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Enantio-sensitive unidirectional light bending
David Ayuso 1,2,6✉, Andres F. Ordonez 1,3,6✉, Piero Decleva 4, Misha Ivanov 1,2,5 &

Olga Smirnova 1,3✉

Structured light, which exhibits nontrivial intensity, phase, and polarization patterns in space,

has key applications ranging from imaging and 3D micromanipulation to classical and

quantum communication. However, to date, its application to molecular chirality has been

limited by the weakness of magnetic interactions. Here we structure light’s local handedness

in space to introduce and realize an enantio-sensitive interferometer for efficient chiral

recognition without magnetic interactions, which can be seen as an enantio-sensitive version

of Young’s double slit experiment. Upon interaction with isotropic chiral media, such chirality-

structured light effectively creates chiral emitters of opposite handedness, located at different

positions in space. We show that if the distribution of light’s handedness breaks left-right

symmetry, the interference of these chiral emitters leads to unidirectional bending of the

emitted light, in opposite directions in media of opposite handedness, even if the number of

the left-handed and right-handed emitters excited in the medium is exactly the same. Our

work introduces the concepts of polarization of chirality and chirality-polarized light, exposes

the immense potential of sculpting light’s local chirality, and offers novel opportunities for

efficient chiral discrimination, enantio-sensitive optical molecular fingerprinting and imaging

on ultrafast time scales.
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Chirality, or handedness, is a ubiquitous geometrical
property found in both light and matter. Mirror reflection
transforms a chiral object into its opposite counterpart,

with our left and right hands being a typical example. These
mirror twins are called enantiomers, and symmetry dictates that
they behave identically unless interacting with another chiral
object. Chirality is of tremendous importance in nature and
distinguishing molecular enantiomers is vital, stimulating major
research efforts aimed at increasing the efficiency of enantio-
discrimination by relying on effects that occur within the electric-
dipole approximation, see e.g.1–12.

Here we describe a new highly enantio-sensitive phenomenon,
which relies on structuring light’s handedness in time and space,
to effectively control the handedness of local emitters in the chiral
medium, complementing the rich family of vectorial light
structures13–25. It allows us to realize a chiral version of Young’s
double slit experiment, which ‘bends’ the non-linear optical
response of a chiral medium in an enantio-sensitive and molecule-
specific manner.

Results
The chiral double-slit Gedankenexperiment and polarization
of chirality. The chiral Young’s double-slit experiment involves
two chiral emitters of opposite handedness at points r1 and r2
separated by a distance d= ∣r1− r2∣. Since chiral emitters of
opposite handedness are characterized by fields of equal amplitude
emitted out of phase4,8, the emitted fields at these two points are:
P1= (A0+ ξAeiϕ)e−iωt and P2= (A0− ξAeiϕ)e−iωt, where A0 is a
common non-chiral sensitive component of the emitted field, A is
the amplitude of each chiral-sensitive component, ϕ is the phase
delay between the chiral and achiral components, and ξ= ±1
defines the handedness of the slit at position r1. The interference
term defining the position of maxima and minima of the inter-
ference pattern (Fig. 1a) is proportional to cosðkd sin θ � ϕ21Þ,
where ϕ21 is the relative phase between the two slits, and yields the
following expression for the position of the interference maximum
of m-th order:

kd sin θm ¼ ϕ21 þ 2πm; tan ϕ21 ¼
2ξA � A0 sinϕ

A2 � A2
0

: ð1Þ

Eq. (1) shows that the interference pattern is shifted to the right or
to the left, depending on the sign of ξ. Note that since the two
chiral emitters have opposite handedness, the overall medium,

which realizes this double slit experiment, is achiral. However, the
spatial arrangement of the two chiral slits breaks the parity sym-
metry of the interference pattern. Indeed, the achiral component
of the emission coming from the two slits is an even function of
coordinates, while the enantio-sensitive component of the emis-
sion from the two slits is an odd function of coordinates. Super-
position of these even and odd functions breaks the parity
symmetry, leading to unidirectional deflection of the emitted light
described below. Importantly, the way parity is broken, i.e. whe-
ther the first slit is left-handed and the second slit is right-handed,
or vice versa, defines the direction of light deflection. To char-
acterize the spatial arrangements of chiral slits in an overall achiral
medium, we introduce the concepts of polarization of chirality and
chirality dipole.

Figure 1b,c illustrate the concepts of polarization of chirality
and the chirality dipole, in analogy with the polarization of
charge. Figure 1b shows a one-dimensional arrangement of
alternating positive and negative charges ±q. When the charges
are uniformly distributed, the medium is not polarized. It
becomes polarized as we modify their positions, creating dipoles
de= qr0, where r0 is the vector connecting the nearby negative
and positive charges. Consider now a similar racemic distribution
of chiral emitters, or other chiral units, of alternating handedness,
Fig. 1c. Just like the neutral medium of charged particles, this
racemic distribution is unpolarized if the distances between
consecutive chiral units are the same. If we modify them, e.g. by
shifting the right-handed units to the left, we create dipoles of
chirality, and the medium acquires polarization of chirality.

The chirality-polarized chain of alternating left- and right-
handed emitters in Fig. 1c constitutes a multi-slit version of the
chiral Young’s double slit experiment. Symmetry dictates that
the spatial dependence of the achiral component of the emitted
light field should follow an even periodic function of x, e.g.
GðxÞA0 cosðκxÞ, while the chiral component should follow an odd
periodic function, e.g. ξGðxÞAeiϕ sinðκxÞ, where x is a coordinate
along the line connecting the slits and the envelope ∣G(x)∣2
describes the intensity distribution of emitters in the linear chain.
The interference of these even and odd contributions in k-space
shifts the interference pattern toward negative or positive
k-vectors (see Methods for further details). That is, the emitted
light will bend to the left or to the right from the center of the
envelope ∣G(x)∣2, depending on the sequence in which the chiral
slits alternate, encoded in the sign of ξ. Thus, even though the

Fig. 1 Chiral Young’s double slit Gedankenexperiment. a The superposition of the achiral component of the emission (even with respect to the center,
left panel) and the enantio-sensitive component of emission (odd, central panel) leads to enantio-sensitive bending of the emitted light (right panel).
b Mono-dimensional (1D) arrangement of charged units that is: charged and unpolarized, neutral and unpolarized, and neutral and polarized. c 1D
arrangement of chiral units that is: chiral and unpolarized, achiral and unpolarized, and achiral and polarized. d Sketch of the handedness of a light field
that is chirality-polarized along the spatial coordinate ri.
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total amount of left-handed and right-handed emitters under the
envelope is the same, their interference leads to the enantio-
sensitive outcome, just like its double slit version.

One way of creating chiral emitters with controlled handedness
and positions is to structure the handedness of locally chiral light
fields to engineer the chirality dipoles introduced above. Light’s
local handedness h(r) is determined by the handedness of the
chiral Lissajous figure drawn by the tip of its electric field vector
F(t) in time at any point r. It can be quantified via the chiral
correlation functions introduced in26 (see Methods).

Suppose that light’s h(r) changes sign from one point to
another, so that it is left-handed at one point, right-handed at
another, and achiral in between (see Fig. 1d). Such spatial
structuring of h(r) imparts phase and amplitude gratings onto the
nonlinear optical response of chiral molecules of a given
handedness. As a result, the nonlinear response of isotropic
chiral matter, e.g. randomly oriented chiral molecules, captures
the spatial distribution of the field’s handedness and realizes the
desired sequence of chiral emitters (slits).

The chiral-sensitive components of the fields emitted by
neighbouring slits are out of phase with each other, while the
relative phase between the chiral and achiral emission components
are determined by the molecule and the structured light. Moreover,
such phase profile will “bend” the emitted light, shifting the
interference pattern to the left or to the right, depending on the
molecular handedness. Indeed, for the same h(r), a medium of
randomly oriented molecules of opposite handedness will realize
opposite sequences of emitters: if left molecular enantiomers
generate the sequence RL RL RL..., then right molecular enantiomers
generate the sequence LR LR LR...

Formal approach. A formal approach (see Methods) allows us to
quantify the enantio-sensitive light bending, the chirality dipoles,
as well as the more complex spatial distributions of chirality and
their consequences. Fundamentally, the chirality dipole and
higher order chirality multipoles characterize the distributed
handedness of a racemic object, with the chirality dipole being its
first moment. In our case the racemic object is the driving field.
Its interaction with homogeneous chiral media results in a non-
linear far-field response that records the structure of the driving

field in k-space (rather than in r-space). Accordingly, the dis-
tributed handedness encoded in the far-field response is the one
with respect to k-space. Indeed, the first and higher-order
moments of the k-space handedness ~hðkÞ, namely

~h ¼
Z

d3k k~hðkÞ; ~hij::: ¼
Z

d3k kikj:::~hðkÞ; ð2Þ

describe the enantio-sensitive part of the far-field intensity (see
Methods). Note that the zeroth momentum,

h0 ¼
Z

d3k ~hðkÞ; ð3Þ

which describes the enantio-sensitive contribution to the inte-
grated light intensity, is equal to zero for a racemic object. But
even if h0= 0, enantio-sensitive effects remain. For example, if
light is racemic, h0= 0, but chirality polarized, i.e. ~h ≠ 0, we will
see enantio-sensitive unidirectional deflection in the nonlinear
optical response.

We now illustrate this general analysis with a specific example
and demonstrate that racemic, chirality-polarized light can be
used to induce the enantio-sensitive light bending and discrimi-
nate chiral molecules with high efficiency. Chirality-polarized
light can be created using two beams propagating in the xy plane,
at small angles α= ±5∘ with respect to the y axis, as shown in
Fig. 2a. Both contain a fundamental field, linearly polarized in the
plane of propagation, and a weak second harmonic component
polarized orthogonal to this plane. In the overlap region, the total
electric field is elliptically polarized in the xy plane at frequency ω,
and it has a weak, linearly polarized, 2ω frequency component
along z,

Fðx; tÞ ¼ <f½FxðxÞx̂ þ iFyðxÞŷ�e�iωt þ FzðxÞe�2iðωtþϕÞẑg ð4Þ
where the two-color phase delay ϕ ¼ ϕ1 þ ϕ2

2 , which controls the
relative phase between the chiral and achiral responses, is
determined by the two-color phase delays in the individual
beams, ϕ1 and ϕ2 (see Methods). The spatial modulation of the
three orthogonal polarization amplitudes, Fx, Fy and Fz, is
described in Methods. The electric field vector, at a given point
in space, draws a chiral Lissajous figure in F-space. Figure 2b
shows that the field’s transverse spin S2ω / F�ω ´ Fω / FxFyẑ and

Fig. 2 Chirality polarized, but racemic, light. a Two non-collinear beams carry an ω field, linearly polarized in the xy propagation plane, and an orthogonally
polarized 2ω field, with the same two-color delay in both beams. b Normalized 2ω-field amplitude (F2ω, blue line) and transverse spin (S2ω∝ FxFy, red line).
c Local handedness of the light field, characterized by its fifth-order chiral correlation function h(5). The colors encode the phase of h(5) and thus the field’s
handedness, which is controlled by the relative phase ϕ (see Eq. (4) and Methods); purple: argfhð5Þg ¼ 2ϕþ 0:5π, green: argfhð5Þg ¼ 2ϕ� 0:5π. Since the
chirality integrated over x is equal to zero, the light is racemic. The gray arrows indicate the direction of polarization of chirality. We have used the following
laser parameters: ω= 0.044a.u. (λ= 1030nm), Fð1Þω ¼ Fð2Þω ¼ 0:0146a.u., Fð1Þ2ω=F

ð1Þ
ω ¼ Fð2Þ2ω=F

ð2Þ
ω ¼ sinðαÞ; 2α= 10∘ is the angle between the beams, the focal

diameter is 200 μm, and ϕð1Þω;2ω ¼ ϕð2Þω;2ω.
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F2ω ¼ Fz ẑ change sign at different positions. As a result, the sign
of their product S2ω ⋅ F2ω, which determines the sign of light’s
handedness, changes periodically in space (see Fig. 2c). This
spatial distribution of the field’s handedness in the near field is
recorded in the nonlinear response of the medium (see Fig. 3). In
the lowest order of non-linearity, the strength of the local
enantio-sensitive response is controlled by the chiral correlation
function26 h(5)∝ S2ω ⋅ F2ω∣Fω∣2 (see Methods) shown in Fig. 2c.
We see a periodic structure, like that envisioned in Fig. 1d. The
overall light field has mirror symmetry with respect to the yz
plane (up to a global time shift) and is achiral. However, its
handedness is polarized, with the x-component of the dipole of
chirality (Eq. (2)) equal to:

~hx / cosðϕ2 � ϕ1Þeiðϕ1þϕ2Þ ð5Þ
where ϕ1 and ϕ2 are the two-color phase delays in each of the two
beams (see Fig. 2 and Methods). The difference ϕ2− ϕ1 controls
the amplitude of ~h, which maximizes for ϕ1= ϕ2. The phase of ~h
is controlled by ϕ1+ ϕ2. This gives us control over the
polarization of the field’s handedness: we set ϕ1= ϕ2 to maximize
its strength, and then vary ϕ1, ϕ2 synchronously to control the
orientation of ~h in the complex plane. Note that the polarization
of the field handedness in position space, evident in Fig. 2c, leads
to a non-zero value of ∫h(5)xdx, which is proportional to ~hx for
this definition of the unit cell (see Methods).

Numerical results. We now quantify the interaction of the
chirality-polarized light field in Fig. 2 with chiral matter. We
consider a fundamental wavelength of 1030 nm with an intensity
of 7.5 ⋅ 1012 W ⋅ cm−2 in each beam; the second harmonic
intensity is 100 times weaker. As the two-color phase delays ϕ1
and ϕ2 control the spatial distribution of light’s handedness, they
should remain constant across the interaction region. This con-
dition can be fulfilled using a thin gas-jet target27,28. We assume
randomly oriented chiral molecules in the gas phase, as in recent
chiral HHG experiments29,30. In the liquid phase, one needs to
ensure that the medium is sufficiently thin so dispersion does not
modify significantly the two-color phase delays in the interaction
region.

Figure 3 shows the nonlinear response of left- and right-
handed randomly oriented fenchone molecules driven by this
field at frequency 12ω, which is polarized along z (for other
harmonics, see Supplementary Information). The total
response (Fig. 3b) results from adding the contribution from

the achiral and enantio-sensitive components (Fig. 3a) of
emissions coming from all ‘slits’ (see Fig. 1 for two slits). Since
the enantio-sensitive component of the response is odd with
respect to x, the effect of exchanging the molecular enantiomer is
equivalent to reversing the polarization of chirality of the field,
which can be done by shifting the two-color phase delay in both
beams (see Eq. (5)). The response at odd harmonic frequencies,
shown in the Supplementary Information, is polarized along x
and it is not enantio-sensitive.

Note that the single-molecule response, at a given point in
space, can be enantio-sensitive in intensity because the driving
field is locally chiral. However, since the overall light field is
achiral, the total intensity signal, obtained after integration over x,
is identical in left- and right-handed molecules. Still, the direction
of polarization of the field’s handedness is imprinted on the
phase of the nonlinear response, which depends strongly on the
molecular handedness: the slope of the phase dependence on x is
positive for right-handed molecules and negative in left-handed
molecules, see Fig. 3b. The strength of this effect is controlled by
the dipole of chirality ~hx , which determines the deflection angle
(see Methods).

Figure 4a shows the harmonic 12 intensity in the far field. The
total (angle-integrated) intensity is the same for left- and right-
handed molecules, as in the near field (see Fig. 3b). However,
the direction of emission is highly enantio-sensitive: while the
left-handed molecules emit harmonics to the left (toward negative
x), the right-handed molecules emit harmonics to the right
(positive x). We control the enantio-sensitive direction of
emission by controlling the polarization of the field’s handedness
in our setup (see Eq. (5)). Figure 4b shows that chiral dichroism
resolved in the emission angle, CDðβÞ ¼ 2 ILðβÞ�IRðβÞ

ILðβÞþIRðβÞ, reaches the
ultimate efficiency limit of 200%. We find giant enantio-
sensitivity in the direction of emission of all even harmonics
(see Supplementary Information).

We can define the left-right asymmetry in the harmonic
emission as A ¼ 2 Iðβ<0Þ�Iðβ>0Þ

Iðβ<0ÞþIðβ>0Þ, where I is the intensity of
harmonic emission to the left (β < 0) and to the right (β > 0)
from a medium of either left-handed (I= IL) or right-handed
(I= IR) molecules. This angle-integrated quantity reaches very
high values for all harmonic numbers, as shown in Fig. 4c. The
direction of harmonic emission is correlated to the enantiomeric
excess of the medium ee ¼ CR�CL

CRþCL
, with CR and CL being the

concentrations of the right- and left-handed molecules, see

Fig. 3 Enantio-sensitive nonlinear response of chiral matter to chirality-polarized light. a Amplitude of the achiral and chiral components of the nonlinear
response driven by the space-time light structure presented in Fig. 2 in randomly oriented left-handed (upper panel) and right-handed (lower panel)
fenchone molecules at frequency 12ω; the phase is encoded in the colors. b Amplitude (black) and phase (blue) of the total nonlinear response in the near
field resulting from adding the achiral and chiral components of (a) for left-handed (upper panel) and right-handed (lower panel) fenchone. Laser
parameters are the same as in Fig. 2 with ϕð1Þω;2ω ¼ ϕð2Þω;2ω ¼ 0:44π.
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Fig. 4d. The expectation value of the emission angle is then
given by

hβi ¼ eeI1
I2 þ ee2I3

ð6Þ

where I1, I2 and I3 are angle-integrated quantities that do not
depend on ee (see Methods). Eq. (6) allows us to quantify small
values of enantiomeric excess in macroscopic mixtures (see
Methods).

Discussion
Polarization of chirality is a powerful concept which allows one to
engineer highly efficient chiral interactions of racemic objects,
taking advantage of the flexibility in shaping the local chirality of
light. In particular, the spatial dependence of the field’s transverse
spin Sωn

ðrÞ and the electric field component Fωn
ðrÞ parallel to it

can be controlled separately. Here one can benefit from modern
light shaping techniques including polarization shaping in space
and time31–33. In contrast, in standard circularly polarized light,
this opportunity is limited, since its electric and magnetic com-
ponents are locked to each other. A non-zero dipole of chirality is
present in any locally chiral field26 where the field’s transverse
spin Sωn

ðrÞ and Fωn
ðrÞ have opposite parity.

Besides its application as a method for enantiomeric recogni-
tion, one can envision shaping light’s handedness and polariza-
tion so that they experience superoscillations34, creating sub-
wavelength distribution of chiral and achiral emitters and
enabling collective effects, such as sub-radiance, in chiral media35.
The giant enantio-sensitivity to chirality polarized light may also
be exploited to identify racemic aggregates of chiral matter
exhibiting complex chirality patterns in space, and to quantify
their degree of polarization of chirality. Finally, polarization of
chirality can also be used for efficient separation of opposite
enantiomers in racemic mixtures by extending the proposal of
Ref. 23 to chirality polarized light, which would allow one to

bypass the use of mechanical transition gratings and weak mag-
netic interactions.

Methods
Chiral diffraction by N slits. We start with diffraction by a single extended slit
across which the phase varies linearly. This is the simplest extension of the double
slit model introduced in the main text amenable for continuous distributions. In
this case consider a dipole distribution of the form

PðxÞ ¼ GðxÞeiðξκx�ωtÞ; ð7Þ
where GðxÞ � jPðxÞj and κ determines the linear variation of the phase across the
slit. Note that this is equivalent to having an achiral response A0ðxÞ ¼ GðxÞ cosðκxÞ
and a chiral response ξAðxÞeiϕ ¼ iξGðxÞ sinðκxÞ as discussed in the main text.
Under the usual approximations, the far field image associated to such dipole
emission is given by

EðθÞ / ~PðkxÞe�iωt ¼ ~Gðkx � ξκÞe�iωt ; ð8Þ
where kx ¼ k sin θ, k= ω/c, c is the speed of light, θ is measured with respect to the
perpendicular connecting the slit and the screen (as usual), and ~PðkxÞ and ~GðkxÞ are
the spatial Fourier transforms of P(x) and GðxÞ, respectively. Equation (8) shows
that the chiral contribution bends the far field image to positive or negative angles
depending on the chirality ξ of the emitter. For small θ, the amount of bending is
given by

Δθ � ξκ=k: ð9Þ
In the case of N= 2M+ 1 identical slits with their centers separated by a

distance L we have

PðxÞ ¼ ∑
n¼M

n¼�M
P0ðx � nLÞ; EðθÞ / sin NkxL=2

� �
sin kxL=2
� � ~Gðkx � ξκÞe�iωt : ð10Þ

where P0 is given by Eq. (7). That is, we get the same result as for a single slit
multiplied by the usual N-interference term that has peaks separated by δθ ≈ λ/L
for small θ and λ= 2π/k. This N-chiral-slits model has a direct parallel in the non-
collinear setup proposed in the main text and resulting in Fig. 4a. In that case the
achiral and chiral responses can be modelled as PACH ðxÞ � GðxÞFzðxÞeiϕ and
PCHðxÞ � ξGðxÞFxðxÞFyðxÞ, respectively, with GðxÞ a highly nonlinear function of
the intensity, and the field amplitudes Fi(x) given according to Eqs. (25)–(27). For a
relative phase of π/4 between chiral and achiral responses, the corresponding
replacements yield Δθ ≈ ξδθ and δθ ≈ 2α/j for the j-th harmonic.

Chirality dipoles and multipoles: a formal approach. Formally, the enantio-
sensitive optical response to chiral light originates from the interference of two

Fig. 4 Enantio-sensitive light bending. a Far-field high-harmonic emission at frequency 12ω from left-handed (blue) and right-handed (red) randomly
oriented fenchone molecules as a function of the emission angle. Field parameters are the same as in Fig. 3. b Chiral dichroism resolved on direction,
CD ¼ 2 IL�IR

ILþIR
. c Left-right asymmetry in the macroscopic emission of even harmonics from 10 to 20, calculated including (black) or not including (green) the

central emission peak. d Mean value of the emission angle as a function of the enantiomeric excess.
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contributions to the light-induced polarization Pω ¼ PACH
ω þ PCH

ω at a given fre-
quency ω, one of them not sensitive to chirality (PACH

ω ), and the other unique to
chiral matter (PCH

ω ), which is out of phase in media of opposite handedness. The
microscopic intensity ∣Pω∣2 is sensitive to the interference of PCH

ω ðrÞ and PACH
ω ðrÞ at

the same point r through the term PACH�
ω ðrÞ � PCH

ω ðrÞ þ c:c: This interference
encodes the distributed handedness of light or matter (or both). That is, the near-
field response records the distributed handedness locally. In contrast, the far-field
signal provides access to the interference of the chiral and achiral contributions
from the whole interaction region and is sensitive to spatial correlations of PACH

ω ðrÞ
and PCH

ω ðrþ r0Þ (see Methods for details). The far-field signal maps the distribution
of handedness on observables such as the enantio-sensitive direction of light
emission and the enantio-sensitive shape of the emission pattern on the screen. If
the interaction region is thin, e.g. as usual in experiments with gas jets27,28, these
observables are simply the different moments of the enantio-sensitive component
of the intensity distribution in the reciprocal space, which is proportional to the
real part of

~GωðkÞ � ~P
ACH�
ω ðkÞ � ~PCH

ω ðkÞ: ð11Þ
(The subscript ω indicates that we consider far-field signals centered at frequency ω
with bandwidth Δω≪ ω, hence Δk≪ k; we omit this subscript below for brevity.)
For example, the enantio-sensitive contributions to the total intensity and the
average direction of emission are given by the zeroth and first moments of the
distribution, respectively:

hΔIωi /
Z

d3k ~GðkÞ þ c:c: ; hkii ¼
Z

d3k ki ~GðkÞ þ c:c: ð12Þ

The enantio-sensitive shape of the emission pattern on the screen is given by the
higher moments:

hki;j:::i ¼
Z

d3k kikj:::~GðkÞ þ c:c: ; ð13Þ

Eqs. (12)–(13) describe the multipoles of the enantio-sensitive intensity distribu-
tion in k-space. The different moments of ~GðkÞ reflect the fact that handedness may
have non-trivial distributions both in coordinate and reciprocal space.

If the handedness of matter is distributed uniformly, then ~GðkÞ reflects the
distributed handedness of light ~hðkÞ, i.e. ~GðkÞ / ~hðkÞ (see below for the definition
of ~hðkÞ). The enantio-sensitive contribution to light intensity, the direction of light
emission, and the shape of the light spot on a screen will then encode zero, first,
and higher order moments of ~hðkÞ, respectively:

h0 ¼
Z

d3k ; ~hðkÞ; ~h ¼
Z

d3k k~hðkÞ; ~hij::: ¼
Z

d3k kikj:::~hðkÞ: ð14Þ

The enantio-sensitive contribution to the total intensity is only non-zero if light’s
handedness is non-zero on average, h0 ≠ 0. But even if h0= 0, enantio-sensitive
effects remain. For example, if light is racemic, h0= 0, but chirality polarized, i.e.
~h ≠ 0, we will see enantio-sensitive unidirectional deflection in the nonlinear
optical response.

In general, the distributed handedness of racemic objects manifests itself in an entire
array of tensorial enantio-sensitive observables. Their measurement requires acquisition
of N-dimensional data sets, where N is the rank of the corresponding tensor.

Spatial correlations of achiral and chiral responses. Here we show how the
spatial correlations of chiral and achiral responses manifest in the far field
observables. Rewriting Eq. (11) using the cross-correlation theorem, we find the
relationship between the corresponding quantities in coordinate space:

GωðrÞ ¼
Z

d3r0PACH�
ω ðr0Þ � PCH

ω ðr0 þ rÞ; ð15Þ

Using Eqs. (11) and (15), the Plancherel-Parseval identity, the property
F f ∂n∂xn f ðxÞgðkÞ ¼ ðikÞnF ff ðxÞgðkÞ for Fourier transforms F , and the chain rule for
partial derivatives, we getZ

kikj ¼ kq ~GðkÞd3k ¼ ð�iÞn
Z

PACH�ðr0Þ � ∂

∂r0i

∂

∂r0j
¼

∂

∂r0q
PCH ðr0Þd3r0

¼ ð�iÞn
Z

PACH�ðr0Þ � ∂

∂ri

∂

∂rj
¼

∂

∂rq
PCH ðr0 þ rÞjr¼0d

3r0

¼ ð�iÞnð2πÞ3=2 ∂

∂ri

∂

∂rj
¼

∂

∂rq
GðrÞjr¼0;

ð16Þ
where n is the number of components of k multiplying ~GðkÞ on the left hand side.

Thus, the far-field enantio-sensitive observables can be generated using the
spatial correlator Gω(r) of the achiral and chiral fields emitted by the chiral
medium. For example, the enantio-sensitive contribution to the total intensity of
the emitted light is proportional to the scalar < Gωðr ¼ 0Þ� �

, the direction of
emission is proportional to the vector < i∇GωðrÞjr¼0

� �
, the shape of the emission

pattern on the screen requires tensorial observables and is characterized by higher

order derivatives such as < i ∂
∂ri
i ∂
∂rj
GωðrÞjr¼0

n o
. Thus, the correlator Gω(r) and, in

particular, its derivatives, presenting vectorial and tensorial quantities, reflect the
distribution of relative handedness of light and matter across the interaction region.
The vector < i∇GωðrÞjr¼0

� �
is sensitive to polarization of chirality, the higher order

tensors encode chirality quadrupoles, octupoles and higher multipole moments.

Connection between Gω(r), ~GωðkÞ and light’s handedness in reciprocal space
~hωðkÞ. Let us consider the interaction of an optical field that has an arbitrary
distribution of chirality with chiral matter whose handedness is uniform in space,
e.g. an ensemble of randomly oriented chiral molecules. In this case, Gω(r), the
coordinate space counterpart of ~GωðkÞ, gives us direct access to the distributed
handedness of light. This statement is completely general. Here, we illustrate it
using the lowest-order multiphoton processes that record the handedness of syn-
thetic chiral light. In the lowest order, the achiral pathway is given by a linear
response, and the chiral pathway is associated with an even-order nonlinear
process12,26. For example, in a three-color field with frequencies ω1, ω2 and ω3=
ω1+ ω2, the linear response PACH(r) at the frequency ω3 interferes with the second
order response PCH

ω3
ðrÞ at the same frequency:

PACH
ω3

ðrÞ ¼ χð1Þðω3ÞFω3
ðrÞ; ð17Þ

PCH
ω3

ðrÞ ¼ χð2Þðω3;ω1;ω2Þ Fω1
ðrÞ´ Fω2

ðrÞ
h i

: ð18Þ
Here χ(1)(ω3) and χ(2)(ω3; ω1, ω2) are the linear and quadratic molecular suscept-
ibilities averaged overall possible molecular orientations. The chiral response
appears already in the dipole approximation7,36 and r enters as a parameter
characterizing the spatial distribution of the field in the interaction region. The
chiral response PCH

ω3
ðrÞ is proportional to the pseudoscalar handedness of matter

χ(2) and the pseudovector field Hð2Þ
ω1þω2

ðrÞ � Fω1
ðrÞ ´Fω2

ðrÞ
h i

(see Ref. 36). (Note

that in the case of the two-color chirality polarized field shown in Fig. 2c, the
pseudovector field Hð2Þ

2ωðrÞ is proportional to the field’s spin S2ω / F�ω ´Fω / FxFy ẑ,
see Eq. (28) below).

If the handedness of matter is distributed uniformly, then Gω3
ðrÞ reflects the

distributed handedness of light: Gω3
ðrÞ is sensitive to the spatial correlations

between the components of its pseudovector field and electric field at frequency
ω3= ω1+ ω2:

Gω3
ðrÞ /

Z
d3r0F�ω3

ðr0Þ �Hω1þω2
ðr0 þ rÞ: ð19Þ

Its k-space counterpart ~Gω3
ðkÞ is proportional to the light’s handedness at

frequency ω3, ~Gω3
ðkÞ / ~hω3

ðkÞ, which is given by the scalar product of its
pseudovector field and electric field in k-space:

~hω3
ðkÞ � ~Hω1þω2

ðkÞ � ~F�ω3
ðkÞ: ð20Þ

Chirality-polarized light. Here we detail the non-collinear optical setup presented
in Fig. 2. Our setup contains two non-collinear laser beams (n= 1, 2) that pro-
pagate in the xy plane, at small angles ± α with respect to the y direction.

Fnðr; tÞ ¼ e�ρ2n=~ω
2 <fFωe

iðκn �r�ωtÞ ên þ F2ωe
2iðκn �r�ωt�ϕnÞẑg; ð21Þ

where ρn is the radial distance to the beams’ axis, ~ω is the radial waist, κ1;2 ¼
κ½± sinðαÞx̂ þ cosðαÞŷ� is the propagation direction, κ ¼ 2π

λ , λ is the fundamental
wavelength, ω is the fundamental frequency, ê1;2 ¼ cosðαÞx̂ 	 sinðαÞŷ is the
polarization vector of the fundamental field, and ϕn is the two-color phase delay. In
the overlap region, x≃ ρ1≃ ρ2 for small α, and the total electric field F= F1+ F2
can be written as

Fðr; tÞ ¼ Fω x; y
� �

e�iωt þ F2ω x; y
� �

e�2iωt þ c:c:; ð22Þ
where

Fω x; y
� � ¼ Fω Fx xð Þx̂ � iFy xð Þŷ

h i
eiκyy ; ð23Þ

F2ω x; y
� � ¼ F2ωFz xð Þẑe2i κyy�ϕþð Þ; ð24Þ

κx ¼ κ sin α, κy ¼ κ cos α, and ϕ± ¼ ϕ2 ± ϕ1
2 . That is, the total electric field is ellip-

tically polarized in the xy plane at frequency ω and it has a linearly-polarized 2ω
component along z. The x dependence of the field is given by

Fx xð Þ ¼ cos α cosðκxxÞe�ρ2n=~ω
2

; ð25Þ

Fy xð Þ ¼ sin α sinðκxxÞe�ρ2n=~ω
2

; ð26Þ

Fz xð Þ ¼ cosð2κxx þ 2ϕ�Þe�ρ2n=~ω
2

: ð27Þ
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Moments of the field handedness relevant for the far field intensity. In gen-
eral, the induced dipole produced by a field with frequencies ω and 2ω in an
isotropic medium is given by26 P2ω ¼ PACH

2ω þ PCH
2ω , where PACH

2ω ¼ χð1ÞF2ω is the
linear achiral response at frequency 2ω, PCH

2ω ¼ χð4ÞH2ω is the lowest order non-
linear chiral response at frequency 2ω, and

H2ω ¼ ½F�ω ´Fω�½Fω � Fω�: ð28Þ
If the medium is homogeneous then the field (22) yields ~G2ωðkÞ ¼ χð1Þ�χð4Þ~h2ωðkÞ
[cf. Eq. (11)], where ~h2ωðkÞ � ~F

�
2ωðkÞ � ~H2ωðkÞ (see Eq. (20)) is the handedness of

the reciprocal space form of the field. Using Eqs. (23)–(27) we obtain

~h2ωðkÞ ¼ C δ kx þ 2κx
� �

e2iϕ� � δ kx � 2κx
� �

e�2iϕ�
� �

δðky � 2κyÞδ kz
� �

; ð29Þ

where C � F2ωF
4
ω

25 2πð Þ3 sin 4αð Þe2iϕþ . (For a finite interaction region the infinitely
narrow peaks represented by Dirac deltas widen accordingly). The overall phase of
~h2ωðkÞ is controlled by ϕ+ and its magnitude by the amplitudes of the fields Fω, F2ω,
and the angle 2α between the beams. ~h2ωðkÞ has peaks at k= (±2κx, 2κy, 0). The
asymmetry between these two peaks is controlled by the parameter ϕ−. The zeroth
and first moments of ~h2ωðkÞ are given by [cf. Eq. (2)]

h0 ¼ 2iC sin 2ϕ�
� �

; ð30Þ

~h ¼ 4Cð cosð2ϕ�Þ; i sinð2ϕ�Þ; 0Þ: ð31Þ
The effects of these moments on the far field intensity distribution follow from
Eq. (12)

hΔIωi / < χ 1ð Þ�χ 4ð Þh0
� � ¼ �2 χ 1ð Þ�χ 4ð ÞC

�� �� sin 2ϕ�
� �

sin 2ϕþ þ ϕM
� �

; ð32Þ

hki ¼ < χ 1ð Þ�χ 4ð Þ~h
� �

¼ 4 χ 1ð Þ�χ 4ð ÞC
�� �� cos 2ϕ�

� �
cos 2ϕþ þ ϕM
� �

;� sin 2ϕ�
� �

sin 2ϕþ þ ϕM
� �

; 0
� �

;

ð33Þ
where ϕM is a molecular phase defined by χ 1ð Þ�χ 4ð Þ ¼ jχ 1ð Þ�χ 4ð ÞjeiϕM . Note that the y
component of 〈k〉 simply reflects 〈ΔIω〉 and that ϕ− and ϕ+ control the molecule-
independent and the molecule-dependent parts of the response, respectively.

Moments of the field handedness relevant for the near field intensity. Ana-
logously to how the enantio-sensitive contribution to the intensity in the far field is

determined by the interference between ~P
ACH ðkÞ and ~P

CHðkÞ, the intensity in the
near field is determined by the interference between PACH(r) and PCH(r) at the
same point in space. Such interference term is proportional to the chiral correlation
function introduced in Ref. 26: h2ωðrÞ � F�2ωðrÞ �H2ωðrÞ. Note that, despite the
notation, h2ω(r) is not the inverse Fourier transform of ~h2ωðkÞ. For the field in Eq.
(22) the lowest (fifth) order correlation function is given by

hð5ÞðrÞ ¼ � i
24

F4
ωF2ωf sin 4αð Þ sin 4κxx þ 2ϕ�

� �� sin 2ϕ�
� �� �

þ sin 2αð Þ sin 6κxx þ 2ϕ�
� �� sin 2κxx � 2ϕ�

� �� �ge2iϕþ : ð34Þ

h(5)(r) is shown in Fig. 2d. Its zeroth moment of is equal to that of ~h2ωðkÞ in
Eq. (30) because of the Plancherel-Parseval identity (see also Ref. 26). Its first
moment for a single unit cell (see Fig. 2d) depends on the definition of the unit cell.
For the central unit cell shown in Fig. 2d (three unit cells are shown) we getZ Δx=2

�Δx=2
xhð5ÞðxÞdx ¼ � 1

24 3πð Þ iF
4
ωF2ωe

2iϕþ ðΔxÞ2 cos 2ϕ�
� � ð35Þ

where Δx ¼ λ=ð2 sin αÞ and we assumed α≪ 1. Thus, for such definition of the
unit cell, the first moment of h(5)(x) has the same dependence on our control
parameters ϕ− and ϕ+ as the x component of ~h.

Calculation of high harmonic generation in fenchone. We have computed the
high harmonic response of a gas-phase medium of randomly oriented left- and
right-handed fenchone molecules using a similar procedure to that employed in
Refs. 37,38. The dipole response in the near field (Fig. 3) is calculated by averaging
over molecular orientations:

Dðx;NωÞ ¼
Z Z

DΩαðx;NωÞ dΩ dα ð36Þ

where x is the near-field coordinate, N is the harmonic number, ω is the funda-
mental frequency, and DΩα is the dipole moment associated with a given molecular
orientation in the frequency domain, which depends on the solid angle Ω and on
the angle α. Integration over Ω and α was performed using the Lebedev
quadrature39 of order 17 and the trapezoid method. The single-channel dipole
response associated with each molecular orientation DΩα was evaluated using the
saddle-point method, following the recipe described in40, which allows us to split
DΩα in three terms:

DΩαðx;NωÞ ¼ aionΩαðx;NωÞ � apropΩα ðx;NωÞ � arecΩαðx;NωÞ ð37Þ

which describe strong-field ionization, propagation in the presence of the strong
laser field, and radiative recombination. Let us briefly describe the procedure used
for evaluating each term. The dependence on x and Nω is omitted for the sake of
simplicity.

Strong-field ionization amplitudes are evaluated using the following expression:

aionΩα ¼ 2π

i∂2Sðtr ; ti; pÞ=∂t2i

	 
1=2

e�iSðt0i ;ti ;pÞF fΨigð<fkðt0i ÞgÞ ð38Þ

where ti ¼ t0i þ it00i is the complex ionization time, p is the canonical momentum,
which is related to the kinetic momentum via k(t)= p+A(t), here A(t) is the
vector potential: F(t)=− ∂A(t)/∂t, F fΨig is the Fourier transform of the initial
state wave function Ψi, and

Sðt; t0; pÞ ¼ 1
2

Z t

t0
dτ½pþ AðτÞ�2 þ Ipðt � t0Þ ð39Þ

where Ip is the ionization potential.
Electron propagation in the continuum is described via

apropΩα ¼ 2π
iðtr � tiÞ

	 
3=2

e�iSðt0r ;t0i ;pÞ ð40Þ

where tr ¼ t0r þ it00r is the complex recombination time.
Recombination amplitudes are given by

arecΩα ¼ 2π

i∂2Sðtr ; ti; pÞ=∂t2r

 !1=2

e�iSðtr ;t0r ;pÞþiNωtrdrecΩαðkðt0rÞÞ ð41Þ

where drecΩα is the photo-recombination matrix element, computed numerically
using the static-exchange density functional theory (DFT) method37,41–45.

The intensity of macroscopic harmonic emission in the far field (Fig. 4) is
calculated from the near-field response of the medium (Eq. (36)) using the
Fraunhofer diffraction equation:

Iðβ;NωÞ / ðNωÞ4
Z 1

�1
Dðx;NωÞe�iNω

c xβdx

����
����
2

ð42Þ

where β is the divergence, i.e. the angle of emission with respect to the y axis, and c
is the speed of light. The mechanism responsible for the strong enantio-sensitivity
in the direction of light emission is general and independent of the particular
molecular system. Thus, one should expect to find similarly strong enantio-
sensitivity in other chiral molecules, and also when computed using different
theoretical approaches.

Relation between the emission angle and the enantiomeric excess. The z-
polarized component of the (even) harmonic radiation in a given point in the far
field, for a given harmonic number, is given by

Fzðee; βÞ ¼ F2ωFaðβÞ þ
1þ ee

2
αFRðβÞ þ

1� ee
2

αFLðβÞ ¼ F2ωFaðβÞ þ ee α FRðβÞ
ð43Þ

where ee ¼ CR�CL
CRþCL

is the enantiomeric excess, CR and CL being the concentrations of

left and right-handed molecules, the achiral contribution F2ωFa depends linearly on
F2ω, and the chiral contribution from left- and right-handed molecules αFR and αFL
(FR=−FL) depend linearly on α, for weak F2ω and α. The harmonic intensity in a
given point in the far field is thus given by

Iðee; βÞ ¼ F2
2ωIaðβÞ þ ee αF2ωIaRðβÞ þ ee2 α2IRðβÞ ð44Þ

where Ia(β)= ∣Fa(β)∣2, IR(β)= ∣FR(β)∣2, IaRðβÞ ¼ F�
aðβÞFRðβÞ þ FaðβÞF�

RðβÞ. These
quantities do not depend on α or F2ω, for weak values of these parameters. Let us
calculate the expectation value of the emission angle, given by

hβi ¼
R
Iðee; βÞβdβR
Iðee; βÞdβ ð45Þ

Inserting Eq. (44) into Eq. (45), and taking into account that Ia and IR are even
functions with respect to β, and that IaR is odd, we obtain

hβi ¼ ee αF2ω
~IaR

F2
2ω
~Ia þ ee2 α2~IR

ð46Þ

where

~IaR ¼
Z

IaRðβÞβdβ ð47Þ

~Ia ¼
Z

IaðβÞdβ ð48Þ

~IR ¼
Z

IRðβÞdβ ð49Þ

These angle-integrated quantities do not depend on ee, α or F2ω. Eq. (46) allows us
to quantify ee in mixtures of opposite enantiomers. It also allows us reconstruct the
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values of ~IaR , ~Ia and ~IR by measuring 〈β〉 in mixtures of different ee. For small
values of ee, where the determination of this quantity is usually more challenging,
we have

hβi ’ ee α~IaR
F2ω

~Ia
ð50Þ

which allows us to determine ee by measuring 〈β〉 for different values of F2ω.
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