1Fr(B)I% L,r(B) = Fi(B)Fr(B) + F,(B)Fx(B). These

quantities do not depend on « or F,,, for weak values of these parameters. Let us
calculate the expectation value of the emission angle, given by

[ Iee.p)pdB
B =T ee. pyip

Inserting Eq. (44) into Eq. (45), and taking into account that I, and I are even
functions with respect to 3, and that I, is odd, we obtain

(45)

ee aF, I »

B = BT+ e a'l, (46)
where

= [ Tu(Bpdp 7)

L= [ 1@ (48)

o= [ 1piap (49)

These angle-integrated quantities do not depend on ee, a or F,,. Eq. (46) allows us
to quantify ee in mixtures of opposite enantiomers. It also allows us reconstruct the
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values of I, I, and I by measuring (B) in mixtures of different ee. For small
values of ee, where the determination of this quantity is usually more challenging,
we have

_eeal,

B) =——=

50
F (50)

which allows us to determine ee by measuring (f) for different values of F,,,.
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