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Epistasis shapes the fithess landscape of an
allosteric specificity switch

Kyle K. Nishikawa', Nicholas Hoppe® ', Robert Smith!, Craig Bingman® ' & Srivatsan Raman® 23

Epistasis is a major determinant in the emergence of novel protein function. In allosteric
proteins, direct interactions between inducer-binding mutations propagate through the
allosteric network, manifesting as epistasis at the level of biological function. Elucidating this
relationship between local interactions and their global effects is essential to understanding
evolution of allosteric proteins. We integrate computational design, structural and biophysical
analysis to characterize the emergence of novel inducer specificity in an allosteric tran-
scription factor. Adaptive landscapes of different inducers of the designed mutant show that a
few strong epistatic interactions constrain the number of viable sequence pathways, revealing
ridges in the fitness landscape leading to new specificity. The structure of the designed
mutant shows that a striking change in inducer orientation still retains allosteric function.
Comparing biophysical and functional properties suggests a nonlinear relationship between
inducer binding affinity and allostery. Our results highlight the functional and evolutionary
complexity of allosteric proteins.
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nteractions between mutations direct the evolution of protein

function!. As proteins evolve, they follow paths through the

fitness landscape to reach a fitness peak that represents a novel
function?. For N mutations required to confer novel function,
there are N! possible pathways connecting the start and end
states. However, some pathways may not be evolutionarily
favorable due to epistasis—a phenomenon that occurs when the
sequence background into which a mutation is introduced
changes the functional effect of that mutation. The non-additivity
due to epistasis strongly influences the sequence trajectory a
protein takes to gain new function!>3->. Therefore, understanding
the nature of epistatic interactions is the foundation for investi-
gating the mechanisms leading to novel protein function®.

Epistasis is generally categorized as specific or nonspecific
based on cause-effect relationships between the interactions of
mutations and their outcome. Specific epistasis occurs between a
limited number of residues that typically physically interact,
leading to nonadditive changes in thermodynamically driven
biophysical properties such as protein stability or affinity’. Spe-
cific epistasis has been extensively investigated in protein-protein,
protein-ligand, protein-DNA interactions>$-16.  Nonspecific
epistasis occurs when mutations are nonadditive with respect to
protein traits when combined!7-20, Such mutations can be spa-
tially distant such as a global suppressor that can interact with
many destabilizing mutations with low pairing specificity®21-22,

In this study, we examine the role of epistasis in the evolution
of ligand specificity in an allosteric transcription factor. Allostery
is a fundamental mechanism by which proteins recognize
environmental cues (such as binding of an inducer or effector)
within a localized region resulting in modulation of function at a
distal site?324, Mutations in the binding pocket that trigger the
allosteric network have the potential to create new nonspecific
epistatic interactions at the level of protein function, beyond the
physical interactions commonly seen in specific epistasis. As
allosteric proteins evolve toward new function, such as orthologs
in different organisms, their inducer specificity changes to adapt
to the new environment?>. Allosteric proteins may accrue
mutations during evolution that would simultaneously affect
specificities for old and new inducers. Further, these mutations
may also impact function by affecting the capability of the protein
to produce an allosteric change in response to an inducer227, For
an allosteric transcription factor (aTF), a function is the outcome
of affinity for the inducer ligand, affinity for DNA, and allosteric
changes that accompany binding to the ligand. Each of these
parameters will have its own fitness function mapped over the
same sequence space, creating unique fitness landscapes. An aTF
simultaneously traverses these multiple fitness landscapes, which
collectively govern the evolutionary trajectory of the aTF under
selective pressure. Thus, any one fitness landscape is not adequate
as a global measure of transcription factor function. We need to
examine multiple fitness landscapes and characterize epistasis in
each to understand the evolutionary trajectory of an aTF.

Here, we integrate functional, structural, and biophysical ana-
lysis to characterize epistasis in the functional parameters of an
allosteric transcription factor. Using computation-guided design,
we changed the ligand specificity of TtgR, a microbial aTF, to
respond better to one of its native ligands (resveratrol), but not to
another (naringenin) by targeting mutations to positions that
directly interact with the ligand to create a resveratrol-specific TtgR
variant?829, By reconstructing all sequence pathways connecting
the two states, we found that nonspecific epistatic interactions of
two distinct sets of amino acids separately drive loss of naringenin
response while increasing resveratrol response (reporter expression
when induced by a ligand). We characterized the fitness landscapes
of TtgR in terms of four functional parameters: fold change in gene
expression, basal gene expression, maximum gene expression, and

sensitivity to the ligand (ECsg) and showed that although ligand-
induced allostery is a composite effect of all four parameters, each
parameter shows unique patterns of epistasis, but also notable
similarities. The crystal structure of the computationally designed
mutant shows that one of the mutations reshapes the binding
pocket to favor resveratrol over naringenin through a striking
change in its binding orientation while maintaining allostery. We
found that epistasis creates distinct biophysical and biological
functional landscapes. Our results highlight the functional and
evolutionary complexity of allosteric proteins because pathways
can traverse through multiple adaptive landscapes under evolu-
tionary pressure?’. Our approach also provides a general con-
ceptual and methodological framework to investigate epistasis in
transcription factors.

Results

Computational design of ligand specificity switch. We chose
TtgR, a ligand-inducible aTF belonging to the diverse TetR-like
protein family, as a target for computational engineering of ligand
specificity?’. TtgR is a 1-component transcriptional system and
represents the simplest molecular mechanism for converting
biophysical interaction between inducer and protein into a
complex biological response like transcription?’. In the unin-
duced state, TtgR physically obstructs the RNA polymerase by
binding to DNA2°. When induced, ligand-binding allosterically
lowers affinity for DNA, thereby allowing transcription®30. Since
TtgR is found in a plant-associated microbe (Pseudomonas
putida), it is induced by multiple plant molecules including
resveratrol and naringenin?8. Thus, TtgR provides a suitable
functional backdrop to investigate the role of epistasis in the
emergence of novel function (ligand specificity) in an allosteric
protein?$31. To emulate the emergence of novel function, we
engineered TtgR to respond better to resveratrol and not to
naringenin.

We used computational design (Rosetta software suite) to
engineer TtgR specificity by generating function-switching
mutations that directly interact with the ligand32. Less directed
approaches may vyield a specificity switch, but these can also
include distal mutations whose effects on ligand affinity will
confound our examination of epistasis!®33, Since our goal was to
study how local interactions shape global function, computational
design was the appropriate tool as in silico mutations are chosen
based on interaction energies between protein and ligand343>.

To increase resveratrol specificity, we redesigned the ligand-
contacting residues for greater affinity for resveratrol, assuming
greater affinity may result in greater specificity. Since Rosetta is a
structure-based design tool, the absence of a resveratrol-bound
TtgR crystal structure made the design task challenging because
the correct position of the ligand in the binding pocket was not
known a priori. Therefore, we generated a set of diverse starting
poses (16) by docking resveratrol conformers in different
orientations within the binding pocket (Fig. 1). For each starting
pose, we redesigned ligand-contacting residues while permitting
constrained rigid-body flexibility of the ligand and torsional
flexibility of the protein backbone. We computationally generated
approximately 19,000 unique TtgR design variants. After design,
each output variant comes with a set of Rosetta-calculated scores
that reflect physical properties such as stability, repulsion,
hydrogen bonds, and protein-ligand affinity. The best variants
for library construction can be selected from the distribution of all
scores of output designs based on user-defined preferences. The
variants were curated using parameter-specific median absolute
deviation cutoffs on a select set of Rosetta scoring metrics to yield
a final list of approximately 3500 unique sequences with an
average of five mutations per variant for experimental testing
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Fig. 1 Design of resveratrol-specific TtgR variant. Resveratrol conformers are docked into TtgR followed by Rosetta-based computational design of the
binding pocket. Candidates with favorable Rosetta score metrics (green points) are synthesized and cloned into an expression vector. Distribution of
fluorescence in cells containing uninduced TtgR variant library (light green), induced with naringenin (light blue) and resveratrol (red) before sorting (Pre-
Sort) and after three rounds of sorting (Post-Sort) are shown. Colony screening identified a quadruple mutant showing resveratrol specificity: C1371/
N141W/M167L/F168Y. The quadruple mutant phenotype was compared to wild-type in biological triplicate (n=3) by inducing each with either 1000 pM
naringenin or 100 puM resveratrol. The error bars denote the standard deviation of the fold induction for the triplicate measurements (see “methods”).

(Supplementary Figs. 1, 2). The mutations generated in the
3500 sequences are diverse, but designed sequences generally
favor the wild-type amino acid at each mutable position
(Supplementary Fig. 2). A few positions such as 96, 137, 168,
and 175 have mutations that are more abundant than the wild-
type amino acid. We synthesized oligonucleotides encoding
approximately 3500 designed variants as a pool of exact chip-
DNA sequences (Twist Bioscience Inc).

To determine the activity of TtgR variants, we designed a
pooled screen by sorting E. coli cells containing a GFP reporter
system regulated by a TtgR operator adapted for E. coli. We
quantified the activity of variants based on fold induction: the
ratio of GFP expression with and without inducer. Fold induction
is a simple measure of the transcriptional activity of an aTF that
accounts for factors affected by epistasis including DNA affinity,
ligand affinity and allostery>®. The activity of the initial library
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was greater toward naringenin than resveratrol with a median
fold induction of 21-fold and 2.4-fold with naringenin and
resveratrol, respectively (Fig. 1). To enrich resveratrol-specific
variants in the library, we devised a toggled screening scheme
where we first sorted variants competent for binding to DNA
(low GFP with no resveratrol) followed by sorting variants that
can activate expression of the reporter (high GFP with
resveratrol) (Supplementary Fig. 3). After three rounds of toggled
screening, we observed a much greater response to resveratrol
than naringenin in the enriched population compared to the
input population (Fig.1). From the enriched population, we
isolated a resveratrol-specific TtgR variant with four mutations:
C1371, 1141W, M167L, and F168Y which we will henceforth refer
to as the ‘quadruple mutant’. All four mutations were in close
proximity to the ligand and no mutations were found elsewhere
on TtgR. The quadruple mutant gave 92- and 6.5-fold induction
with 100 uM resveratrol and 1 mM naringenin, respectively,
compared to 55- and 55-fold of wild-type TtgR (Fig. 1,
Supplementary Fig. 4). These concentrations were selected based
on the differences in maximum solubility in aqueous solution.

The goal of Rosetta design was to narrow the potential
designable sequence space to a subspace of sequences most likely
to offer high resveratrol function. It is possible that other Rosetta
designs were successful in generating ligand specificity but were
lost in the screening process that was engineered to identify only
the most successful variants. We found that while the quadruple
mutant fell within the cutoffs imposed during the curation
process, it was not the best in any scoring parameter. We chose
the quadruple mutant as the functional endpoint for characteriz-
ing epistasis.

Epistasis shapes the fitness landscape of resveratrol response.
Experimental fitness landscapes are a useful framework for char-
acterizing epistasis by revealing fitness pathways through muta-
tional intermediates that connect two functional states. We
constructed multiple fitness landscapes derived from dose-response
curves to examine epistatic constraints in the transition from wild-
type TtgR to the resveratrol-specific quadruple mutant. We made
all single, double, and triple mutation combinations of the four
mutations that provide resveratrol specificity as individual clones,
resulting in a total of 16 variants (including endpoints). Fitness
landscapes are commonly illustrated as a series of nodes and edges.
Each node is designated by a binary string in which each number
corresponds to a mutable position. A zero indicates the wild-type
amino acid identity and a one indicates the substituted amino acid.
The positions in order from left to right are 137, 141, 167, and 168
(0000 is wild-type TtgR, 1111 is quadruple mutant, and 0100
represents the [141W mutant).

The ability of a transcription factor to control gene expression
in response to a small molecule is broadly described by four
parameters—(1) fold change in gene expression upon induction
(fold induction), (2) basal gene expression without the inducer,
(3) maximum gene expression upon induction, and (4)
sensitivity to ligand concentration (EC). These parameters
capture the mechanistic properties of binding to inducer, binding
to DNA, and allosteric communication of ligand binding. To
investigate how the same set of binding pocket mutations might
uniquely affect each parameter, we constructed the fitness
landscape of each parameter individually. We quantified the
number of viable pathways in the resveratrol landscape by
requiring that each additional mutation must increase parameter
fitness if the quadruple mutant performs better than wild type or
decrease parameter fitness if the quadruple mutant performs
worse than wild type. There are 24 possible pathways from wild
type to quadruple mutant (Fig. 2a). Each functional parameter

shows distinctive patterns of epistasis, although some are closely
related.

In the fold induction landscape, viable pathways must go
through 0010 as all other single mutants have lower resveratrol
response relative to wild-type TtgR (Fig. 2a). This restricts the
number of available pathways from 24 to a maximum of 6. From
0010, there are three possible double mutants: 0011, 0110, and
1010. Both 0110 and 0011 are not viable as their activity
substantially decreases compared to 0010 (Fig. 2a). However,
1010 is viable as it gives modestly higher resveratrol response
(Fig. 2a). Both C137I and M167L manifest as key permissive
intermediates in the fitness landscape that allows I1141W (1110)
or F168Y (1011) to be added. Since 1010 is the only viable double
mutant, the number of available pathways reduces to two (Fig. 2a,
bold red lines). Both triple mutants (1011 and 1110) have higher
resveratrol response than 1010 which allows two viable pathways
to reach the quadruple mutant, which is the global maxima of this
fitness landscape (Fig. 2a).

The fitness landscape of basal gene expression resembles the
fold induction landscape, with identical viable pathways, as the
nodes with lower basal gene expression also show higher fold
induction. All the nodes along viable pathways have lower basal
gene expression than wild-type TtgR (0000) and the quadruple
mutant is one of the mutants with lowest basal gene expression
(Fig. 2b). The adaptive landscapes of maximum gene expression
and ECs, show similar features to each other including a general
trend of increasing magnitude from 0000 to 1111 (Fig. 2c,d).
Since the global maxima for maximum gene expression is 0111
(not 1111), all pathways on the maximum gene expression
landscape terminate at 0111 (Fig. 2c). Six pathways are allowed in
the ECs, landscape because of the general tendency of mutations
to increase EC5, regardless of mutational background (Fig. 2d).
There is an interesting dependence between maximum gene
expression and ECsy where nodes with high expression tended to
also have high EC5, (low ligand sensitivity), indicating a likely
trade off where high gene expression comes at the expense of
ligand sensitivity. In other words, it may be difficult to achieve an
ultrasensitive response concomitantly with a large change in gene
expression. Since small deviations in activity may be permitted
during evolution, we relaxed the requirement that each
subsequent step through sequence space change fitness to be
more like the quadruple mutant. We allowed small losses in the
function of 25% between nodes and found that additional
pathways are tolerated in the basal gene expression, maximum
gene expression, and ECs, landscapes. No additional pathways
exist in the resveratrol fold induction landscape (Supplementary
Fig. 5).

Next, we delved deeper into the key epistatic interactions that
shape the fitness landscapes. Epistatic interactions are classified as
magnitude, sign, or reciprocal sign based on the combined effect
of a pair of mutations relative to the effect of each mutant
individually. Magnitude epistasis occurs when both mutations
individually are beneficial or detrimental and their combined
effect is greater in magnitude than the sum of their individual
effects (Supplementary Fig. 6). Sign epistasis occurs when the
effect of one mutation switches from beneficial to deleterious or
vice versa depending on if the other mutation is present
(Supplementary Fig. 6). Reciprocal sign epistasis occurs when
both mutations switch effects when paired (Supplementary
Fig. 6).

gTwo epistatic interactions, C1371-1141W and M167L-F168Y,
play important roles in modulating basal gene expression and fold
induction. C137I mutation makes epistatic interactions with all
the other three mutations (1100, 1010, or 1001) which are critical
to control basal gene expression through sign or reciprocal sign
epistasis (Fig. 2b). This is best exemplified by the interaction

4 | (2021)12:5562 | https://doi.org/10.1038/s41467-021-25826-7 | www.nature.com/naturecommunications


www.nature.com/naturecommunications

NATURE COMMUNICATIONS | https://doi.org/10.1038/541467-021-25826-7 ARTICLE

a

10 e ON OvMEs mrs
08
06
04

0000
0.2

3
3
3

-0.2

asuodsay [onesansay °'607 annejay

04
-06
b 1010

06
04

0.2

-0.2

-0.4

-0.6

-0.8

3
5

0.15

O
O

0.10

=
S
3
=
15
=

0.05

=]

2
3
8
2
3
2

0000 mn

o
o
vl

.
e
o

-0.15

uoissaidx3 xep °'607 aanejy

g
@: @, O
[ aaaaasmmee BN 00002020 O aaaammmee B aaaaa—— |
o
2duadsalon|4 auipeseg 6o aAneRY

-0.20

-0.25

1000 1001 1011 05
O y
0100 0110 0111 F3
o
0000 g'
02 2
o
L
01 °
m
Nal
0o 2
-0.1
0011
-0.2

Fig. 2 Fitness landscapes for multiple functional parameters in response to induction with resveratrol. Fitness landscapes of (a) fold induction, (b) basal
gene expression, (€) maximum gene expression, and (d) ECso parameters for all 16 TtgR variants in response to resveratrol with each variant shown as a
node in the graph. Each variant is labeled with a binary string corresponding to the presence (1) or absence (0) of a mutation at position 137, 141, 167, or
168 in order. Nodes separated by a single mutation are connected by edges showing viable (bold red) and unviable paths (light gray) through sequence
space. Nodes are shaded by logq of the fitness parameter at 250 pM resveratrol normalized to the fitness of wild-type TtgR. Number of epistatic
subnetworks in the resveratrol (e) fold induction, (f) basal gene expression, (g) maximum gene expression, and (h) ECsq landscape determined by Bahadur
expansion. Non-epistatic subnetworks (N) are shown in white, magnitude epistasis (M) in pink, sign epistasis (S) in light purple, and reciprocal sign
epistasis (RS) in dark purple.
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between C1371 (1000) and I141W (0100) in the basal gene
expression landscape. Both 1000 and 0100 have high basal
gene expression while the double mutant 1100 has low basal gene
expression leading to reciprocal sign epistasis. This interaction
shows mutations in the binding pocket trigger the allosteric
network to create new nonspecific epistatic interactions at a distal
site (in this case, the DNA-binding interface). The other double
mutants that contain C1371I (1010 and 1001) also have decreased
basal gene expression, which is maintained through the quadruple
mutant by non-epistatic (1100-1111, 1010-1111, and 1001-1111)
interactions (Fig. 2b). The I141W mutation is also a key
modulator of fold induction that manifests through controlling
basal gene expression. Although this mutation by itself causes
high basal gene expression (low fold induction) when paired with
either M167L (0110) or F168Y (0101) in any combination, in the
1100 background both M167L (1110) and F168Y (1101) have low
basal gene expression (high fold induction) and form a magnitude
epistasis interaction to generate the phenotype of the quadruple
mutant (Fig. 2b).

The M167L mutation makes a strong nonspecific epistatic pair
with the F168Y mutation, creating a reciprocal sign epistasis
interaction in the ECs landscape and sign epistasis in the basal
gene expression, maximum gene expression, and fold induction
landscapes. In the EC5, landscape, M167L is the only node that
decreases ECs, that does not contain C1371 (Fig. 2d). However,
this effect is masked by the addition of either C1371 or 1141W.
The two mutations show sign epistasis in the maximum gene
expression landscape in the C137I background (1000-1011) and
magnitude epistasis in the 1141W or C137I-1141W background,
indicating that the pair behavior is dependent on the background
mutations (Fig. 2c).

While a qualitative description of epistasis is easy to visualize,
we wanted to also quantify the extent of and characterize the type
of epistasis within all individual subnetworks and the entire 16-
variant system. A subnetwork is a set of four variants comprising
a background variant, two single mutants and a double mutant
introduced into the background variant. We used Bahadur
expansion to describe all pairwise and higher order interactions
(see “Methods”)3¢. The Bahadur expansion models the activity of
the landscape using a linear sum of interaction terms and
coefficients. Orders of interactions (first [solo], second [pairwise],
third [three way], or fourth [four way]) can be included in this
sum to understand their contribution to modeling the behavior of
all variants. For each subnetwork, we computed the correlation
coefficient between a linear sum of first-order interaction terms
and actual experimental data. In the simplest case of no epistasis,
the correlation coefficient of this comparison (R2) is close to 1,
but any deviation (R% < 1.0) indicates the prevalence of epistasis.
We applied the Bahadur expansion to quantify epistasis in all
24 subnetworks for each fitness parameter. The fitness landscapes
of basal gene expression, maximum gene expression, and ECs
had unique patterns of epistatic interactions (Fig. 2e-h).

Epistasis thus has a large role in shaping the fold induction
landscape between the wild type and the quadruple mutant through
key interactions. The magnitude and location of the epistatic
interactions are unique to their respective fitness property.
Although the global expansion first-order terms explain the
majority of the variance in the fold induction landscape, higher
order epistatic interactions influence resveratrol fold induction by
modulating interactions in secondary and tertiary subnetworks to
improve the resveratrol response (Supplementary Fig. 7).

Epistasis uniquely influences the fitness landscape of each
ligand. As inducer specificity changes, the fitness landscape of the
same mutational intermediates will differ for each inducer. These

differences may reveal alternative adaptive pathways in the fitness
landscape of one inducer that circumvent functional “dead ends”
in the fitness landscape of another inducer. Therefore, we
examined the fitness landscape of naringenin-induced response
by evaluating the same four parameters: fold induction, basal
gene expression, maximum gene expression (at 2000 uM), and
ECs of all 16 variants for comparison with the fitness landscapes
of resveratrol. We determined the number of viable pathways by
requiring that each additional mutation must have a change in
fitness that bridges wild type and the quadruple mutant to
emulate the progressive change in function during evolution.

In the fold induction landscape, none of the 24 possible
pathways viably connect wild type to quadruple mutant because
the global minima (variant with lowest naringenin response) in
the landscape is the double mutant 0110, not the quadruple
mutant (1111) (Fig. 3a). In the basal gene expression landscape,
three pathways connect wild type to the quadruple mutant
through the C1371 (1000) mutation (Fig. 3b). Pathways emerging
from 1000 pass through two double mutants, 1001 and 1100, with
lower basal gene expression. The basal gene expression of 1001 is
higher than 1100, allowing 1001 to link to both triple mutants
(1011 and 1101) compared to the single triple mutant from 1100
(1110). The maximum gene expression landscape contains two
pathways connecting wild type to quadruple mutant (Fig. 3c).
Although many nodes have lower maximum gene expression
compared to the preceding node, most are not part of pathways
that bridge wild type and the quadruple mutant. Two single
mutants (1000 and 0100) have lower maximum gene expression
than wild type, but only one is connected to a viable double
mutant (0110). Both triple mutants (0111 and 1110) accessible
from 0110 connect to the quadruple mutant. Like the ECs,
landscape of resveratrol, the ECsy landscape of naringenin is
characterized by a general increase in ECs, as mutations
accumulate (Fig. 3d). There are eight possible pathways that link
wild type to the quadruple mutant. Three of the four single
mutants increase ECs, (0100, 0010, and 0001). Four of the double
mutants and all the triple mutants are accessible by at least one of
the preceding nodes, but not every double or triple mutant is
accessible from all preceding nodes due to minor deviations in the
general trend of increasing ECso. No additional mutational
pathways are tolerated even when increases of up to 25%
naringenin response are allowed between nodes for the
naringenin fold induction landscape (Supplementary Fig. 8).
Similarly to the resveratrol landscapes, the basal gene expression,
maximum gene expression, and ECs, landscapes show additional
pathways at this tolerance.

Closer examination of the role of individual mutations shows
that C1371 and 1141W have strong effects on multiple landscapes.
C1371 (1000) is the only mutation that decreases ECs relative to
wild type (Fig. 3d). Two additional double mutants 1010 and
1001 further decrease ECs, but pairing C137I with 1141W (1100)
or C137I with both M167L and F168Y (1011) increases ECs,
suggesting that these mutational combinations may mask the
effect of C1371. As with the resveratrol landscapes, the [141W
mutation has an important role in modulating basal gene
expression and fold induction (Fig. 3a, b). Any mutant containing
1141W, but not C1371I has higher basal gene expression (lower
folder induction) than wild type. Combining 1141W and C1371
results in a large decrease in basal gene expression, which further
decreases upon the addition of either M167L (1110) or F168Y
(1101). M167L and F168Y individually result in incremental
changes in basal gene expression, maximum gene expression, and
ECsy (Fig. 3b-d). However, the M167L-F168Y double mutant
shows interesting context-dependent effects due to nonspecific
epistasis. For example, in the fold induction landscape, the
combination of M167L and F168Y is beneficial in 1000
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Fig. 3 Fitness landscapes for multiple functional parameters in response to induction with naringenin. Fitness landscapes of (a) fold induction, (b) basal
gene expression, (€) maximum gene expression, and (d) ECso parameters for all 16 TtgR variants in response to naringenin with each variant shown as a
node in the graph. The labeling and line colors are analogous to Fig. 2. Nodes are shaded by logio of the fitness parameter at 2000 pM naringenin
normalized to the fitness of wild type TtgR. Number of epistatic subnetworks in the resveratrol (e) fold induction, (f) basal gene expression, (g) maximum
gene expression, and (h) ECsq landscape determined by Bahadur expansion. The labels of the pie charts are identical to Fig. 2.
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background but is detrimental in the 1100 background (Fig. 3a).
This dependent behavior extends to all the other fitness
landscapes even though the mutational background and types
of epistasis change.

Epistasis shapes the fitness landscape of each function
(naringenin and resveratrol response) in distinct ways.
Furthermore, each functional parameter (basal gene expression,
maximum gene expression, or ECs) is affected uniquely by the
addition of multiple combinations of mutations. 1141W
controls high basal gene expression and strongly modulates
fold induction regardless of ligand. In contrast, C1371 is more
context-dependent; it is responsible for low ECsq values solo or
in combination with either M167L or F168Y in the naringenin
landscape but is strongly influenced by MI167L in the
resveratrol ECso landscape. Some epistatic pairs are consistent
between the resveratrol and naringenin landscapes. The
C1371 +1141W pair strongly affects basal gene expression
and fold induction for both ligands. The M167L + F168Y pair
has unique behavior in all fitness landscapes that is dependent
on the mutation background into which they are introduced.
However, the pair’s effect on the wild type background is
stronger in resveratrol compared to naringenin for all
parameters. The patterns of epistasis in the naringenin subnet-
works are unique to their respective functional parameter
(Fig. 3e-h). Furthermore, the same set of mutations that create
epistatic interactions giving rise to high resveratrol response
forge ligand-specific epistatic patterns in the fold induction,
basal gene expression, maximum gene expression, and ECs
landscapes (Supplementary Fig. 9).

Crystal structure reveals molecular basis of specificity of
quadruple mutant. To understand the structural basis of TtgR-
ligand interactions, we solved high-resolution crystal structures of
quadruple mutant (resveratrol-bound and apo) and wild-type
TtgR (resveratrol-bound) at a resolution of 1.9A or better
(Supplementary Table 3). TtgR is a compact, dimeric, all-helical
transcription factor with a large cavity between five angled helices
forming the ligand-binding pocket (Supplementary Fig. 10a, b).
The quadruple mutant bound to resveratrol (PDB: 7KD8) is
structurally very similar to the wild type with an all-atom RMSD
of 1.2 A over the entire structure. The DNA-binding domains of
the resveratrol-bound quadruple mutant and the resveratrol-
bound wild type are extremely similar with an all-atom RMSD of
1.0 A (Supplementary Fig. 11). The four mutations do not sub-
stantially change the volume of the pocket (215A3 in wild type
compared to 234 A3 in the quadruple mutant) or the surface area
of the pocket (184 A in wild type compared to 186 A in the
quadruple mutant) (Supplementary Fig. 12). The position and
orientation of resveratrol in the wild-type TtgR structure (PDB:
7K1C) resembles the position and orientation of naringenin in a
previously solved co-crystal structure of TtgR (PDB: 2UXU)?8. In
both structures, the ligands bind in a vertical mode such that the
plane of the molecule is roughly perpendicular to DNA (Sup-
plementary Fig. 10c). In wild-type TtgR, the four mutated posi-
tions (C137, 1141, M167, and F168) are located approximately in
the center of the binding pocket and make nonspecific van der
Waals interactions with resveratrol (Fig. 4a, upper panel). Other
neighboring residues N110, D172 and HI114 make specific
hydrogen bonds that stabilize resveratrol in the vertical orienta-
tion (Fig. 4a, lower panel). Although both naringenin and
resveratrol bind in the vertical orientation, only N110 is able to
make a hydrogen bond with both naringenin and resveratrol.
The ability of wild-type TtgR to bind multiple ligands likely arises
from the nonspecific interactions made by the nonpolar amino
acids in the binding pocket.

The structure of the quadruple mutant reveals the role of
individual residues in ligand specificity. 1141W, a mutation
critical for resveratrol specificity, creates a large steric barrier that
alters the shape of the pocket and obstructs the vertical binding
orientation of ligands (Fig. 4b, upper panel). Resveratrol is
accommodated in the binding pocket in a horizontal binding
orientation almost parallel to the plane of the tryptophan. Unlike
1141W which plays a clear steric role, the other three mutations
(C1371, M167L and F168Y) have a more subtle effect in reshaping
the binding pocket through nonpolar interactions. C137I
mutation creates a protrusion in the binding pocket that increases
shape complementarity to resveratrol (Supplementary Fig. 13a).
MI167L is buried between the residues in the binding pocket and
the dimerization helix and may play a role in positioning the
I141W tryptophan to stabilize its horizontal orientation through
van der Waals interactions (Supplementary Fig. 13b). F168Y
allows the formation of multiple hydrogen bonds with nearby
water molecules and may serve to stabilize the structure
(Supplementary Fig. 13b). A different hydrogen bonding network
consisting of D71, R75, and E78 make hydrogen bonds with the
resveratrol molecules in chain A (Supplementary Fig. 13¢c) and
D71, E78, D172, and a nearby water molecule make a hydrogen
bond with the single resveratrol molecule in chain B (Fig. 4b,
lower panel).

Although resveratrol and naringenin share similar chemical
backbones, naringenin is bulkier than resveratrol due to the fused
carbon rings of the chromanone. This reduces the shape
complementarity of naringenin to the redesigned binding pocket
despite the similarity in the volume of the quadruple mutant and
wild-type binding pockets (Supplementary Figs. 12, 14). The

Fig. 4 Structural basis for ligand specificity. Wild-type TtgR and
quadruple mutant are shown in blue and green ribbons, respectively.
Positions 137, 141, 167, and 168 are colored in pink. Resveratrol is shown as
gray sticks. Water molecules are shown as red spheres. a Binding pocket of
resveratrol-bound wild-type TtgR (PDB ID: 7K1C) (upper panel) with
residues making hydrogen bonds to resveratrol highlighted in orange (lower
panel). b Binding pocket of resveratrol-bound quadruple mutant TtgR (PDB
ID: 7KD8) (upper panel) with residues making hydrogen bonds to
resveratrol highlighted in orange (lower panel).
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4-hydroxyphenyl moiety and the carbonyl group of the
4-chromanone backbone of naringenin could create steric clashes
with residues lining the wall of the pocket and cause the ligand to
sample less space in the pocket compared to resveratrol, which
provides a reasonable structural basis for ligand specificity.

The new binding mode of the quadruple mutant was not
predicted in the original design scheme. We seeded the input
structures for the Rosetta design with resveratrol docked in the
vertical orientation to mimic the binding mode of the wild-type
structure. The design process is only able to make minor
alterations to the position and angle of the ligand in the binding
pocket (Supplementary Fig. 15). However, Rosetta was able to
identify a subset of positions that, when mutated, could confer
resveratrol specificity.

The structural basis of ligand specificity relies on the 1141W
substitution to create a steric barrier to prevent binding in the
vertical orientation, which is observed in wild-type TtgR for
multiple ligands. In the novel horizontal mode, other ligands may
be occluded from the pocket through steric clashes with wild-type
residues in the pocket. The epistatic interactions observed in
the fitness landscapes for naringenin and resveratrol can be
rationalized through examination of the structure. The C137I-
I141W pair increases shape complementarity to resveratrol while
M167L-F186Y contact the dimerization helix and potentially
affect the positioning of nearby residues that interact with the
ligand. The altered binding mode establishes that allostery is
robust to major changes in the binding mode in TtgR.

Relationship between biophysical affinity and biological
response. Ligand response of an aTF is a complex combination of
both biophysical interactions and allostery. Mutations that affect
aTF fold induction can do so by altering ligand affinity, DNA
affinity, or the allosteric signal upon ligand binding. Since all four
mutations are localized to the binding pocket, the observed
changes in fold induction of TtgR are likely due to altered binding
affinity to ligand, the transmission of allosteric signal, or both. To
understand the relationship between biophysical affinity and
biological response, we compared changes in ligand affinity (Kg)
to changes in ligand sensitivity (ECsq) for both naringenin and
resveratrol. We chose mutants in the 0000-1000-0100-1100 sub-
network because it is important for the high resveratrol response
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in the quadruple mutant. Further, this network shows a strong
manifestation of nonspecific epistasis through reciprocal sign
change and is therefore a good model to understand the rela-
tionship between biophysical affinity and biological response. We
estimated ligand affinity using isothermal titration calorimetry
(ITC) of purified proteins and ligand sensitivity from
dose-response curves. Ligand sensitivity is derived from reporter
expression and is thus a combination of both allostery and
affinity.

Affinity and sensitivity of resveratrol for different variants are
generally concordant for resveratrol, with the exception of 1100
(Fig. 5a). We note that the ITC and dose-response curves for
some variants did not plateau due to poor ligand solubility at high
concentrations resulting in imprecise estimates of K4 and ECsy.
Nonetheless, qualitative comparisons can be made to gain useful
insight. For instance, comparison of ITC profiles of 0000 and 1111
for resveratrol shows weaker binding for 1111 even though the
precise K4 may be difficult to measure. Similarly, dose-response
curves show weaker ECs, for 1111 than 0000 even though it is not
fully saturated. The CI137I mutation appears to be largely
responsible for the affinity in 1100, but the I141W mutation
causes the increase in sensitivity. In general, as mutations
accumulate from wild type, the affinity and sensitivity generally
decrease, suggesting a decreased ability to undergo allosteric
changes is likely due to weaker binding (Fig. 5a). The discordance
between affinity and sensitivity is much greater for naringenin
than resveratrol. In the case of naringenin, no relationship was
evident between affinity and sensitivity across the subnetwork
(Fig. 5b). Although the quadruple mutant has higher resveratrol
fold induction than wild type, its affinity and sensitivity for
resveratrol are lower than that of wild type (Figs. 1, 5a). In essence,
these examples illustrate the complex relationship between local
interactions (specific epistasis) and their global effects in allosteric
proteins.

The 0000-1000-0100-1100 subnetwork displays a unique,
ligand-specific pattern of specific epistasis for biophysical and
biological parameters. The mutations we introduced into TtgR
suggest an effect on allostery changes in ECs, as the complexities
of function may not be simply explained by changes in
biophysical affinity. These measurements also suggest that by
optimizing a particular protein function (fold induction), other
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Fig. 5 Comparison of biophysical and biological properties of TtgR variants. Ligand affinity (light bar) and ECsq sensitivity (dark bar) for resveratrol (a)
and naringenin (b) are shown for TtgR variants 0000, 1000, 0100, 1100, and 1111. Ligand affinity was estimated by isothermal calorimetry and ECsq

sensitivity from fitting dose-response curves to the Hill equation. ECsq values and error are calculated based on fitting to triplicate dose-response curves.
ITC values and error are generated from a one-site binding model; error bars denote the error of the fit (see methods). The values shown are likely to

underestimate the actual affinity and sensitivity values.

| (2021)12:5562 | https://doi.org/10.1038/s41467-021-25826-7 | www.nature.com/naturecommunications 9


www.nature.com/naturecommunications
www.nature.com/naturecommunications

ARTICLE

parameters (sensitivity or affinity) may not necessarily stay at
fitness maxima as the 1111 mutant shows poor sensitivity (high
ECsp) to both ligands.

Discussion

In this study, we describe the pervasive effects of epistasis on
ligand specificity in a simple allosteric transcription factor by
examining fold induction, basal gene expression, maximum gene
expression, and ECs of two ligands across multiple mutants. By
leveraging computational protein design, we engineered four
mutations into TtgR, a transcription factor that can normally
bind to both resveratrol and naringenin, to only bind to resver-
atrol. By characterizing the functional response to both resvera-
trol and naringenin across all combinations of mutations, we
show that the extent of epistasis between mutations affecting
multiple protein functions is specific for each ligand. For instance,
50% of subnetworks meet the criteria for epistasis for resveratrol
fold induction while 83% of subnetworks are epistatic for nar-
ingenin fold induction. However, the fitness landscapes of both
ligands are shaped by common critical pairs of epistatic interac-
tions (C137I and I1141W or M167L and F168Y), though their
behavior may be different depending on the functional parameter.
The biological effects of these mutations are further validated by
the crystal structures. The four mutations localize to one face of
the binding pocket, making nonpolar interactions with the ligand.
C137I and I141W increase shape complementarity of the pocket
for resveratrol, but only in an alternative horizontal binding pose.
The four mutations that confer ligand specificity decrease both
affinity and sensitivity suggesting that the changes in sensitivity
could be a consequence of lower affinity and not necessarily a
purely allosteric effect.

Our study used a constrained set of mutations chosen through
in silico selection as opposed to the selection of random muta-
tions through natural evolution. An evolutionary process may
have selected a different set of mutations to confer the same
functional outcome, leading to the presence of a different pattern
of epistasis for either naringenin or resveratrol response. Often in
natural evolution, mutations that are distal to the site of interest
have a profound effect on protein function®2!1. These background
mutations complicate any examination of key mutations within
the targeted area of the protein and their influence on protein
function. By utilizing a combination of computational design and
high-throughput screening, we targeted mutations to a discrete
set of ligand-interacting positions within the binding pocket. Our
approach enabled us to examine the propensity of epistasis in a
constrained setting where mutations are limited to those that
interact directly with the ligand, enabling the examination of the
intersection of mutation, biophysical epistasis, and biological
epistasis.

Our results highlight the dependence of epistasis on protein
function and the prevalence of distinctive adaptive landscapes for
multiple functions within the same set of mutations. This process
highlights the functional tradeoffs that occur during an evolu-
tionary process and raises the implication that proteins with
multiple functions may readily traverse nonoptimal sequence
space through varying selective pressures. These landscapes can
thus become interconnected by changing selection pressures
between different protein functions. On an evolutionary scale,
simultaneously changing protein sequence and selection pressure
may enable improbable trajectories by bypassing epistatic barriers
to reach previously inaccessible mutational states. In our case,
higher order epistasis which prevents access to the quadruple
mutant in the naringenin fold induction landscape, could be
bypassed by toggling between naringenin and resveratrol selec-
tion pressures. The evolution of allosteric proteins is inherently

dependent on epistasis and the interactions arising between
mutations in these proteins uniquely affects multiple adaptive
landscapes.

Methods

Computational design. Protein modeling and design was performed with Rosetta
version 3.5 (2015.19.57819)3>37. Python and shell scripts for generating input from
Rosetta and analyzing from Rosetta are available at: https://github.com/raman-lab/
biosensor_design

The high-resolution TtgR structure co-crystalized with tetracycline was selected
as the starting point for computational design (PDB: 2UXH)23. The structure was
prepared for use in Rosetta by performing an all-atom, coordinate-constrained
relaxation3®.

Rosetta/main/source/bin/idealize_jd2.linuxgccrelease -database Rosetta/main/
database/ -in:file::fullatom -s 2UXH.pdb -extra_res_fa LG.params -no_optH false
-flip_HNQ

Rosetta/main/source/bin/relax linuxgccrelease -database Rosetta/main/
database/ -relax::sequence._file always_constrained_relax_script
-constrain_relax_to_native_coords -relax::coord_cst_width 0.25
-relax::coord_cst_stdev 0.25 -s 2UXH_idealized.pdb -in:file::native
2UXH_idealized.pdb -extra_res_fa LG.params -in:file:fullatom -no_optH false
-flip_ HNQ

Rosetta/main/source/scripts/python/public/molfile_to_params.py -n
resveratrol.params -p resveratrol.pdb

The RosettaScripts protocol used to design the ligand-binding pocket of each
starting TtgR-resveratrol complex was based on enzyme design protocols>3°.

Rosetta/main/source/bin/rosetta_scripts.linuxgccrelease -database Rosetta/
main/database/ -parser:protocol enzdes.xml -in:file::s 2UXH_resvertrol.pdb
-extra_res_fa resv.params -use_input_sc -packing:linmem_ig 10 -ex1-ex2
-run:preserve_header -enzdes_out -enzdes:bb_min_allowed_dev 0.2
-enzdes:loop_bb_min_allowed_dev 0.5 -enzdes:minimize_ligand_torsions 15
-parser:script_vars ligchain = X resfile = TtgR resfile -out:pdb -nstruct 10

The TtgRuresfile is a plain text file containing the amino acid position numbers
that were able to be mutated during design, and these were positions 137, 141, 167,
168, 171, 172, 175, and 176. We used UW-Madison’s Center for High Throughput
Computing computer cluster to perform 320,000 different design simulations. The
resulting designed structures were curated to yield the set of sequences that we
synthesized to isolate resveratrol-specific TtgR variants.

We selected computational designs for synthesis by first removing designs that
were repetitive and then removing designs that were energetically unfavorable. The
criteria for unfavorable energies were selected empirically based on the distribution
of energies for all designs to yield approximately 10% sequences for synthesis.
Specifically, on each unique design, AAG stability calculations were performed on
designed residues to ensure the number of destabilizing changes was limited. If the
mutation destabilized the TtgR-resveratrol complex by 0.5 Rosetta Energy Units
(REU), the residue was reverted to its wild-type identity. After this, non-unique
designs were again removed. The unique designs were filtered using distance from
the median absolute deviation of several salient Rosetta scoring metrics including
total ligand binding energy, hydrogen bond energy, Leonard-Jones repulsive
energy, solvation energy, and total score, which is a weighted, linear combination of
all score terms in the energy function®4. Designs that passed this filter were
synthesized for library screening../biosensor_design/fas_from_pdb_stdout.py
* pdb > TtgR_resveratrol_all_designs.fasta./biosensor_design/uniquify_fas.py
TtgR_resveratrol_all_designs.fasta > TtgR_resveratrol_unique_designs.fasta./
ddg_monomer.staticlinuxgccrelease -database./database @ddg_flags -in-file:s
design_pdb.pdb -ddg:mut_file list_of_positions_to_calc_ddg.mutfile
-ddg:iterations 50./gen_enzdes_cutoffs.py concatentated_design_score_file.sc -c
median_abolute_deviation_cutoffs.txt -o designs_passing_filter.sc

The median absolute deviation cutoffs used were:

total_score < +1 MAD

fa_rep < +3 MAD

hbond_sc < +3 MAD

tot_burunsat_pm < 4+3 MAD

%(LIG)s_fa_rep <43 SD

%(LIG)s_hbond_sc < +3 MAD

%(LIG)s_burunsat_pm < 2.5 ABS

%(LIG)s_total_score < —1 MAD

Library synthesis. The sfGFP reporter plasmid was constructed using a backbone
containing the ColEl origin and a kanamycin resistance gene. The TtgR operator
sequence was modified to contain canonical —10 (5'-TATAAT-3’) and —35 (5'-
TTGACA-3') elements in the promoter. A strong RBS (g10) was chosen for high
SfGFP expression). The TtgR operator-RBS sequence was constructed via
sequential PCR reactions with overlapping primers containing homology to the
pColE1 backbone 5’ of sfGFP (Supplementary Table 1). The plasmid was annealed
using isothermal assembly using 0.16pmol of backbone and 0.43pmol of
promoter!. DH10B cells (NEB) were transformed with the pColE1 reporter
plasmid and plated on LB-kanamycin agar (50 pg/mL). A colony was selected and
grown in LB-kanamycin media (50 pg/mL) shaking for 16 h at 37 °C. An aliquot of
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the culture was stored at —80 °C in 25% glycerol. Plasmids were isolated using a
DNA miniprep kit (Omega BioTek) according to the manufacturer’s protocol. The
insertion of TtgR operator sequence was confirmed via Sanger sequencing.

The TtgR expression plasmid used the SC101 origin and a spectinomycin
resistance gene. The constitutive promoter-RBS combination apFAB61-BBa_J61132
and the TgR gene were amplified via KAPA HiFi PCR mix (Roche) using primers
with homology to the pSC101 backbone*2. The TtgR-pSC101 construct was
generated using isothermal assembly (0.046pmol backbone and 0.24pmol TtgR) and
DHI10B cells were transformed with the TtgR-pSC101 construct. A colony was
selected and grown in LB-spectinomycin media (50 ug/mL) shaking for 16 h at
37°C. An aliquot was stored at —80 °C and plasmids were isolated and verified as
described previously.

Rosetta-designed sequences were synthesized as exact oligos (Twist
Biosciences). Oligos were converted to double-strand DNA using qPCR and
purified on a spin column (EZNA Cycle Pure kit from Omega BioTek). The
pSC101 backbone was amplified with two separate primer pairs encoding Bsal cut
sites that matched the insertion location of the oligos on the TtgR gene. The
amplified backbone was treated with Dpnl for 16 h at 37 °C (NEB) followed by a
purification using a spin column. The backbone was treated with Bsal (NEB) for
2.5h at 37 °C followed by purification using a spin column. The digested backbone
was treated with Antarctic phosphatase (NEB) for 1h at 37 °C followed by
purification using a spin column. A golden gate reaction (NEB) was performed
using 0.12pmol backbone and 0.89pmol library oligo in roughly a 1:7 molar ratio
and incubating for 30 cycles of 37 °C for 5min and 16 °C for 5 min followed by
60 °C for 5 min. A control reaction was made using just the pSC101 backbone with
no Rosetta oligos added. The golden gate reactions were dialyzed using semi-
permeable membranes (Millipore) for 1h at 25 °C against dH,0. 25 uL of C3020
cells (NEB) were transformed with 2 uL of the dialyzed golden gate mixture via
electroporation. Cells recovered for 1h in SOC media shaking at 37 °C and were
diluted 5X with LB. Dilutions of 100X, 500X, and 1000X were plated to calculate
transformation efficiency relative to the control. A transformation was considered
successful when CFU/mL of the Golden Gate reactions exceeded CFU/mL of
control reactions by a factor of 10 or more. Cells grew for 6 h post-transformation
before the culture was diluted 50X and grown overnight shaking at 37 °C for 16 h.
Plasmids of the library were harvested using a DNA miniprep kit and stored at
—20°C.

An aliquot of the pColEl frozen stock was streaked on a LB-kanamycin agar
plate and grown for 16 h at 37 °C. A single colony was selected and grown in LB-
kanamycin media shaking for 16 h at 37 °C. The culture was diluted 50X and
grown at 37 °C to an ODggq of 0.6. Cells were placed on ice and 5 mL aliquots were
centrifuged at 5,500 g for 5min at 4 °C. Pellets were resuspended, washed with ice
cold dH20, and spun at 5,500 g twice. The cells were resuspended in 20 uL of water
to create electrocompetent DH10B containing the pColEl plasmid. DH10B E.coli
containing the pColEl reporter plasmid were transformed with the initial Rosetta
library in pSC101 via electroporation. The transformed cells were recovered for 1 h
shaking at 37 °C before dilutions were plated on LB-kanamycin/spectinomycin agar
plates (50 ug/mL each) to calculate transformation efficiency. The remaining cells
were diluted 5X with LB- kanamycin/spectinomycin media and grown shaking at
37°C for 16 h. A frozen stock was made with 25% glycerol.

Fifty microliters of aliquots of the cotransformed Rosetta libraries were thawed on
ice and inoculated into 5 mL of LB-kanamycin/spectinomycin and grown shaking at
37°C to an ODgqq of 0.2. Wild-type cotransformed TtgR sensor + reporter was also
inoculated as a reference. These were then split into 4 1 mL aliquots and inoculated
with either 500 uM naringenin (DMSO), 95 uM resveratrol (ethanol), DMSO,
ethanol and grown for 14 h at 37 °C shaking. Cells were diluted 50X in ice cold PBS
(137 mM NaCl, 2.7 mM KCl, 10 mM Na,HPO,, 1.8 mM KH,PO,) and stored on ice
prior to sorting.

Sorting was conducted using a Sony SH800 cell sorter. Cells were excited by a
488 nm laser and GFP fluorescence was captured through a 525/50 filter. Gain
settings were adjusted such that all cells fell between 102 and 10° RFU. 100,000
event measurements of all libraries, induced and repressed, were taken to draw
gates according to population percentage.

Sorting followed an induced-repressed schema; the first library sort consists of
taking 500,000 cells of median 50% of fluorescence from the nontreated
distribution (Supplementary Fig. 16). This sort isolates cells that contain TtgR
variants capable of repressing GFP expression. Cells were sorted into 2 mL of LB.
LB as added to a final volume of 5 mL and incubated for 1h at 37 °C shaking.
Kanamycin and spectinomycin were added after 1h to a final concentration of
50 pg/mL each from 1 mg/mL stocks. These grew to an ODgg, of 0.2 before frozen
stocks were made in 25% glycerol. A small aliquot was stored as a frozen stock at
—80°C in 25% glycerol. The remaining culture was induced with naringenin,
resveratrol, DMSO, or ethanol at an ODgg, of 0.2.

The next sort consisted of isolating 100,000 cells in the top 5% of fluorescence
from the resveratrol-induced library (Supplementary Fig. 16). This subpopulation
was grown as described previously and induced with 95 uM resveratrol at an ODgg
of 0.2. The final sort consisted of isolating 500,000 cells from the bottom 60% of the
nontreated fluorescence distribution. The sorted cells were incubated at 37 °C until
the culture reached an ODg of 0.2. A frozen stock was stored at —80 °C in 25%
glycerol.

Aliquots of the sorted library, wild-type TtgR cotransformed with the reporter
plasmid, and a GFP-positive control were thawed on ice. 50 uL of the library was

plated on LB-kanamycin/spectinomycin and incubated at 37 °C for 16 h. The GFP
control aliquot was streaked on LB-kanamycin and the wild-type TtgR aliquot was
streaked on LB-kanamycin/spectinomycin and incubated in the same fashion.
Colonies were selected from each plate and inoculated into 150 uL of LB in a 96 well
plate. The colonies were incubated at 37 °C shaking in a SBT1500-H microplate
shaker (Southwest Science) and grew to saturation (approximately 8 h). The cultures
were diluted 15X into fresh LB with either 1000 pM naringenin or 100 uM resveratrol
and incubated in a Synergy HTX plate reader (BioTek) for 16 h at 37 °C. The
performance of each colony was measured using the ratio of fluorescence to optical
density (RFU/ODgqo). The ratio of this measurement in the presence and absence of
ligand defined the response to each ligand. Successful colonies had higher response for
resveratrol than for naringenin. These colonies were sequenced using Sanger
sequencing.

Testing of combinatorial mutants. The 14 mutational intermediates were gen-
erated using eight primers specifically encoding combinations of either 137 + 141
or 167 4 168. The resulting oligos were inserted into the TtgR-pSC101 plasmid
using isothermal assembly using .042pmol of backbone and 0.8pmol TtgR. DH10B
E.coli cells (NEB) were transformed with the resulting reaction via electroporation.
Colonies were selected and sequenced to verify the correct mutations were present.
The correct colonies were inoculated into LB-spectinomycin and incubated at 37 °C
for 16 h. An aliquot was stored at —80 °C in 25% glycerol and plasmids were
harvested from the remaining culture. DH10B cells were cotransformed with the 14
TtgR-pSC101 plasmids and the pColEl reporter plasmid. These were grown for
16 h shaking at 37 °C in LB-kanamycin/spectinomycin media and frozen in 25%
glycerol at —80 °C.

A 250 mM stock of naringenin was made in DMSO and a 100 mM stock of
resveratrol was made in ethanol. The TtgR-pSC101/pColE1 frozen stocks were
struck out onto LB-kanamycin/spectinomycin plates. Colonies were selected and
inoculated into 150ul LB in a 96-well plate. These grew in a microplate shaker to
saturation (approximately 8 h) at 37 °C. The cultures were diluted 15X into fresh
LB-kanamycin/spectinomycin in a 96-well plate with varying concentrations of
either naringenin (0, 10, 25, 50, 75, 100, 250, 500, 750, 1000, 1500, 2000 uM) or
resveratrol (0, 2.5, 5, 7.5, 10, 25, 50, 75, 100, 150, 200, 250 uM). The concentration
series for each ligand differ due to solubility limits in aqueous solutions. A series of
naringenin and resveratrol stock concentrations were made such that a 50X or a
100X dilution, respectively, would yield the desired concentrations in the assay.
Most variants were assayed with three biological replicates. Variants whose
standard deviation was greater than 10% of the mean fluorescence (1010, 1001,
1110, and 1101 for naringenin and 1001, 1000, 0001, and 0011 for resveratrol) were
assayed with six replicates. The assay was incubated in the microplate shaker for
14 h at 37 °C shaking. Cells containing wild-type TtgR-pSC101 with the pColE1
reporter and cells containing pColE1 reporter alone served as controls and were
included on every plate. A set of six biological replicates of a sSfGFP positive control
were induced with both sets of ligands and concentrations.

Cells were diluted 50X in ice-cold PBS. Fluorescence measurements were
conducted on a LSR-Fortessa system (BD Biosciences) in the FACSDiva
V8.0 software using a 488 nm laser for excitation and a 530/30 filter for
fluorescence emission. Using gates on FSC-H vs FSC-A, 100,000 events were
gathered per well (Supplementary Fig. 16). To account for changes in fluorescence
that are independent of TtgR function, raw fluorescence values were normalized by
fold changes in sfGFP fluorescence in the positive control (N = 6). The median
values of the fluorescence distributions were used as the basis for fold induction
calculations. Fold induction as calculated by obtaining the ratio of induced average
median fluorescence to baseline average median fluorescence. In Fig. 1, fold
induction values were calculated by obtaining the ratio of each biological replicate
prior to averaging the ratios.

F
fold induction = "% (1)

baseline

Quantifying epistasis. The mean and standard deviation of each concentration of
ligand for each combinatorial mutant were used to calculate a fit using the Hill
equation as a function of ligand concentration (x)%3:

XYI
f(xf ”#ECSO) = Fhuseline + <(qux - Fbuseline) * <EC50” + xn)) (2)

TtgR function was defined as the maximum fold induction of the system, which
is the ratio of the median fluorescence at the highest ligand concentration and the
median fluorescence at 0 uM ligand (Eq. 1). The Python 2.7 function curve_fit()
from the Scipy module was used to fit the dose-response curves to the Hill
equation (Supplementary Figs. 17, 18)*%. This function provides both fit
parameters and error as a covariance matrix as output. Basal gene expression was
the fluorescence at 0 uM ligand. Maximum gene expression was the fluorescence at
the highest ligand concentration. EC5, was estimated using the Hill equation
(Eq. 2).
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The Bahadur expansion was used to analyze the data’®. Fitness for the bahadur
expansion was defined as

fold induction,,,,;
itness, . . = lo S T variant. 3
Jitnesaian = 10810 <fold induction,;g,,p. ®)

Fold induction in Eq. (2)was changed to basal gene expression, maximum gene
expression, or ECs, for each functional parameter. Each mutant can be represented
as a numerical string (z string), where each mutable position is one number (z;) in
the string. A wild-type residue at a position is designated by a —1 while the
mutated residue is designated by a 1. The mutant M167L+F168Y thus becomes
[—=1, —1, 1, 1]. The interaction terms can be modeled as follows:

9 =1 @

PrsPas e Py = 21520, -0 12y (5

Pur1s Prt2r oo Purcr = 2122521235 -+ 5 Zp—1%n (6)
Py = 212511 2y (7)

An orthonormal matrix of psi-values is created based on the combinations of
mutations within the set (Supplementary Table 4). The Bahadur coefficients can be
calculated using this orthonormal matrix and a fluorescence values f{x) for a
particular mutant x in the set of all mutants X.

W =55 @00 ®)

The fluorescence of each combinatorial mutant can be calculated based on the
Bahadur coefficients and z string.

@ =5 wp ©)

The R2 between the modeled fluorescence values and the experimental data is 1.0
when all interaction terms are included in the expansion. By truncating Eq. (9) to
contain only low-order interactions, the effect of these contributions to the model
can be determined. The expansion was applied to the full set of mutations (4
positions) and modeled using first-order terms; first- and second-order terms; first-,
second-, and third-order terms; and all terms (Supplementary Fig. 19). An identical
approach was applied to all 24 subnetworks and utilized only first-order terms in the
reconstruction (Supplementary Fig. 20).

Errors in the R? statistics were estimated using a Monte Carlo simulation.
500 sets of fitness values for all mutants were sampled based on experimental
fitness means and standard deviations following a Gaussian distribution using the
NumPy module in Python 2.74%46, Equations (8) and (9) were applied to
reconstruct the fitness values and calculate R? values between the sampled model
and the sampled data to give a distribution of R? values. Bias-corrected adjusted
95% confidence intervals were calculated by obtaining the average R? of 10,000
bootstrap iterations of the Monte Carlo simulation R2. The bahadur expansion was
applied to each functional parameter.

A control set of additive data was used to calculate the R? of data showing no
epistasis (Supplementary Table 2). This control set was analyzed using the same
approach as the subnetwork workflow.

Protein characterization. The TtgR gene for variants 0000, 1000, 0100, 1100, and
1111 were cloned into a pET31B vector downstream of the T7 promoter for lac-
inducible transcription control using isothermal assembly with 0.18pmol backbone
and 0.392pmol TtgR. MBP was amplified with primers to add a C-terminal His-tag
and TEV site and inserted into the TtgR-pET31B vector upstream of TtgR to create a
MBP-His-TtgR fusion with a TEV cleavage site between the His-tag and the TtgR
protein. BL21 chemically competent cells (NEB) were transformed with 20 ng of
pET31B vector. Dilutions of transformants were plated on LB-ampicillin agar. A
colony was selected and grown in 5 mL LB-ampicillin media shaking at 37 °C for
16 h. This culture was added to 500 mL autoinduction media (Terrific Broth, 0.8%
glycerol, 2 mM MgSO,, 0.375% (w/v) aspartic acid, 0.015% (w/v) glucose, 0.5% (w/v)
lactose) and grown for 8 h at 37 °C shaking. The culture was grown for an additional
16 h at 25°C shaking.

The cells were spun down at 5500 g for 15 min at 4 °C. The supernatant was
removed and the cells were resuspended in a lysis buffer (300 mM NaCl, 50 mM
HEPES, 1 mM PMSF, 1 mg/mL Lysozyme, 5mM BME, 10% glycerol, pH 7.5). A
Q500 sonicator (Qsonica) was used to lyse cells using a 5 on, 15 s off sonication
protocol for 4 min total sonication time. The lysate was centrifuged at 14,000 g for
45 min at 4 °C. The supernatant was isolated and filtered through a 0.22 um filter.
The filtered supernatant was purified on an Akta Start using 2 5mL HisTrap HP
columns. The column was washed with 5 column volumes (CV) IMAC-A (500 mM
NaCl, 20 mM Imidazole, 20 mM MOPS, 0.3 mM TCEP, pH 7). MBP-6His-TtgR
was eluted with a gradient of 100% IMAC-A to 100% IMAC-B (500 mM NaCl,
500 mM Imidazole, 20 mM MOPS, 0.3 mM TCEP, pH7) over 5CV and collected in
2mL fractions. Fractions with the highest absorbance at 280 nm (A280) were
combined and dialyzed in 8 L of dialysis buffer A (100 mM NaCl, 20 mM MOPS,
0.3 mM TCEP, pH 7.5). TEV was added to the proteins prior to dialysis at a ratio of

1:50 w/w TEV:TtgR. Dialysis occurred over a 16 h interval at 4 °C while stirring at
low speed.

Dialyzed protein was centrifuged at 14,000 g for 10 min at 4 °C. The supernatant was
passed through a 0.22 um filter and loaded onto the HisTrap columns at 5 mL/min. The
column was washed with 5CV of IMAC-A and 2 mL fractions were collected. 5CV of
IMAC-B was used to remove the MBP-6His from the column. The column was washed
with an additional 10CV IMAC-A. Wash fractions with high A280 were combined and
reapplied to the column. The column was washed with 5CV of IMAC-A and 2 mL
fractions were collected. 5CV of IMAC-B was used to strip the MBP-6His from the
column. Fractions with high A280 were combined and dialyzed in 4 L of dialysis buffer
C (100 mM NaCl, 20 mM MOPS, 10 mM MgCl,, 0.3 mM TCEP, pH 7.8). The protein
was centrifuged at 14,000 g for 10 min at 4 °C. The supernatant was passed through a
0.22 um filter. The protein was concentrated to approximately 9 mg/mL and frozen in
60 pL aliquots in liquid nitrogen before storing at —80 °C. Dialysis buffer C was passed
through a 0.22 um filter and stored at 4 °C for ITC experiments.

Stocks of 250 mM naringenin and 100 mM resveratrol were diluted to 500 uM
and 250 uM, respectively, in dialysis buffer C. Aliquots of TtgR were thawed on ice
and diluted to a final concentration of 7.5 pM. DMSO or ethanol was added to the
TtgR solution to match the solution composition of the naringenin or resveratrol
dilutions. An aliquot of dialysis buffer C was also prepared with DMSO or ethanol
for a control injection and to wash the sample cell between ITC injections.

The ITC experiments were conducted on a VP-ITC (MicroCal). An initial
control injection scheme consisted of loading the sample cell with dialysis buffer C
and performing a series of 10 10 pL ligand injections with 10 min intervals at 25 °C.
The sample cell was washed 5 times with dialysis buffer C before the 7.5 uM
protein solution was loaded. Twenty-five 10 uL naringenin injections or 28 10 uL
resveratrol injections occurred in 10 min intervals at 25 °C.

Data analysis was primarily conducted using Origin 7.0 (MicroCal). The heats
of injection from the control sample were averaged. The protein-ligand injection
profile was subtracted by this average heat prior to curve fitting. Due to low affinity
for both naringenin and resveratrol, the stoichiometry of binding was fixed to 1 to
reduce the degrees of freedom prior to fitting. The curves were fit with the single
binding site model (Supplementary Fig. 21).

X-ray crystallography. TtgR-pET31B vector was electroporated into BL21 cells
(NEB) and recovered in 1 mL SOC. The cells were incubated for 1 h at 37 °C before
serial dilutions were plated on LB-ampicillin (100 pg/mL) plates. A single colony
was selected and incubated in 5 mL LB-ampicillin (100 ug/mL) at 37 °C shaking for
3 h. The 5 mL culture was added to 500 mL LB-ampicillin media and incubated at
37 °C shaking at 250 rpm for approximately 3 h until the ODgg reached 0.6. The
culture was induced with 100 pM IPTG followed by an incubation at 16 °C for 16 h
shaking at 250 rpm.

The cells were spun down at 5500 g for 15 min at 4 C. The supernatant was
removed and the cells were resuspended in a lysis buffer (300 mM NaCl, 50 mM
HEPES, 1 mM PMSF, 1 mg/mL Lysozyme, 5mM BME, 10% glycerol, pH 7.5). A
Q500 sonicator (Qsonica) was used to lyse cells using a 25 s on, 50 s off sonication
protocol for 3 min and 45 s total sonication time. The lysate was centrifuged at
14,000 g for 45 min at 4 °C. The supernatant was isolated and filtered through a
0.22 um filter. The filtered supernatant was purified on an Akta Start (Cytiva) using
5mL HisTrap HP columns (Cytiva). The supernatant was loaded onto the column
at a flow rate of 5 mL/min. The column was washed with 5 column volumes (CV)
IMAC-A. MBP-6His-TtgR was eluted with a gradient of 100% IMAC-A to 100%
IMAC-B over 10CV and collected in 2 mL fractions. Fractions with the highest
absorbance at 280 nm (A280) were combined and dialyzed in 8 L of dialysis buffer
A. TEV was added to the proteins prior to dialysis at a ratio of 1:50 w/w TEV:TtgR.
Dialysis occurred over a 16 h interval at 4 °C while stirring at low speed.

TtgR was isolated from MBP-6His through a subtractive IMAC protocol using
the Akta Start and 5 mL HisTrap HP column. The dialyzed protein was centrifuged
at 4000 g for 10 min at 4 C. Supernatant was passed through a 0.22 ym filter and
applied to the HisTrap column at 5 mL/min. 5CV IMAC-A was used to wash the
column while 2 mL fractions were collected. 2.5CV IMAC-B was used to remove the
MBP from the column and 5 mL fractions were collected. Wash fractions with high
A280 were combined and dialyzed in 4 L of dialysis buffer B (50 mM NaCl, 5 mM
MOPS, 0.3 mM TCEP, pH 7.5). EDTA was added to the protein wash fractions to a
final concentration of 10 mM prior to dialysis. Dialysis occurred over a 16 h interval
at 4 C while stirring at low speed. TtgR was concentrated to 10 mg/mL using spin
concentrators. Samples were spun at intervals of 3500 g for 5 min and mixed via
pipette between spins. Concentrated TtgR was separated into 60 uL aliquots and
frozen in liquid nitrogen prior to storage at —80 °C.

Samples of TtgR wild type and mutant proteins were received frozen in 5 mM
MOPS, pH 7.4, 50 mM NaCl, 0.3 mM TCEP. Samples were thawed and
centrifuged for 5 min at 21,130 g. Sample supernatants were filtered with a 0.22
micron MillexGV syringe filter unit (Millipore) before applying to an equilibrated
10 mm X 300 mm Superdex 200 column (GE Healthcare). Chromatography was
performed on a GE AKTA FPLC system. Column buffer was 20 mM HEPES, pH
7.5, 350 mM NaCl, 0.3 mM TCEP. Two primary peaks were obtained from each
sample with major peak at approximately 45kD MW and a minor peak at
approximately 79kD. The fractions corresponding to the major peak were pooled
and concentrated with an Amicon Ultracel-10 centrifugal filter device (Millipore)
and dialyzed vs. 5mM HEPES, pH 7.5, 50 mM NaCl, 0.3 mM TCEP. Samples
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collected after dialysis were divided into small aliquots and flash frozen in PCR
tubes with liquid nitrogen.

Crystallization screening and optimization were conducted in the Collaborative
Crystallography Core in the Department of Biochemistry and the University of
Wisconsin-Madison. Crystallization experiments were set up using a SPT Labtech
mosquito® crystallization robot in MRC SD-2 crystallization plates at 4 °C and 20 °C
(277 and 293 K.) Crystals progressing to diffraction experiments were all obtained at
20°C. Two general screens, Hampton Research IndexHT and Molecular Dimensions
JCSG+ were used in this study*’. Crystals were detected using brightfield and UV
fluorescence imaging with a JANSi UVEX-P crystallization plate imaging system
supplementing visual inspection with stereomicroscopes. Initial rounds of crystallization
optimization were performed in SD2 plates using the mosquito to expand 24 solution
conditions by setting columns of experiments in four different samples to reservoir
volume ratios. Cryoprotected crystals were harvested in Mitegen micro mounts and
flash cooled by immersion in liquid nitrogen.

Crystals were screened and X-ray diffraction data were collected at Advanced
Photon Source (APS) beamlines LS-CAT and GM/CA@APS, universally on
crystals cooled to 100 K. Diffraction data was reduced using XDS (VERSION Mar
15, 2019 BUILT=20190315) and scaled with XSCALE (VERSION Mar 15, 2019
BUILT=20190315)434%, Structures were solved by molecular replacement with
Phaser V2.8.2 within the Phenix suite of programs (V1.18.2_3874), automatically
rebuilt with phenix.autobuild, iteratively improved with alternating rounds of
rebuilding in Coot and refinement using phenix.refine, and validated using
MOLPROBITY V4.02-528%0-54,

7K1A. Crystals providing diffraction data were grown by mixing 200 nL of protein
at 9.7 mg/mL in sample buffer (5 mM HEPES pH 7.5, 50 mM NaCl, 0.3 mM TCEP)
with 150 nL of reservoir solution, was equilibrated against 150 nL 20% MEPEG,
0.2 M MgCl,, 0.1 M bistris HCl pH 6.5 equilibrated against 50 pL of reservoir
solution in a SD2 plate. Samples were cryoprotected with reservoir solution sup-
plemented to 35% MEPEG 2000. A 360° sweep of data (720 frames) was collected
on a MAR 300 CCD detector at LS-CAT beamline 21ID-G on 2018-12-16 using
0.97856 A X-rays. The phase problem was solved using 2UXU(A) as a molecular
replacement model28,

7K1C. Crystals of wild-type TtgR with resveratrol were prepared by incubating
0.41 mM protein (9.8 mg/mL) and 0.5 mM resveratrol dissolved in sample buffer
for 30 min at room temperature prior to setting up crystallization experiments. The
crystal yielding the best diffraction data were grown by mixing 200 nL of the
protein-ligand sample with 250 nL reservoir (18% PEG4000, 0.2 M MgCl,, 0.1 M
bistris HCI pH 6.5) equilibrated against 50 pL of reservoir a SD2 plate. Samples
were cryoprotected with reservoir solution supplemented with 35% PEG4000. A
360° sweep of data (720 frames) was collected on a MAR 300 CCD detector at LS-
CAT beamline 21ID-G on 2018-12-16 using 0.97856 A X-rays. The phase problem
was solved using 2XDN as a molecular replacement model.

7KD8. Crystals were prepared by incubating 0.43 mM (10.4 mg/mL) quadruple
mutant protein with 1 mM resveratrol in sample buffer for 30 min prior to
setting up crystallization experiments. Crystals providing the reported diffrac-
tion data set grew from 2 pL of sample mixed with 2 uL of reservoir solution
(12% MEPEG 2000, 5% 2-methyl-2,4-pentanediol, 0.3 M MgCl,, 0.1 M bistris
buffer at pH 6.5 equilibrated in a hanging drop experiment using a siliconized
glass cover slip. Samples were cryoprotected with reservoir solution supple-
mented to 30% MEPEG 2000. A 360°(3600 frames) shutterless data set was
collected at LS-CAT 21ID-D on 2019-05-30 with an Eiger 9 M direct detector
and 1.07812 A X-rays. The phase problem was solved using 7K1A as a molecular
replacement model.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability

The datasets generated and analyzed during the current study are available from the
corresponding author on reasonable request. The crystallography data generated in this
study are available in the RCSB under the following accession codes: 7K1A, 7K1C, and
7KD8. The naringenin-bound wild-type TtgR structure data used in this study are
available in the RCSB Protein Data Bank under accession code 2UXU. The minocycline-
bound TtgR structure data used for computational design are available in the RCSB
Protein Data Bank under accession code 2UXH. Source data are provided with

this paper.

Code availability

All figures were generated using the Matplotlib module in Python 2.7%%. Python and shell
scripts for generating input from Rosetta and analyzing from Rosetta are available at:
https://github.com/raman-lab/biosensor_design. Scripts used in data analysis of flow
cytometry data, epistasis analysis, and figure generation can be found at: https://
github.com/raman-lab/epistasis. Flow cytometry data were analyzed in FlowJo V10. ITC

data were analyzed using Origin V7.0. POVME V3.0 was used to calculate pocket
volumes based on the location of resveratrol®.
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