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The histologic phenotype of lung cancers is
associated with transcriptomic features rather than
genomic characteristics
Ming Tang1,11, Hussein A. Abbas 2,11, Marcelo V. Negrao 3, Maheshwari Ramineni4, Xin Hu1,

Shawna Marie Hubert 3, Junya Fujimoto5, Alexandre Reuben 3, Susan Varghese3, Jianhua Zhang 1, Jun Li1,

Chi-Wan Chow5, Xizeng Mao1, Xingzhi Song1, Won-Chul Lee1, Jia Wu 6, Latasha Little1, Curtis Gumbs1,

Carmen Behrens3, Cesar Moran 7, Annikka Weissferdt7, J. Jack Lee 8, Boris Sepesi9, Stephen Swisher 9,

Chao Cheng 10, Jonathan Kurie 3, Don Gibbons 3, John V. Heymach 3, Ignacio I. Wistuba3,5,

P. Andrew Futreal 1✉, Neda Kalhor 7✉ & Jianjun Zhang 1,3✉

Histology plays an essential role in therapeutic decision-making for lung cancer patients.

However, the molecular determinants of lung cancer histology are largely unknown. We

conduct whole-exome sequencing and microarray profiling on 19 micro-dissected tumor

regions of different histologic subtypes from 9 patients with lung cancers of mixed histology.

A median of 68.9% of point mutations and 83% of copy number aberrations are shared

between different histologic components within the same tumors. Furthermore, different

histologic components within the tumors demonstrate similar subclonal architecture. On the

other hand, transcriptomic profiling reveals shared pathways between the same histologic

subtypes from different patients, which is supported by the analyses of the transcriptomic

data from 141 cell lines and 343 lung cancers of different histologic subtypes. These data

derived from mixed histologic subtypes in the setting of identical genetic background and

exposure history support that the histologic fate of lung cancer cells is associated with

transcriptomic features rather than the genomic profiles in most tumors.
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Lung cancer is the leading cause of cancer death in the United
States with an estimated 1,898,160 new cases and 608,570
deaths expected in 20211. Histopathology continues to play an

essential role in prognosis and choosing appropriate treatment2.
Largely determined by morphology, primary lung cancers are his-
tologically classified into small cell lung cancers (SCLC) and non-
small cell lung cancers (NSCLC), with the latter including adeno-
carcinoma (LUAD), squamous cell carcinoma (LUSC), and large-
cell neuroendocrine carcinoma (LCNEC) as the main histologic
subtypes. However, consensus histologic confirmation can some-
times be challenging and therefore impacts optimal treatment
choices3,4. The molecular mechanisms determining the tumor his-
tology are unknown. Previous studies revealed that tumors from
different patients or even multiple independent primary lung cancers
within the same patients can have identical morphology yet share no
mutations5, while there can be a morphologic difference in different
regions within the same tumors that share the majority of
mutations6. These findings suggest that morphology may not be
primarily determined by genomic features.

About 5% of primary lung cancers can present with a mixed
histologic pattern, where multiple distinct histologic components
present within the same tumors, often referred to as combined or
mixed histology7,8. Tumors with mixed histology provide a unique
opportunity to study the molecular basis for histology determination
as different histologic components share the same genetic back-
grounds and exposure history. There have been a few studies on
lung cancers of mixed histology, most of which focused on the
genomic changes of adenosquamous lung cancers. The majority of
these studies revealed shared driver mutations between different
histologic components8–14. These findings are overall in line with
the prior hypothesis that genomic changes were not the main
determinants of histology. However, these studies only covered
hotspot driver mutations or small gene panels, while mutations of
other genes with essential biological functions and other genomic
alterations such as somatic copy number alterations (SCNA) were
not investigated. Thus, the relationship between genomic alterations
and histology was not fully addressed.

In the current study, we leverage three unique datasets to show
that the histologic phenotype of lung cancers is associated with
transcriptomic features rather than genomic characteristics: (1)
whole-exome sequencing (WES) and transcriptomic data from 19
microdissected tumor regions of different histology from 9 pri-
mary lung cancer patients with mixed histologic patterns
including 6 LUAD, 6 LCNEC, 3 SCLC, 3 LUSC, and one poorly
differentiated NSCLC-NOS; (2) transcriptomic data from 141 cell
lines of different histologic subtypes from the Cancer Cell Line
Encyclopedia (CCLE)15 including 14 LCNEC, 57 LUAD, 48
SCLC, and 22 LUSC; (3) transcriptomic data from a total of 343
patients including 14 LCNEC, 273 LUAD, 9 SCLC, and 47 LUSC
with lung cancers of different histologic subtypes16,17.

Results
Patient characteristics. The clinicopathologic characteristics of
the nine patients with lung cancers of mixed histology are sum-
marized in Supplementary Data 1. The median age at diagnosis
with lung cancer was 67 years (range 47–79 years). All patients
were current (3/9) or former (6/9) smokers. Eight patients had
two distinct histologic subtypes, while one patient had three
different histologic components (Supplementary Data 1). Repre-
sentative images of hematoxylin and eosin and immunohisto-
chemical (IHC) staining of these tumors are shown in
Supplementary Figs. 1a–d and 2a–d, respectively. Different his-
tologic components of each tumor of mixed histology were
manually microdissected, which resulted in 19 different tumor
tissues including 6 LUAD, 6 LCNEC, 3 SCLC, 3 LUSC, and 1

poorly differentiated NSCLC-NOS that were subjected to WES
and microarray RNA profiling. The most common combination
of mixed histology was LCNEC-LUAD in 4/9 patients, followed
by LCNEC-LUSC and SCLC-LUAD subtypes in 2/9 patients
each, and 1 patient had SCLC-LUSC subtypes.

Shared mutations across different patients and distinct histo-
logic subtypes. We first investigated whether the mutations over-
lapped between different histologic components within the same
tumors and whether there were particular mutations shared across
the same histologic components from different patients. Overall,
different histologic components from the same tumors shared the
majority of mutations (Fig. 1, Supplementary Data 2, and Supple-
mentary Fig. 3a–i). The percentage of shared mutations within the
same tumors ranged from 12.1% to 98.4% with a median of 68.9%,
similar to that between different regions within the same tumors of
the same histology6 (68.9% vs 72%, p= 0.46, Wilcoxon rank-sum
two-side test). These results are consistent with previous findings
from adenosquamous mixed histology lung cancers7–11, suggesting
somatic mutations may not be the primary determinants of histol-
ogy in most tumors. Of note, in Pa35, only 12.1% of mutations were
shared between the SCLC and LUAD components. Therefore, we
cannot exclude the contribution of genetic alterations in histologic
determination in a subset of tumors.

Similar mutational processes are occurring between different
histologic components within the same tumors. It is well known
that different cancer types have distinct mutational signatures18

suggesting different mutational processes in play reflecting different
genetic backgrounds and exposure etiologies associated with differ-
ent cancer types. To understand whether the mutational processes
are histology-specific in these lung tumors of mixed histology in the
context of identical genetic background and exposure history, we
calculated the mutational spectrum and mutational signatures in
each histologic component. Overall, a similar mutational spectrum
was observed between different histologic components within the
same tumors (Fig. 2a). We next calculated the contribution of
30 signatures of mutational processes in cancer18 (Fig. 2b, c). Not
surprisingly, Signature 4 (associated with smoking and tobacco
carcinogenesis) was the most dominant in seven of nine patients
consistent with their smoking history (Fig. 2c). Two exceptions were
patients Pa35 and Pa26, who were both former light smokers with a
2.5 and 5 pack-year smoking history, respectively, and both quit >20
years ago. Other common signatures in this cohort of tumors
included Signature 1 (associated with spontaneous deamination of 5-
methylcytosine), Signatures 2 and 13 (associated with APOBEC-
mediated mutagenesis), and Signature 16 (etiology-unknown).
Similar to the mutation spectrum, the mutational signatures were
also overall similar between different histologic components within
the same tumors, while none of the mutational signatures enriched
in certain histologic components were shared across different
patients. Taken together, these data suggest that mutational pro-
cesses were not histology-specific, but rather patient-specific, likely
determined by the particular exposure history and host factors in
each patient.

Somatic copy number aberration profiles are similar between
different histologic components within the same tumors.
SCNA is another key feature of human malignancies that could
potentially impact the expression of large groups of genes. We
next delineated the genome-wide SCNA profiles. As shown in
Fig. 3a, b, the overall SCNA profiles were similar between dif-
ferent histologic components within the same patients, while
drastically different among different patients. Furthermore, we
quantified SCNA events using a gene-based SCNA analysis
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algorithm19 for exome sequencing data that allows comparing the
SCNAs between different samples to identify shared and unique
SCNA events between different histologic components within the
same tumors. To minimize the impact of tumor purity on SCNA
analysis, we obtained purity-adjusted log2 copy number ratios for
each tumor in this study (see Methods for details). On average,
83% of SCNA events (ranging from 54.7% to 99.1%) were shared
between different histologic components within the same tumors
suggesting the majority of SCNA events were early molecular
events before the separation of different histologic components.
No particular SCNAs were found to be enriched in certain his-
tologic subtypes. Furthermore, compared to the intratumor het-
erogeneity dataset from the TRACERx study20, at the gene level,
the extent of shared SCNA landscape between different histologic
components was comparable to that between spatially separated
tumor regions within the same NSCLC tumors of the same his-
tology (83% in mixed histology cohort vs 72% in TRACERx
cohort, p= 0.25, Wilcoxon rank-sum two-side test).

Similar subclonal architecture between different histologic
components. We next inferred cancer cell fractions (CCF) of all
somatic mutations using PyClone21 adjusting for copy number

changes and tumor purity to determine the subclonal architecture in
each histologic component. Overall, the subclonal architecture was
similar between different histologic components within the same
tumors. Particularly, Pa29 and Pa36 have the CCFs lined up almost
on the diagonal line indicating nearly identical subclonal architecture
between different histologic components within the same tumors. A
substantial proportion of clonal mutations22,23 were shared across
different histologic components of the same tumors and only a small
proportion of clonal mutations were private (Fig. 4a–k). Specifically,
among the shared mutations, an average of 54.6% (ranging
16–96.5%) were clonal, while only 10.7% (ranging 0.14–35.8%) of
private mutations were clonal. One plausible explanation is that the
separation of different histologic clones was molecularly late events
during the evolution of most tumors when the subclonal architecture
was already determined, and no major genomic evolution has
occurred after the separation of different subclones giving rise to
different histologic components.

The majority of cancer gene alterations occurred before the
divergence of different histologic components of the same
tumors. Cancer gene mutations are known to determine distinct
molecular subsets of lung cancers with unique clinical

Fig. 1 Overlapping number of somatic mutations across the samples. The upset plot demonstrates the shared mutations across samples. Blue bars in the
y-axis represent the total number of mutations in each sample. Black bars in the x-axis represent the number of mutations shared across samples
connected by the black dots in the body of the plot. Source data are provided as a Source Data file.
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presentation and cancer biology and certain cancer gene muta-
tions are even considered pathognomonic for certain histologic
subtypes24. Among lung cancers, for example, alterations in
EGFR, KRAS, SMARCA4, STK11, and KEAP1 are almost exclu-
sively observed in LUADs24; LUSCs often carry mutations in
TP53, CDKN2A, RB1, NFE2L2, KEAP1, PIK3CA, and PTEN25,
while RB1 and TP53 are frequently altered in neuroendocrine
carcinomas (NEC) including LCNEC and SCLC26. We next
investigated whether specific cancer gene mutations could
determine different histologic patterns in these tumors of mixed
histology. A total of 34 canonical cancer gene mutations, defined
as nonsynonymous mutations identical to those previously
reported in oncogenes27,28 or truncating mutations in known
tumor suppressor genes (TSG), were identified in these 19 speci-
mens (Supplementary Data 3). Importantly, 30 of the 34 cano-
nical cancer gene mutations were clonal in each histologic
component (Supplementary Data 3). Furthermore, 31 of the 34
cancer gene mutations were shared between different histologic
components within the same tumors (Supplementary Data 3).

To further delineate the evolution of these tumors of mixed
histology and understand the timing of cancer gene mutations, we
constructed phylogenetic trees and mapped the canonical cancer
gene mutations to the trunks (representing early clonal events
before separation of different histologic subclones) and branches
(representing later subclonal events after separation of cancer cell
subclones that gave rise to different histologic components). As
demonstrated in Supplementary Fig. 4, the majority of canonical
cancer gene mutations were early trunk events before the
divergence of different histologic subclones. Interestingly, in
patient Pa35, a PIK3CA p.M1043I mutation was shared between
the SCLC and LUAD components, while a PIK3CA p.E542K was
only detected in the LUAD component (Supplementary Fig. 4g
and Supplementary Data 3). Similarly, in Pa37, a PIK3CA
p.E545K was identified in both LUAD and LCNEC components,
while a PIK3CA p.H1047R was private to the LUAD component
(Supplementary Fig. 4i and Supplementary Data 3). These
findings are reminiscent of heterogeneity studies in kidney29

and lung cancers5,20,30, where different mutations in the same
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Fig. 2 Mutational spectrums and signatures are similar across different histologic components within the same patient. a Bar plots represent the
mutational spectrum decomposed by trinucleotide context. b Heatmap of the contribution of the 30 COSMIC mutation signatures in each sample. c
Stacked barplot for the contribution of the top 10 mutation signatures in each sample. Source data are provided as a Source Data file.
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cancer genes were identified in different regions within the same
tumors or different independent primary tumors within the same
patients. These results imply convergent evolution and that even
with an identical genetic background and environmental
exposure, the evolution of different cancer cell subclones can be
driven by distinct molecular events, with possible genetic
constraints around certain genes or pathways (PIK3CA in case
of patient Pa35 and Pa37) that are pivotal for cancer evolution.

Next, we estimated copy number gains of oncogenes and copy
losses of TSG based on the COSMIC database27 in this cohort of
tumors of mixed histology (Fig. 3c). A total of 11 copy number
gains of 5 oncogenes and 129 copy number losses of 27 TSGs
were detected in this cohort of tumors of mixed histology. Similar
to cancer gene point mutations, 53.8% of SCNA in oncogenes and
TSGs were shared within the same patients. Furthermore, loss of
heterozygosity (LOH) of RB1 was identified in seven out of nine
tumors of mixed histology (Supplementary Data 4), in line with
that all tumors have NEC components. Importantly, LOH of RB1
was shared between different histologic components in all seven
tumors. These data suggested that the cancer gene mutations and
copy number changes were early molecular events acquired
before the divergence of different histologic subtypes and maybe

not the major mechanisms determining the histologic fate of
cancer cells in lung cancers of mixed histology.

Specific transcriptomic patterns may be associated with specific
histologic subtypes. As the histology of these lung cancers did not
appear to be determined by genomic aberrations, we next sought to
explore whether the cell fate is determined at the transcriptomic
level. We first performed gene expression profiling of the same
tumor regions of distinct histologic subtypes to investigate whether
transcriptomic signatures could differentiate histological subtypes.
By principal component analysis, the normal lung tissues were
separated from the tumor samples highlighting the distinct tran-
scriptomic changes associated with malignant cells (Fig. 5a). Tumor
specimens of different histologic subtypes from the same patients
overall clustered together, although there was a small cluster of
LUAD samples from different patients clustered close to each other
(Fig. 5a). In unsupervised hierarchical clustering, different histologic
components within the same tumors also tended to cluster together
highlighting substantial inter-patient heterogeneity. On the other
hand, 8 of the 19 specimens were clustered with specimens from a
different patient, significantly more common than that of different
tumor regions within the same tumors of same histology, where 2 of
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35 specimens were clustered with a different patient (p= 0.001 by χ2

test)31. Among these eight specimens, four LUAD specimens
(Pa26T2, Pa30T2, Pa31T2, and Pa37T1) were clustered together,
while Pa35T1 (LCNEC) clustered with Pa37T2 (SCLC) (although
Pa35T1 is closer to Pa35T2) and P30T1 (LCNEC) clustered with
P31T1 (SCLC) (Fig. 5b)—both LCNEC and SCLC are considered as
NEC sharing many biological and clinical features32. Similarly, the
LCNEC components of patients Pa26 and Pa29 were clustered
together. Taken together, these data suggested that in the back-
ground of patient-specific gene expression profiles, there may be
histology-specific transcriptomic features, associated with distinct
histological phenotypes.

Histology-specific pathways shared with independent cohorts.
To further understand the transcriptomic features associated with
different histologies, we evaluated if any Hallmark pathways33

were enriched in different histologic subtypes. To identify
histology-specific pathways, we looked specifically at overlapping
pathways in the histologic comparison pairs in different patients
that had the same direction of enrichment (either positive or
negative). The most concordant pattern was noted in Pa31 and
Pa35 with SCLC versus LUAD, whereas three pathways were
upregulated and nine pathways were downregulated in SCLC
components compared to LUAD components (Fig. 5c).

Interestingly, the three upregulated pathways in SCLC
(E2F_Target, G2M_checkpoint, and MYC_target) were asso-
ciated with cell proliferation, while six of the nine downregulated
pathways in SCLC components (IL2, complement, INFG, INFA,
TNFA, and inflammatory response) were associated with
inflammatory/immune response. In the LCNEC versus LUAD
comparisons, there were no pathways with consistent enrichment
in all four patients (Fig. 5d). However, compared to LUAD, MYC,
G2M, and E2F pathways were upregulated in LCNEC compo-
nents in 3/4, 3/4, and 2/4 and patients, respectively, while
interferon-alpha and interferon-gamma responses were down-
regulated in LCNEC components in 2/4 and 2/4 patients,
respectively (Supplementary Data 5).

To validate these findings, we analyzed the transcriptomic data
from another three different cohorts: two previously published large
cohorts of primary lung cancers by Karlsson et al.17, which
encompassed 126 primary lung cancers (83 LUAD, 26 LUSC, 3
SCLC, and 14 LCNEC) and by Bhattacharjee et al.16 with 217 lung
cancer patients (190 LUAD, 21 LUSC, and 6 SCLC), as well as 141
cell lines (57 LUAD, 22 LUSC, 48 SCLC, and 14 LCNEC) from
CCLE database15. Using the same approach for data from tumors of
mixed histology, we identified enriched pathways by comparing
LCNEC versus LUAD, LCNEC versus LUSC, SCLC versus LUAD,
and SCLC versus LUSC of each cohort respectively (Supplementary
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Data 5). We next focused on the pathways that were (1) identified in
at least two patients from our mixed histology cohort and (2)
validated by at least two of the three datasets (Karlsson cohort,
Bhattacharjee cohort, and CCLE). With these criteria, SCLC versus
LUAD comparison demonstrated the most consistent pattern with
cell proliferation-related pathways upregulated and inflammatory/
immune response pathways downregulated in SCLC (p adj < 0.05)
(Fig. 5c). Also, for LCNEC versus LUAD histology pathway analysis,
there was significant positive enrichment for cell cycle G/M cell cycle
checkpoint and MYC targets for Pa30, Pa34, Pa37, and in the
Karlson dataset (p adj < 0.05) (Fig. 5d).

Discussion
In the immuno-oncology era, histological subtype continues to
play essential roles in determining the optimal treatment for lung

cancer patients34–36. For example, surgical resection is the main
treatment modality for localized NSCLC, while SCLC is usually
treated with chemotherapy and radiation even at the localized
stage37. In the metastatic setting, the chemotherapy regimens are
also different for different histologic subtypes. Currently, the
mechanisms underlying histologic cell fate are unknown.
Understanding the molecular determinants of histology may
provide insights to understand the different responses to various
treatment regimens and to more effectively leverage histology to
guide lung cancer management. Although large-scale studies such
as in TCGA have demonstrated that genomic features are largely
distinct between different lung cancer histologic subtypes24,25,38,
genomic alterations do not always agree with histologic subtypes.
Targetable genomic alterations such as EGFR mutations and
ALK/ROS1 translocations that are pathognomonic for LUAD
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have been reported in some LUSC patients and SCLC
patients39,40, suggesting that the histology is not primarily
determined by genomic features. However, these analyses are
complicated by the distinct genetic background and exposure
history in different cancer patients.

Cancers of mixed histology provide a unique opportunity to
identify the molecular features associated with different histologic
components in the setting of identical genetic background and
exposure history. Among the lung tumors of mixed histology, the
adenosquamous carcinoma is the most common and most fre-
quently studied subtype while other mixed histology subtypes
were rarely investigated. In the current study, we specifically
focused on non-adenosquamous lung cancers of mixed histology,
particularly tumors with high-grade NEC component including
LCNECs and SCLCs. We chose high-grade NECs because they
are very different from other lung cancer subtypes and are
associated with aggressive cancer biology and poor clinical out-
come. We applied WES and gene expression microarray with the
intent to depict the comprehensive molecular basis of histology.
Analysis of WES data from nine patients with mixed histology
demonstrated that different histological components within the
same tumors shared a large proportion of identical point muta-
tions, which is consistent with previous studies in adenosqua-
mous subtypes by cancer gene panel sequencing7–11. In addition
to more comprehensive point mutation data, WES also allowed
us to compare different histologic components regarding the
SCNA profiles, which demonstrated that different histologic
components from the same tumors share the majority of SCNA
events. In addition, different histologic components from the
same tumors also demonstrated overall similar subclonal archi-
tecture and canonical cancer gene alterations. It has been reported
that 1–4% of EGFR-mutant LUADs may transform into SCLCs as
one important mechanism underlying drug resistance to EGFR
tyrosine kinase inhibitor treatment and transformed SCLCs share
similar genomic profiles of their parental LUADs41,42. For
example, Lee et al. showed that transformed SCLCs share a
common clonal origin with their parental LUADs and complete
inactivation of both RB1 and TP53, a genomic hallmark for SCLC,
was observed in the original LUADs42. Similarly, Niederst et al.41

also demonstrated RB1 loss in 100% of transformed SCLCs as
well as the original EGFR-mutant LUADs. Taken together, these
data suggest that different histologic components were derived
from the same progenitor cells and that in most tumors of mixed
histology, the divergence of distinct histologic components was a
relatively late molecular event conferring inter-histologic het-
erogeneity and the histologic subtype was not primarily deter-
mined by genomic alterations.

There is ample evidence that gene expression profiling can
inform lung cancer histology16,17,43. Our transcriptomic profiling
from histologic subtypes in tumors of the same patient allowed
decoupling of the effect of the patient’s genetic background and
exposures in influencing the transcriptomic signatures. Unlike the
similar genomic landscape between different histologic compo-
nents, intratumor heterogeneity of transcriptomic profiles
between different histologic components was significantly higher
than spatially separated regions from tumors of the same his-
tology. A substantial proportion of tumor regions clustered more
closely together with tumor regions of the same histology from
different patients, significantly more common than that in dif-
ferent tumor regions of the same histology31. Pathway analysis
demonstrated common pathways between different histologic
components across different patients, which were further sup-
ported by integrative analysis from cell lines and larger cohorts of
patient datasets. These were mostly accentuated between SCLC
and LUAD as well as LCNEC and LUAD. Compared to LUAD
components, SCLC and LCNEC tumors, both of which are high-

grade NEC, demonstrated upregulation of pathways associated
with cell proliferation including G2M, E2F, and MYC consistent
with the high proliferative nature of SCLC and LCNEC44.
Importantly, in the pioneer study comparing LCNEC to other
lung cancer subtypes from different patients discussed above,
George et al. reported that LCNECs were transcriptionally dis-
tinct with LUAD and LUSC but closer to SCLC with cell cycle
and mitosis-related pathways upregulated in LCNEC comparing
to other lung cancer subtypes45. Together with our findings, these
results highlighted the similarity of LCNECs with SCLCs and
suggest that cell proliferation is indeed an important feature of
high-grade NEC of lung. Of particular interest, six of nine
downregulated pathways in SCLC in our study were inflamma-
tory/immune pathways in line with reported cold immune
microenvironment and inferior response to immunotherapy in
SCLC46. These results also suggest histology-specific modulation
of the tumor microenvironment even within the same tumors
with the same genetic background and exposure.

In summary, we sought to provide insights to dissect the
molecular basis for the histologic determination by multi-omics
analysis of three unique datasets: lung cancers of mixed histology
that provided a unique opportunity to identify the molecular
features associated with different histologic components in the
setting of identical genetic background and exposure history;
CCLE cell lines of different histology allowing analyzing pure
epithelial cancer cells without confounding effect from stromal
components; and large cohorts of human lung cancers of different
histologic subtypes. Our analysis demonstrated that the different
histologic components from the same patients share the majority
of point mutations, SCNA, and cancer gene alterations suggesting
a shared cell of origin and indicating that histology may not be
determined at the genomic level in the majority of tumors. On the
other hand, although essentially no genomic mutations were
shared, different tumor regions of the same histology across
different patients tended to be more closely clustered based on
transcriptomic profiles highlighting the presence of histology-
specific transcriptomic alterations. It is important to note that
tumors of mixed histology are unique biological entities; there-
fore, different histologic components within these tumors may be
different from tumors of pure histology. For example, in our
cohort, canonical oncodriver mutations were identified in three of
the six tumors with an adenocarcinoma component (SOS1 in
Pa34, EGFR/PIK3CA in Pa35, and KRAS/PIK3CA in Pa37)
compared to pure LUADs, the majority of which harbor driver
mutations. Another major histologic component in our cohort is
LCNEC, an aggressive cancer characterized by high proliferation
rate and poor prognosis47,48. George et al. reported two molecular
subtypes of LCNECs based on genomic alterations including
“Type I LCNECs” with TP53 and SKT11/KEAP1 alterations and
“Type II LCNECs” with inactivation of TP53 and RB145. In the
six tumors with LCNEC component in our cohort, one tumor
(Pa29: LCNEC mixed with LUSC and NSCLC-NOS) had current
TP53/RB1 alterations (TP53 mutation and RB1 LOH); two
tumors had concurrent RB1 LOH/STK11 loss (Pa26: LCNEC
mixed with LUAD, Pa33: LCNEC mixed with LUSC); one tumor
(Pa30: LCNEC mixed with LUAD) had concurrent TP53 muta-
tion/RB1 LOH/STK11 loss; one tumor (Pa34: LCNEC mixed with
LUAD) had only STK11 mutation; and one tumor (Pa37: LCNEC
mixed with LUAD) had no alterations in TP53, STK11, or RB1
(Fig. 3c, Supplementary Fig. 4, and Supplementary Data 3 and 4)
suggesting the biologic features of these LCNEC components
from the tumors of mixed histology may not be the same as pure
LCNECs. Another major limitation of the current study is the
small sample size of tumors of mixed histology. This was due to
our intention to focus on tumors of mixed histology with high-
grade NEC component. However, mixed tumors that are resected
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with a component of LCNEC or SCLC are extremely rare. As
such, we analyzed published datasets with NEC included (CCLE,
pure epithelial cell components, Karlson et al. and Bhattacharjee
et al., larger cohorts but not mixed histology) and focused on the
overlap pathways across different datasets. These data suggested
that it is possible that histology of lung cancers may be deter-
mined at the transcriptomic level, although the exact mechanisms
of gene expression regulation remain to be determined. An
alternative interpretation, however, is that there is a common
mechanistic factor that is driving both histology determination
and transcriptomic changes. These intriguing findings warrant
validation on larger cohorts of resected tumors of mixed histology
harboring NEC components that may require multi-
constitutional collaborations and by functional analyses in
future studies.

Methods
Sample collection and processing. The current research complies with all rele-
vant ethical regulations. MD Anderson Cancer Center approved the study protocol.
Sample selection criteria were: (1) tumors of mixed histology with high-grade NEC
component including high-grade LCNEC and small cell carcinoma (SCLC). (2)
Enough surgical specimen and matched germline DNA available for multi-omics
profiling. Patients with mixed histology lung cancer were included in this study
after confirmation with two independent pathologists. The IHC markers were
performed in all included cases as part of the diagnostic work up for NECs. The
diagnostic criteria for LCNEC are non-small cell carcinomas with neuroendocrine
morphology that are positive for at least one neuroendocrine marker (synapto-
physin, chromogranin, or CD56). These criteria were strictly followed for cases
included. For SCLC, the standard practice was followed that the diagnosis of SCLC
can be accurately made on morphologic grounds as established by the
guidelines49–51; IHC is indicated only if morphology is less than optimal.
Unstained slides were microdissected after delineating the different regions of
histologic components and then extracted for RNA and DNA. A written informed
consent that was approved by the internal review board of the University of Texas
M D Anderson Cancer Center was obtained. The study was conducted in accor-
dance with the Declaration of Helsinki.

Whole-exome sequencing. DNA was extracted using the QIAamp DNA FFPE
Tissue Kit (QIAGEN) and the resulting genomic DNA was sheared into
300–400 bp segments and subjected to library preparation for WES using KAPA
library prep (Kapa Biosystems) with the Agilent SureSelect Human All Exon V4 kit
according to the manufacturer’s instructions. Paired-end multiplex sequencing of
DNA samples was performed on the Illumina HiSeq 2000 sequencing platform.

RNA microarray. In all, 600 ng RNA per sample was submitted and underwent
reverse transcription. Single-strand(ss) cDNA was purified using magnetic beads.
The fragmented sscDNA was then hybridized to Affymetrix Clariom S human
arrays at 45 °C overnight. Stained arrays are scanned to generate intensity data. All
reagent kits and arrays were purchased from Thermo Fisher Scientific.

Somatic mutation calling and overlapping mutations. The WES raw FASTQ
files were aligned using bwa-mem52. Somatic mutations were called using mutect53

and Lancet (two somatic mutation callers) with tumor-normal pairs following
GATK best practice (www.broadinstitute.org/gatk/guide/best-practices.php) for
duplicate removal, indel realignment, and base recalibration. Lancet54 was used for
SNV and indel calling using localized colored de Bruijn graph. For SNVs, only
those that were called by more than one caller or called in more than one sample
from the same patient were retained. For all mutations, we recovered the raw allelic
counts from the bam file if it occurred in one of the different histologic subtypes
from the same patient. The process was implemented as a Snakemake pipeline and
can be found at https://gitlab.com/tangming2005/snakemake_DNAseq_pipeline/
tree/multiRG. The number of overlapping mutations across all samples was plotted
in an UpSet plot55 and Venn diagrams.

Clonal architecture analysis and phylogeny inference. A high-quality list of
SNVs was combined from all samples from the same patient and the allelic counts
for those positions were obtained using bam-readcount (https://github.com/
genome/bam-readcount). Copy number variations and tumor purity were obtained
from sequenza56, and the mutation allelic counts were analyzed with PyClone for
clonality analysis21. PyClone was run with 10,000 iterations and a burn-in of 1000
as suggested by the authors. To infer phylogenetic trees, mutation data were
converted to the binary data with mutations being 1 and wild-type being 0 and fed
into Phangorn R package57. Tree topologies were estimated by pratchet, and
branch lengths were inferred by acctran.

Mutational signature and spectrum analysis. Mutation signatures and spectrum
analysis were analyzed by Bioconductor package MutationalPatterns58 with 30
COSMIC signatures following the standard workflow.

Somatic copy number analysis (SCNA). Copy number analysis was carried out
using Sequenza56. Both copy number and tumor purity were inferred by Sequenza.
Since the signal-to-noise ratio of SCNA could be reduced in the samples with lower
tumor purity, we obtained purity-adjusted log2 ratios by log2((original copy ratio−
1) / purity+ 1)59. The segment files were visualized in IGV60. We then used the log2
thresholds of log2(4/2) and log2(1/2) to determine whether a gene is gained or lost
focusing only on cancer genes that have shown to have copy number changes in the
COSMIC database. The matrices of log2 ratio or binarized copy number status for all
genes and cancer genes, respectively, across all samples, were clustered using hier-
archical clustering and plotted in a heatmap using ComplexHeatmap61. LOH status of
RB1 was defined if the B value is equal to 0 from the sequenza output with copy
number neutral LOH with B value of 0 and A value of 2 (i.e., a genotype of AA) and a
copy number loss LOH with B value of 0 and A value of 1.

In-house microarray and public microarray/RNAseq data analysis. The in-
house clariom.s.human microarray data were analyzed using Bioconductor
packages Oligo62, pd.clariom.s.human, and limma63 following standard workflow.
GSE94601 microarray data were downloaded using GEOquery64 and analyzed by
the limma package. The Bhattacharjee et al. microarray data were downloaded
from http://portals.broadinstitute.org/cgi-bin/cancer/publications/view/62 and
analyzed using the affy65 and limma package. The CCLE lung cancer RNAseq
count data were downloaded from the Broad CCLE data portal and processed
using DESeq266. Gene set enrichment analysis using Hallmark dataset was carried
out using fgsea Bioconductor package67 and the genes are pre-ranked by (signed
log2FoldChange) × –log10(p value) for all the public datasets. For the in-house
microarray data, we computed the fold change between distinct histologies within
the same patient and rank the genes by the fold change.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The whole-exome sequencing data have been deposited at the European Bioinformatics
Institute European Genome–phenome Archive (EGA) (accession number:
EGAS00001005140) through controlled access. The BAM files under accession
EGAS00001005140 contain all the raw WES data. To protect patient privacy, interested
researchers need to apply via data access committee (DAC), which will grant access upon
request. Source data are provided with this study. All other data may be found within the
main manuscript or Supplementary information or available from the authors upon
request. Public microarray datasets were downloaded from GSE94601, and http://
portals.broadinstitute.org/cgi-bin/cancer/publications/view/62. CCLE RNAseq data were
downloaded from https://sites.broadinstitute.org/ccle/. Microarray data generated in this
study are deposited at GEO with accession number GSE188665. The processed
ExpressionSet bioconductor objects can be found at https://osf.io/gxc4r/. The expression
matrix of the new microarray data is also provided in the Source Data. The code used to
generate the figures can be found at https://github.com/crazyhottommy/
mixed_histology_lung_cancer68. Source Data are provided with this paper.
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