
ARTICLE

Investigating immune and non-immune cell
interactions in head and neck tumors by single-cell
RNA sequencing
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Head and neck squamous cell carcinoma (HNSCC) is characterized by complex relations

between stromal, epithelial, and immune cells within the tumor microenvironment (TME). To

enable the development of more efficacious therapies, we aim to study the heterogeneity,

signatures of unique cell populations, and cell-cell interactions of non-immune and immune

cell populations in 6 human papillomavirus (HPV)+ and 12 HPV– HNSCC patient tumor and

matched peripheral blood specimens using single-cell RNA sequencing. Using this dataset of

134,606 cells, we show cell type-specific signatures associated with inflammation and HPV

status, describe the negative prognostic value of fibroblasts with elastic differentiation spe-

cifically in the HPV+ TME, predict therapeutically targetable checkpoint receptor-ligand

interactions, and show that tumor-associated macrophages are dominant contributors of PD-

L1 and other immune checkpoint ligands in the TME. We present a comprehensive single-cell

view of cell-intrinsic mechanisms and cell-cell communication shaping the HNSCC

microenvironment.
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Traditionally, head and neck squamous cell carcinoma
(HNSCC) treatments are based on approaches that target
tumor cell oncogenic activities1, however, the effectiveness

of these therapies is limited by intra-tumor heterogeneity2,3.
HNSCC treatment has seen a paradigm shift with the introduc-
tion of cancer immunotherapy, with the targeting of immune
checkpoints such as the PD-1/PD-L1 interaction showing the
greatest clinical activity4–6. The effectiveness of immunotherapies
is affected by numerous resistance mechanisms, including
immune exclusion, immune editing, decreased antigen presenta-
tion, nutrient deprivation, and immune suppression by soluble or
cellular mechanisms7. These dynamics warrant a more holistic
interrogation of the complex cancer–immune–stroma interaction
in the tumor microenvironment (TME).

The study of heterogeneous cellular populations has been
greatly facilitated by the development of single-cell RNA
sequencing (scRNAseq), which allows for a comprehensive
investigation into the transcriptomic profiles of individual cell
populations8. This technique has been employed to study the
TME in a variety of cancer types and reiterated concepts such as
high intra- and inter-tumor heterogeneity, epithelial to
mesenchymal transition (EMT), and the functional spectrum of
tumor-infiltrating lymphocytes (TIL) and myeloid cells9–11.
However, previous studies in HNSCC have been limited by one or
a combination of the following aspects: a focus only on HPV–

disease, profiling TIL or malignant cells separately, a limited
number of patients and/or cells profiled9,10,12. Using large-scale
droplet-based technology13, we aim to overcome these limitations
and concomitantly interrogate the HNSCC TME of both HPV+

and carcinogen-induced (HPV–) etiologies.
We harness existing and novel technical and informatic

methods to characterize major non-immune and immune cell
types of the HNSCC TME and provide insight into their
cancer–immune–stroma relationships. This study provides
insights beyond previous scRNAseq studies reflecting dramatic
complexity of HNSCC epithelial cells of differing etiologies,
including directly mapping HPV encoded gene transcripts10. We
leverage our comprehensive data set as a resource to explore
differences between inflamed vs. non-inflamed as well as HPV+

vs. HPV– micro-milieus. Using this data set, we observe an elastic
sub-state of fibroblast differentiation and its negative prognostic
impact that has not been previously described in HNSCC
scRNAseq studies, and investigate cell-to-cell interactions of
therapeutically relevant immune checkpoint receptor–ligand
pairs, such as tumor-associated macrophages (TAM), which are
major contributors of PD-L1 to CD8+ T cell interactions in
HNSCC14. HPV encoded gene heterogeneity within tumor cells
provides insights into differential pathways and microenviron-
mental impact.

Results
High-dimensional scRNAseq data analysis reveals cellular
complexity of the HNSCC TME. To capture a representative
number of immune and non-immune cells per patient, we sorted
CD45+ (immune) and CD45– (epithelial and stromal) cells from
freshly resected HNSCC tumors prior to scRNAseq (Fig. 1A). The
cohort included 18 treatment-naive patients (6 HPV+ and 12
HPV–; Supplementary Table 1), out of which 15 had paired
immune and non-immune cells, as well as matched peripheral
blood leukocytes (PBL). We aimed to recover 2000 cells each of
TIL, TME non-immune cells (i.e., epithelial and stromal cells),
and PBL from each patient. After quality control, 134,606 cells
with 1077 median genes per cell were retained and visualized as a
comprehensive overview plot using Uniform Manifold Approx-
imation and Projection (UMAP) (Fig. 1B)15–18. Highly diverse

cell populations of the TME were identified transcriptomically
using canonical markers (Fig. 1C and Supplementary Fig. 1A).
Diverging distributions of cell clustering were observed when
depicting the UMAPs based on patient contribution, HPV status
or tissue of origin, and gene count (Fig. 1B and Supplementary
Fig. 1B). Additionally, a t-SNE plot depicting the number of genes
per cell was also generated (Supplementary Fig. 1B). Absolute, as
well as relative, contributions of each cell type to the cohort were
analyzed (Supplementary Fig. 1C). Some clusters were enriched in
cells from PBL (0: CD4+ T cells, 1 and 16: monocytes; 7: CD8+

T cells; 8: NK cells), while others were distinctly dominated by
TIL [2 and 3: CD8+ T cells; 12, 18, 27: CD4+ T cells; 4: Treg; 23:
NK cells; 6: macrophages; 21: myeloid dendritic cells (DC)].
Clusters 5 (B cells) and 25 (plasmacytoid dendritic cells; pDC)
consisted of both tumor and blood-derived cells, indicating high
transcriptomic similarity between these cells in the circulation
and the TME (Fig. 1B). Transcriptomic differences between
HPV+ vs. HPV– leukocytes have been thoroughly investigated in
our previous study9.

Classification of the HNSCC TME by inflammation status. The
tumor cohort was segregated into lesions with low, medium, or
high lymphocyte infiltration based on the score generated from
Hematoxylin and Eosin (H&E) staining of all lymphocytes
(Supplementary Fig. 2B and Fig. 1D, E). There was no clear
association between HPV status and inflammation score; one
HPV+ lesion was in the low inflammation group, two were in the
medium, and three were in the high group (Fig. 1D).

Qualitative transcriptomic heterogeneity in CD8+ T from
lesions with low and high inflammation scores. Given the central
role of CD8+ T cells in antitumor immunity19–21, we focused on
further characterization of this cell type. We extracted, subclustered,
and visualized the transcriptomic profiles of 27,013 cells identified as
CD8+ T lymphocytes (Fig. 2). Clinical and pathogenic information of
tissues from which these cells were extracted are displayed in
Fig. 2A21,22. Analogous to previous studies in other cancer types20,
we identified four major subtypes of T cells based on marker
expression: naive-like T cells (Cluster 3, 5, 7, 8: SELL+, IL7Rhigh,
immune checkpoint receptor (ICR)negative/low), cytotoxic T cells
[Cluster 1, 4, 5, 11, 12: GNLYhigh, KLRG1+, ICRlow/intermediate] and
dysfunctional/exhausted cells (ICRhigh) that are further sub-divided
into pre-dysfunctional (Cluster 1, 9, 10: GZMKhigh, CXCL13low,
LYAR+) and terminally dysfunctional cells (Cluster 0, 2: GZMKlow,
CXCL13high, ENTPD1+) (Supplementary Fig. 3A, B). We also iden-
tified two clusters of cycling CD8+ T cells (clusters 6 and 13),
expressing Ki67 (gene MKI67) and genes associated with the for-
mation of the mitotic spindle apparatus (TUBA1B, STMN1) (Fig. 2A
and Supplementary Fig. 3A). Interestingly, other effector molecules
and cytokines were differentially expressed, with GZMB and IFNG
having the highest expression in the most dysfunctional subsets.

After excluding circulating cells (PBL) from the analysis
(Supplementary Fig. 3C), we explored the qualitative differences
between CD8+ cells in TMEs with low and high immune
infiltration scores. Gene set enrichment analysis on the
differentially expressed genes (DEGs) was performed by inflam-
mation score (low vs. high and vice versa). Significant enrichment
of allograft rejection, IFN-γ and IFN-α response gene sets
(−log(10)p-value = 7.4, 7.4 and 6.7, respectively) was evident in
CD8+ T cells from highly infiltrated tumors, while CD8+ T cells
from non-inflamed tumors showed gene sets associated with
TNFα signaling, hypoxia, inflammatory response, and apoptosis
(−log(10)p-value = 29.5, 10.0, 8.7 and 6.7, respectively, Fig. 2B).
Examples of genes that were shared by the apoptosis or the
hypoxia gene set were GADD45B (encodes Growth arrest and
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DNA-damage-inducible, beta), BTG2 (encodes BTG anti-
proliferation factor 2), JUN (encodes Jun proto-oncogene), and
FOS (encodes Fos proto-oncogene). These genes were also
enriched in the TNF-signaling pathway. This suggests a
qualitative difference of CD8+ T cells depending on the
inflammation status of the TME, with cells from tumors with
high inflammation scores being more activated and effector-like,
while cells from tumors with low inflammation score are stressed
by the surrounding TME and may become (pre)-apoptotic.

Identification and characterization of HPV+ and HPV– cancer
cells. Unlike previous scRNAseq analyses of HNSCC9,10, this
study extensively compares the immune as well as cancer/stromal
cell landscapes of two contrasting, HPV– and HPV+ tumor
etiologies, the latter of which have better clinical outcomes23. We
identified and subclustered 14,920 cells of epithelial origin
(Fig. 3A). The cancer cell phenotype was determined by copy
number variation (CNV, Supplementary Fig. 4A) analysis and
keratin expression (Supplementary Fig. 4B), as utilized
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Fig. 1 Workflow and cohort overview with cell-type identification, naming, and inflammation scoring. A Fresh tumor and blood samples from HNSCC
patients (n= 18 patients) were collected, dissociated, sorted, processed using a 10× Chromium controller, and then sequenced. Patient image was created
using BioRender.com B UMAP dimensionality reduction of the total cohort of 134,606 cells was performed, based on visualization of relevant
characteristics: patient contribution (HN01–HN18), cell clusters (0–33), tissue of origin (PBL vs. tumor), and viral-status (HPV+ vs. HPV–). C UMAP plot
showing identified cell types [B cells, CD4+ T cells, CD8+ T cells, dendritic cells (DC), plasmacytoid DC, endothelial cells, epithelial cells, fibroblasts,
pericytes, macrophages, monocytes, natural killer (NK) cells, T regulatory (Treg) cells, mast cells]. D Inflammation scores were determined by quantifying
the total leukocyte infiltrate in each tumor based on H&E staining (n= 17 patients). Tertiles were used to segregate patients into three groups based on
their inflammation score: low (n= 6 patients), medium (n= 5 patients), and high (n= 6 patients). Patients with HPV+ and HPV– etiologies are indicated.
Center lines represent median values for each cohort. Inflammation scores were evaluated using a one-way ANOVA test. E UMAP plot showing cell
contributions based on inflammation scores.
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previously10. Based on the CNV profile, clusters 13, 14, and 16
contained normal epithelial cells. Substantial patient-specific
clustering was observed for malignant epithelial cells as pre-
viously described (Fig. 3A)10. As the UMAP visualization pre-
serves spatial information16, the adjacent clustering of HPV–

(HN01, HN07) and HPV+ (HN12, HN13, HN14, HN16, and
HN17) might be suggestive of transcriptomic similarity. To fur-
ther support this observation, we performed a hierarchical clus-
tering analysis (Supplementary Fig. 4C) that showed that HPV–

and HPV+ clusters were allocated to separate branches of the
hierarchical tree, thus supporting the notion of transcriptomic
similarity across different tumors of the same etiology.

Differences in epithelial tumor cell gene expression levels based
on inflammation score and etiology were detected by gene set
enrichment analysis of the top 100 DEGs defining each group
(Fig. 3B). Cancer cells from lesions with high infiltration showed
significant enrichment of epithelial-to-mesenchymal transition
(EMT), MYC targets, IFNγ response, mitotic spindle formation,
and allograft rejection gene programs (−log(10)p-value 4.8, 4.8,
3.7, and 3.7, respectively), while cells from a micro-milieu with
low infiltration displayed significantly enriched P53 pathway,
fatty acid metabolism, glycolysis and hypoxia gene sets (−log(10)

p-value 8.5, 4,2, 3.7, and 3.7, respectively). When directly
comparing HPV+ and HPV– cancer cells, oxidative phosphor-
ylation, TNFα signaling, as well as pathways for early and late
estrogen response were significantly enriched in HPV+ tumors
(−log(10)p-value 11.3, 7.2, 7,2 and 6.0, respectively)24, while
EMT, IFNγ and IFNα responses were significantly enriched
in HPV– cancers (−log(10)p-value 32.5, 23.7 and 18.3,
respectively)10.

To further leverage this unique data set containing HPV+

cancer cells, HPV16 encoded genes were added to the human
genome reference file and their expression was quantified and
visualized in epithelial cell transcriptomes. The viral genome was
exclusively expressed by HPV+ HNSCC (Fig. 3C), defined by
clinical p16 IHC testing25. Variable expression of HPV genes was
detected in these p16+ oropharyngeal cancers, with E1, E5, and
E7 being the most and L1 and L2 being the least widely observed.
To validate these findings, qPCR was implemented to quantify
the relative amount of HPV16 L1, L2, E6, and E7 transcripts in
four HPV+ patients from our cohort. L1/L2 were generally
expressed at lower levels than E6/E7 supporting our scRNAseq
observations (Supplementary Fig. 5A). The substantial inter- and
intra-patient variability of viral gene expression was further
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visualized using a dot-plot (Fig. 3D). To validate the hetero-
geneity in HPV gene expression among malignant cells and to
explore whether highly expressing viral oncoproteins localize to a
particular area of the tumor, we performed in situ hybridization
for high-risk HPV E6/E7 mRNA (Supplementary Fig. 5B). We
confirmed that only a subset of malignant cells expresses E6/E7.
Spatially, we observed a stratified arrangement of E6/E7
expression, with these oncogenes being most expressed by cells
of the basal epithelial layer and decreasing towards the
cystic lumen.

The stromal compartment of the HNSCC TME consist of
diverse cell types. Among non-epithelial non-immune cells, we
observed that endothelial cells, fibroblasts, and pericytes formed
distinct clusters (Fig. 4A, B). No distinct patient- or HPV status-
associated clustering was observed. Nearly all patients contributed
to the pericyte cluster, with patients HN07, HN09, and HN11
contributing the most cells (Fig. 4C). Pericytes (cluster 7) clearly
separated from other stromal cells. Hallmark genes of activated,
pro-tumor type-2 pericytes, such as ACTA2 (encodes α-smooth
muscle actin) and RGS5 (encodes regulator of G-protein signal-
ing-5) were observed (Supplementary Fig. 5C)26. The origin,
identification, and pathogenetic role of pericytes implicates them
in hallmark processes of cancer development and progression
such as neo-angiogenesis and leukocyte recruitment27.

Fibroblasts in HNSCC include normal/activated, cancer-asso-
ciated, and elastic sub-states. The tumor stroma consists of a
heterogeneous group of mesenchymal cells manifesting a high
degree of plasticity and multipotency. Fibroblasts (n= 4034) were
segregated into 9 clusters (Fig. 5A), assigned to 3 different cell
sub-states based on the highest expressing genes (Fig. 5B) and
differentially expressed hallmark gene sets (Fig. 5C and Supple-
mentary Figs. 6 and 7).

Clusters 0, 1, 2, 3, 4, 5, and 6 show expression of classical
cancer-associated fibroblast (CAF) markers (FAP, PDGFRA, LOX,
and metalloproteinases, Fig. 5B and Supplementary Fig. 6A).
Normal/activated fibroblasts (NAF, clusters 4 and 6) showed a
low expression of CAF markers (Supplementary Fig. 6A). One
sub-state previously not described in HNSCC TME scRNAseq
studies were fibroblasts expressing elastic fiber differentiation
genes (cluster 7; Supplementary Fig. 6B and Supplementary
Data 1), with increased expression of tropoelastin (ELN), fibrillin-
1 (FBLN1), and Microfibril Associated Protein 4 (MFAP4)28. The
presence of this fibroblast sub-state was confirmed in the bulk
RNAseq data from the HNSCC TCGA cohort using
CIBERSORTx29 for deconvolution (Supplementary Fig. 6C),
where 199/500 patient samples were predicted to have non-zero
fractions of fibroblasts with elastic differentiation.

A comparative analysis of hallmark gene sets was performed
(Fig. 5C), showing moderate heterogeneity between the clusters:
NAF showed an intermediate enrichment of hallmark signaling
pathways (e.g., protein secretion, DNA repair, and G2M
checkpoint), while CAF were shown to be highly active.
Fibroblasts with elastic differentiation on the contrary show no
enrichment of most hallmark signaling pathways. Two of the
CAF clusters were dominated by cells from one patient: cluster 2
by HN07 and cluster 0 by HN01, while CAF clusters 1 and 2
contained cells from multiple patients (Fig. 5A). These differences
were underscored by divergent expression of metalloproteinases
(Supplementary Fig. 6A) that are the main effector molecules of
CAF and promote tumor invasion and metastasis: Cluster 2
mainly expressed MMP1, while cluster 1 expressed MMP11
(Supplementary Fig. 6A)30.

Functional differences were further explored using GO BP gene
sets from the MSigDB (Supplementary Fig. 7A). Here, we show
that in CAF, there is an enrichment of pathways of extracellular
structure organization and collagen fibril organization, while
elastic fibroblasts showed enrichment of pathways associated with
secretion, adhesion, and cell proliferation. To corroborate these
findings, we performed IHC staining on tumor sections from 6
patients from our scRNAseq cohort using MFAP4 as a marker for
elastic type differentiation31. MFAP4 was expressed in spindle
cells of the tumor stroma, but not in the tumor or normal
epithelial cells (Supplementary Fig. 7B and Supplementary
Table 2).

Given the impact of CAF on patient survival30, we explored the
potential prognostic value of fibroblasts with elastic differentia-
tion in HNSCC using bulk RNA sequencing data from The
Cancer Genome Atlas (TCGA) database. A negative prognostic
impact was observed using the CAF signature scores in HPV+,
but not in HPV– samples (Supplementary Fig. 8A). Interestingly,
the elastic fibroblast signature score also showed the same pattern
in HPV+ samples (Supplementary Fig. 8B). We found that HPV+

patients with both low elastic fibroblast and CAF signature scores
showed the best overall survival (p= 0.0013, Fig. 5D).

Endothelial cells separate into two distinct cell types. The
tumor vasculature has been recognized as being organ- and dis-
ease-specific, and is a main determinant of the intratumoral
immune landscape, due to its impact on cell extravasation and
homing32. scRNAseq analysis of 7431 cells expressing endothelial
markers showed a clear separation of cells into lymphatic and
vascular endothelia (Fig. 6A) that could be further sub-divided
based on the expression of specific genes (Fig. 6B) and gene set
enrichment analysis (Fig. 6C). Except for cluster 1 (HN09), all
clusters had contributions from different patients demonstrating
heterogeneity, whereas no clear enrichment of endothelia based
on HPV status was observed. The lymphatic endothelium was
assorted into four clusters, with clusters 0 and 1 representing
activated cells with increased inflammatory response and signal-
ing gene sets (Fig. 6C). Interestingly, cells from pre- and post-
capillary endothelial cells did not cluster together, but rather
aggregated depending on activation status, with cluster 3 showing
an enrichment of inflammatory response gene sets (Fig. 6D and
Supplementary Fig. 7C)33.

Overview of putative ICR–immune checkpoint ligand (ICL)
interactions between CD8+ T cell and non-immune or antigen
presenting (APC) cells. Our scRNAseq data set demonstrates the
complexity of inflamed and non-inflamed HNSCC tumors and
stresses the unique roles that non-immune cell-mediated inter-
actions may play in the regulation of tumor inflammation status.
It also allows for inference of putative receptor–ligand interac-
tions between different cell types within the TME. Along those
lines, we assessed the ICR/ICL landscape of HNSCC. Relative
(Fig. 7A) and scaled (Supplementary Fig. 9A) expression levels of
clinically targetable ICLs (binding PD-1, TIM-3, LAG3, and
TIGIT) were quantified in all the major cell types detected. The
main contributors of PD-L1 (Gene: CD274) in the TME were DC
and macrophages. In contrast, highest levels of PD-L2 (Gene:
PDCD1LG2) were detected in DC and fibroblasts. Galectin-9
(Gene: LGALS9) and CEACAM1, common TIM-3 ligands34,
showed unique distribution patterns. LGALS9 was expressed at
various levels by all the cell types, except pericytes. The highest
transcript levels were observed in DC, macrophages, and endo-
thelial cells. Low levels of CEACAM1 were observed in epithelial
and endothelial cells. Low expression levels of FGL1 (encodes
fibrinogen-like protein 1), a major inhibitory LAG3 ligand35, were
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detected in fibroblasts. High expression levels of HLA-DRA and
HLA-DRB1, prototypical LAG3 ligands35, were detected in mul-
tiple cell types, with pericytes showing the lowest expression
levels (Supplementary Fig. 9B). Low levels of CD155 (Gene: PVR),
a high-affinity TIGIT ligand36, were primarily observed in
endothelial cells. CD112 (Gene: NECTIN2), the low-affinity
TIGIT ligand37, was expressed by all non-immune cells, as well
as DC and macrophages. The highest NECTIN2 expression levels
were observed in endothelial cells. PDCD1, HAVCR2 (encodes
TIM-3), LAG3, and TIGIT were variably expressed on CD8+ and
CD4+ T cells, NK cells, and Treg, with LAG3 and TIGIT

expressed at the highest levels. HAVCR2, LAG3, and TIGIT were
also expressed by macrophages, while HAVCR2 and LAG3 were
also found in DC. While a recent publication has indicated that
targeting of PD-1 on myeloid cells can induce antitumor
immunity in mice38, transcriptomically 1–2% of macrophages
express low levels of PDCD1 from our patient cohort. In tumors
with high inflammation scores, LAG3 expression was higher on
DC and especially macrophages (Fig. 7A and Supplementary
Fig. 9C). These data indicate that tumor inflammation status may
associate with unique immune checkpoint signatures that could
be used to tailor therapeutic strategies.

A Cell typeCluster

HPVInflammation
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C HPVInflammation

UMAP

PatientCluster
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1
2

3

4
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Scaled expression

Fig. 4 Overview of stromal cells with a focus on pericytes. A Sub-clustering of 12,179 stromal cells (non-immune, non-epithelial cells; n= 15 patients;
cluster 0–10) and visualization of relevant characteristics: patient contribution (HN01, HN05–HN18), viral-status (HPV+ vs. HPV–), cell type (endothelial,
fibroblasts, pericytes) and inflammation score (low, medium, high). B Heatmap showing top 10 genes characterizing each cluster (color scale depicts
scaled gene expression). C Sub-clustering of pericytes (cluster 0–4) and visualization of relevant characteristics: patient contribution (HN01–HN18), viral-
status (HPV+ vs. HPV–), cell type (endothelial, fibroblasts, pericytes), and inflammation status (low, medium, high).
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We next explored a curated list of ICL–ICR interactions
between CD8+ T cells and non-immune or myeloid APC in
tumors with low and high inflammation scores (Fig. 7B, C;
using the CellPhoneDB package)39. CD274–PDCD1 interactions
appeared to be primarily mediated by macrophages and were
observed in 8/12 patients regardless of their inflammation
status. In only 2/10 patients (HN01 and HN18), this

interaction was predicted between CD8+ T cells and epithelial
cells. HAVCR2–LGALS9 interactions were predicted to be
primarily mediated by macrophages (10/12 patients) and
endothelial cells (9/10 patients). Of the two TIGIT ligands,
TIGIT–NECTIN2 interactions were most common and were
projected to be facilitated by non-immune cells, as well as DC and
macrophages.

DC

A Cluster

HPVInflammation

UMAP

Patient Cell states

B

Z- score

Elastic High CAF High Elastic High CAF Low Elastic Low CAF High Elastic Low CAF Low

Scaled expression

Fig. 5 Fibroblast sub-states, DEG, and impact on survival. A Sub-clustering of 4034 fibroblasts (n= 15 patients; cluster 0–7) and visualization of relevant
sample characteristics: patient contribution (HN01, HN05–HN18), HPV status (HPV+ vs. HPV–), inflammation score (low, medium, high), and sub-states
(cancer-associated fibroblasts, normal activated fibroblasts, and fibroblasts with elastic differentiation). B Heatmap showing top 25 genes characterizing
each cluster (color scale depicts scaled gene expression). C Enriched hallmark gene sets between clusters based on results of gene set enrichment analysis
(“singleseqgset” package). D Overall survival analysis of HPV+ patients from the TCGA HNSCC bulk RNAseq cohort based on gene signature scores of
fibroblasts with elastic differentiation and cancer-associated fibroblasts (log rank test p= 0.0013).

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-27619-4

8 NATURE COMMUNICATIONS |         (2021) 12:7338 | https://doi.org/10.1038/s41467-021-27619-4 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


Due to the clinical relevance of PD-14, TIM-340, and LAG3-
targeting41 therapies currently being used or tested, we validated
the PD-L1, galectin-9, and HLA-DR expression at the protein
level and corroborated that myeloid population are the major
contributors to the ICL expression in the HNSCC TME. Using
multicolor flow cytometry (Supplementary Fig. 10) from 7
additional patient specimens (3 HPV–, 4 HPV+, Supplementary
Table 1) macrophages (CD45+Lin−CD14+HLA-DRhigh) were
identified as the primary PD-L1 contributors in the TME, with
DC1 (CD45+Lin−CD14−HLA-DR+CD141+), DC2 (CD45+

Lin−CD14−HLA-DR+CD1c+), fibroblasts (CD45−CD90+) and

endothelial cells (CD45−CD90−CD141+) also contributing
to the PD-L1 pool (Fig. 8A). Epithelial/tumor cells
(CD45–CD90−CD141−) expressed surprisingly low amounts
of PD-L1. Galectin-9 was broadly expressed by a variety of
myeloid subpopulations, and was especially prominent on non-
immune cells, with fibroblasts expressing the highest galectin-9
levels (Supplementary Fig. 11A). Besides being expressed
by macrophages, DC1, and DC2 (Supplementary Fig. 10),
HLA-DR was commonly detected on non-immune cells,
particularly fibroblasts and endothelial cells (Supplementary
Fig. 11B).

Cell statesA Cluster

HPVInflammation

Patient

B

UMAP

DC

Z- score Z- score

Scaled expression

Fig. 6 Endothelial cell subsets and DEG. A Sub-clustering of 7431 endothelial cells (n= 15 patients; cluster 0–7) and visualization of relevant sample
characteristics: patient contribution (HN01, HN05–HN18), HPV status (HPV+ vs. HPV–), inflammation score (low, medium, high) and types of endothelial
cells (lymphatic and vascular). B Heatmap showing top 25 genes characterizing each cluster (color scale depicts scaled gene expression). Enriched
hallmark gene sets between C lymphatic and D vascular endothelial cell clusters based on results of gene set enrichment analysis (“singleseqgset”
package) are shown.
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PD-L1+ macrophages spatially associate with CD8+ T cells in
the HNSCC TME. As an example of immune checkpoint
receptor:ligand pairs with known clinical implications, our
scRNAseq and flow cytometry data strongly suggest that mac-
rophages are a major source of PD-L1 within the HNSCC TME.
A drawback of these methodologies is that they do not provide
spatial associations of evaluated cell types within the TME once it
is physically disaggregated. Therefore, it is impossible to establish
physical proximity between PD-L1+ cells and CD8+ T cells,
which is a prerequisite for cell-to-cell interactions. To study
spatial association between the various cell types in the TME,
sections of tumors were stained for DNA (DAPI), CD3, CD8,
CD68, PD-L1, and pan-CK (Supplementary Table 3 and Fig. 8B)
and evaluated by multispectral fluorescent microscopy. Each
region of interest (ROI) evaluated was sub-divided into tumor
and stromal regions to establish whether PD-L1 expression pat-
terns and cell-to-cell associations are dictated by tumor geo-
graphy. When comparing PD-L1+ cells, average PD-L1

expression intensity was higher on macrophages (CD68+) than
on tumor cells (pan-CK+) in both the tumor bed and stromal
regions for all patients evaluated (Fig. 8C, D). PD-L1 intensity
was, on average, 19.8% and 18.7% higher on macrophages than
on tumor cells in tumor bed and stroma, respectively (Fig. 8C),
confirming our flow cytometric observations.

Next, we explored average distances of PD-L1+ macrophages
or PD-L1+ tumor cells to CD8+ (Fig. 8E), CD8− and bulk CD3+

T cells (Supplementary Fig. 12) as surrogate biomarkers of cell-
to-cell interactions. PD-L1+ macrophages were commonly found
in tumor and, especially, stromal regions abundant in T cells. In
4/5 patients tested, PD-L1+ macrophages closely associated with
CD8+ and CD8− T cells in both tumor (median distance across
all patients of 19.6 and 21.5 μm, respectively) and stromal regions
(median distance across all patients of 13.2 and 16.9 μm,
respectively; Fig. 8E; Supplementary Fig. 12B). Both CD8+ and
CD8− T cells were also detected in close proximity to tumor cells
in both tumor (median distance across all patients of 10.5 and
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Fig. 7 Crosstalk between various cellular constituents of the TME evaluated by potential ICR–ICL interactions. A Average expression of immune
checkpoint receptors and corresponding ligands on all cell types identified in tumors with low, medium, and high inflammation scores is summarized
(n= 17 patients). CellPhoneDB package was used to predict patient-specific ICR–ICL interactions between CD8+ T cells and B CD45− endothelial cells
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ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-27619-4

10 NATURE COMMUNICATIONS |         (2021) 12:7338 | https://doi.org/10.1038/s41467-021-27619-4 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


10.7 μm, respectively) and stromal (median distance across all
patients of 17.6 and 20.0 μm, respectively) regions of all patients.
The latter observation can be attributed to T cells aggregating
around sporadic invasive tumor cells that were detected in the
stroma (Fig. 8B). Close associations between PD-L1+ tumor cells
and various T cell subsets within the tumor are due to the
ubiquitous presence of tumor cells while macrophages are more
heterogeneously distributed within the TME. Such studies

demonstrate how other potentially relevant receptor:ligand pairs
can be identified to guide targeted therapeutic approaches using
scRNAseq datasets.

Discussion
The success of immuno-oncology therapies is dictated by
numerous resistance mechanisms mediated by multifaceted
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interactions between stromal, epithelial, and immune cells within
the TME7. In order to develop more successful therapies, it is
necessary to decipher these complex intercellular interactions.
Novel technologies such as scRNAseq allow for a multi-
dimensional analysis of tumor heterogeneity. Our goal was to
generate the most comprehensive scRNAseq data set and profil-
ing of immune and non-immune cells in the TME of HPV+ and
HPV– HNSCC to date. Our study leverages the breadth and
depth of a large data set for a detailed analysis that permits
identification and sub-clustering of major cell subsets of the TME,
exploration of cell type-, inflammation- and etiology-specific gene
signatures and prediction of putative cell–cell interactions, for
future translational applications and subsequent correlation with
on-treatment specimen analyses.

CD8+ T cells are one of the main effector cell types that
mediate anti-cancer immunity and the target of many currently
emerging immunotherapy drugs, making them the focus of
numerous single-cell studies42–45. Building on these studies, we
were able to recapitulate the heterogeneity of CD8+ T cells
(naive-like, cytotoxic, pre-dysfunctional, and dysfunctional cell
states) as well as to show the differential expression of GZMK and
CXCL13 transcripts in the continuum of dysfunctional CD8+

T cells. However, as previously discussed20, even though
scRNAseq gives a very detailed view of heterogeneous popula-
tions, dissecting exact cell states along a continuum is challenging
for bioinformatical as well as biological reasons. It is especially
interesting that terminally exhausted T cells seem to express the
B-cell attracting chemokine CXCL13, suggesting that these cells
may play a role in the development of mature tertiary lymphoid
structures46, which have been linked to better survival in head
and neck cancer47. Previously we have reported that PD-1high

CD8+ T cells contained the highest expression of granzyme B19,
which we were able to confirm transcriptionally here.

Clinical significance of the density and quality of immune cells
in the (inflamed vs. non-inflamed) TME has been highlighted in
many tumor types48, with the caveat of widely differing
descriptions of immune infiltration and methods that define
it21,22. Thus far, the connection between quantitative and quali-
tative differences has not been evaluated at a single-cell level. We
show that inflamed tumors not only have higher proportions of
CD8+ T but also have a more effector/differentiated tran-
scriptomic signature and a higher number of putative cell–cell
interactions. This is in line with the current understanding that
HNSCC tumors infiltrated by high amounts of CD8+ T cells have
a better prognosis possibly due to improved effector function and
tumor cell killing49.

Since HPV+ HNSCC has overtaken cervical cancer as the most
common HPV-associated cancer in the US10,23,50, pathophysio-
logical distinction and clarification become especially relevant5.
We demonstrate that virally encoded genes can be mapped and
quantified in the human scRNAseq data set, allowing for direct
evaluation of HPV gene expression in individual HPV-
transformed epithelial tumor cells, permitting transcriptomic
comparisons and virus-specific targeting. Our findings support
the current thinking on the pattern of HPV gene expression in
cancer: the viral genome persists as shown in the expression in
early genome maintenance genes (E1, E2, E5) and high-risk viral
oncogenes (E6 and E7), but no virus is assembled and released
(due to lack of L1 and L2 capsid protein expression)51. Further,
the analysis of viral gene expression patterns highlights the het-
erogeneity of viral transcripts in HPV+ cancers at a cellular and
an interpatient level, which may have potential therapeutic
implications when targeting these transcripts52,53.

Our cohort extends previous single-cell studies in HNSCC that
also showed a partial-EMT signature for HPV– cancers10, but
which did not consider HPV+ disease. The estrogen response

signature we found in HPV+ lesions corroborates previous
research in cervical cancer showing oncogenic synergism between
HPV infection and estrogen receptor (ER) associated pathways54.
In HPV+ HNSCC, this mechanism has not yet been as clearly
shown, however, the expression and prognostic impact of estro-
gen receptors in the HNSCC TME has been recently reported24.

The availability of scRNAseq data from non-immune cells
enabled us to further delineate fibroblast, pericyte, and endothe-
lial cell (vascular and lymphatic origin) clusters and to expand on
previous studies that were limited by lower cell numbers10. These
non-malignant cell populations exhibit significant interpatient
heterogeneity. We also identify a sub-state of elastic fibroblast
differentiation not previously reported in HNSCC scRNAseq
studies. Fibroblasts with elastic differentiation are an emerging
phenotypic subtype, and a grade-dependent change of morphol-
ogy and orientation has been proposed55. Considering that
cancer-associated fibroblasts are generally considered to be
immunosuppressive, having a better resolution of their hetero-
geneity in the TME could open the way for new biomarkers, risk-
stratification, and novel therapeutic targets23. Our observation
that fibroblasts with elastic type differentiation have a negative
prognostic value specifically for HPV+ patients stresses the
importance of seeing HPV+ and HPV– disease as two different
diseases that require tailored, specific biomarkers and treatment
approaches.

This data set also allowed us to explore cell type-dependent
differences in the interactome using algorithms that predict
putative cell–cell interactions within the TME. CD8+ T cells in
the HNSCC TME interactome, particularly with macrophages,
are based on predicted CD274–PDCD1, HAVCR2–LGALS9, and
TIGIT–NECTIN2 interactions that may dictate tumor rejection.
This observation is supported by our current findings and cor-
roborated by a previous study that showed that T cells readily co-
localize with PD-L1+ macrophages in inflamed HNSCC lesions56.
Combined scoring systems incorporating macrophages and
tumor cells to determine patients’ PD-L1 status appear most
predictive of clinical efficacy57. Thus, with the approval of novel
ICR-targeting therapies for the treatment of various malignancies
including HNSCC4, a better understanding of the primary cellular
sources and expression patterns of associated ICL in the HNSCC
TME is critical. Indeed PD-L1 and galectin-9 were previously
reported to be expressed not only by tumor cells and macro-
phages, but also by Treg, NK cells, fibroblasts58–61, and endo-
thelial cells62. We validated by scRNAseq, flow cytometry, and
multispectral microscopy that macrophages are the key con-
tributors of PD-L1 in the HNSCC TME, paralleling clinical sig-
nificance and the widespread use of the combined positive score
(CPS) as a biomarker for PD-1-based immunotherapy57. In
contrast, the galectin-9 protein was expressed primarily on
fibroblasts and other non-immune cells, whereas transcriptomics
suggested that macrophages were the dominant cell type. These
data suggest that combined scoring of galectin-9 on non-immune
cells and macrophages may also be necessary to identify patients
that may benefit from ongoing TIM-3-targeting therapies. HLA-
DR was expressed by both non-immune and immune cells within
the TME both by scRNAseq and flow cytometry. Transcriptomic
data indicate that LAG3 is differentially upregulated by DC and,
particularly, macrophages from lesions with high inflammation
score. Since LAG3 expression on TIL has been reported to cor-
relate with increased CD8+ T cell infiltrate in HNSCC63, LAG3-
targeting therapies may be better suited for the treatment of
patients with inflamed lesions.

In conclusion, we present a comprehensive scRNAseq inves-
tigation of HPV+ and HPV– HNSCC TME (cancer, stromal and
immune cells). The breadth and depth of this data set permit for
detailed sub-clustering and transcriptomic analysis of major cell

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-27619-4

12 NATURE COMMUNICATIONS |         (2021) 12:7338 | https://doi.org/10.1038/s41467-021-27619-4 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


subsets and investigation of putative cell–cell interactions within
the TME. We demonstrate the utility of this robust data set as a
resource and that it can be reliably used to identify novel receptor
or ligand expression patterns that can be validated at the protein
level14.

Methods
Ethical regulations. The research presented here complies with all relevant local,
national, and international regulations. For all human patient samples, informed
written consent was obtained prior to donation. The University of Pittsburgh
Cancer Institute Review Board (Protocol 99-069) approved the study.

Patient cohort. Patient characteristics are shown in Supplementary Table 1, and
this cohort comprised transcriptomic profiles of CD45+ PBL and TIL (n= 18
patients), as well as CD45− non-immune cells from patient tumors (n= 15
patients). Raw files and separate analyses from PBL and TIL isolated from
HN01–HN15 were previously published9. All transcriptomic analyses of non-
immune cell types and their interactions with immune cells, particularly CD8+

T cells, are novel and unpublished. Data from all CD45− cells, as well as PBL and
TIL from HN16-18 are also unpublished.

Tissue dissociation and PBMC isolation. After informed consent, fresh periph-
eral blood and tumor biopsies were obtained from treatment-naive HNSCC
patients. After physical dissociation, tumors underwent a 30 min enzymatic
digestion in a dissociation cocktail [1× HBSS supplemented with 50 IU/ml col-
lagenase I, 25 IU/ml collagenase II, 50 IU/ml collagenase IV 0.025 mg/ml DNase I
(STEMCELL Technologies; Vancouver, Canada) and 3 mM calcium chloride
(Sigma-Aldrich; St. Louis, MO)] at 37 °C and cell extraction64. PBMCs were
separated from blood using Ficoll Hypaque gradient centrifugation (Corning,
Manassas, VA)65. A red blood lysis step was performed on both tumor single-cell
suspensions and PBMCs using the 1× solution of RBC lysis buffer (ThermoFisher
Scientific; Waltham, MA) for 2 min per manufacturer’s protocol.

Fluorescence-activated cell sorting (FACS). Prior to sorting cells, viability
staining was performed using eBioscience Fixable Viability Dye eFluor 780
(ThermoFisher Scientific) per manufacturer’s protocol. This was followed by a
wash and staining with anti-CD45 PE (BioLegend; San Diego, CA) for 30 min in
sorting buffer (0.1% BSA in PBS) at 4 °C. After washing, viable CD45+ and CD45−

cells were sorted using the Beckman Coulter MoFlo Astrios. Subsequently, the cells
were washed twice and re-suspended in a sorting buffer. A cell number and via-
bility count were performed on a Cellometer Auto 2000 using the ViaStain™ AOPI
Staining Solution (Nexcelom Bioscience LLC, Lawrence, MA, USA) immediately
prior to scRNAseq.

Gel bead-in-emulsion (GEM) generation, reverse transcription, and PCR
amplification. Ready-to sequence Illumina single-cell cDNA libraries were gen-
erated using the Chromium Single Cell 3′ Reagent Kit (v2 Chemistry; 10× Geno-
mics; Pleasanton, CA) per manufacturer’s protocol. Single Cell Chip was loaded to
retrieve 2000 PBMCs and 4000 cells for CD45+ and CD45– tumor-derived cells.

Sequencing. Sequencing libraries (2 nM) were pooled as PBMC and TIL from the
same patient and CD45– cells from two different patients. The resulting pooled
libraries were diluted to 2 pM, denatured, and loaded on a NextSeq 500. For
sequencing, NextSeq 500/550 High Output v2 kits (150 cycles) was used with the
following parameters: Read 1: 26 cycles; i7 Index 8 cycles; Read 2: 98 cycles, as
specified by the 10× Genomics guidelines.

Generation of the aggregated gene-barcode matrix. The CellRanger (v.3.0.0;
10× Genomics) pipeline provided was used to process the data. Initially, samples in
each pool were demultiplexed using the sample index, and FASTQ files were
created for each sample. From these FASTQ files, a counts matrix was generated for
each sample by mapping the FASTQ files to a hybrid reference made of the human
GrCh38 and the HPV16 genome (https://www.ncbi.nlm.nih.gov/nuccore/
NC_001526.4). The counts matrix comprises gene expression by barcode for each
cell present in the sample. In the final step, all these count matrices were aggregated
into a single gene-barcode matrix.

Quality control (QC) and filtering the data set. QC metrics such as the estimated
number of cells, mean reads per cell, sequencing saturation from the CellRanger
Web Summary file were interrogated to ensure that the sequencing output was
suitable for downstream analyses. Based on the QC metrics suggested in the Scanpy
tutorial17, cells with less than 200 genes expressed were filtered out. Cells expres-
sing more than 5000 genes, and more than ten percent mitochondrial genes were
also removed to ensure only the high quality of cells used in the downstream
analyses. Genes expressed in less than 3 cells were also filtered out of the analysis.

Normalization, dimensionality reduction, and data visualization. After per-
forming the filtering steps, the data set was normalized to correct for library size
bias by scaling expression values to 10,000 counts per cell to control for differential
sequencing depth per cell. The count-normalized expression matrix was then log
normalized. Highly variable genes were identified based on dispersion (normalized
dispersion greater than 0) and mean expression (between 0.0125 and 5) and carried
forward to the subsequent analysis steps. The effects of mitochondrial genes and
UMI (Unique Molecular Identifier) counts per cell were regressed out using simple
linear regression as implemented in the Scanpy package (v1.4.5.post2) and the data
were scaled to unit variance. All values exceeding standard deviation 10 were
clipped. Principal Component Analysis (PCA) was used to reduce the dimen-
sionality of the data. To denoise the data, the first 10 principal components were
selected since they accounted for most of the variation in the data. A neighborhood
graph was computed based on the PCA representation of the data and this graph
was visualized using UMAP plots15.

Clustering and cell type assignment. First, a neighborhood graph was con-
structed to identify related groups of cells. Next, Leiden clustering was performed
on the neighborhood graph. The cluster assignments were then visualized on
UMAP plots. Using a combination of top expressed genes in each cluster and a list
of known marker genes (Supplementary Fig. 1A), cell types were assigned to each
cluster.

Calculating differentially expressed genes (DEGs) and gene set enrichment
analysis. DEGs were calculated using the “rank_genes_group” function in Scanpy
using the Wilcoxon test. The DEGs are ranked by the z-score by default. The
“Compute Overlaps” tool under the “Investigate Gene Sets” feature on the Mole-
cular Signatures Database (MSigDB) was used to compute overlaps between the set
of DEGs and gene sets in the MSigDB. We acknowledge our use of the gene set
enrichment analysis, GSEA software, and Molecular Signature Database
(MSigDB)66. For gene set enrichment analyses that did not start with a pre-
calculated DEG list, the “singleseqgset” R package (v0.1.0.9000) was used to look
for gene signatures enriched in the several clusters within each cell type9.

Using InferCNV to differentiate malignant and non-malignant cells. InferCNV
(v.1.2.1) was used to distinguish between the malignant and normal epithelial cells.
Cells derived from the PBL were annotated as “Normal” to establish the baseline
signal for gene expression. The epithelial cells were annotated as being “Tumor”
and each cluster was annotated separately. Patterns between the baseline signal
seen in the PBL cells were compared to epithelial cell clusters to determine if the
cells in each cluster were malignant or normal epithelial cells.

Deconvolution of bulk RNASeq data using CIBERSORTx. Due to file size lim-
itations on the CIBERSORTx web server, 5000 annotated cells were randomly
sampled from the TME. Expression profiles of these cells were used to create the
single-cell reference matrix. The “Impute Cell Fractions” module was used to infer
proportions of all the cell types identified by our scRNA-Seq in HNSCC TCGA
samples.

Gene set score calculation and survival analysis. A gene signature was created
using the top 100 DEGs based on the score generated by the rank_genes_groups()
function in Scanpy from fibroblasts with elastic differentiation as well as CAF. A
GSVA score was computer per sample using TCGA HNSCC RNAseq data. All
normal samples from the TCGA cohort were excluded from the analysis. Based on
the median of the GSVA score, the samples were divided into 2 groups: High
(above the median) or Low (below the median). Kaplan-Meier plots were generated
to compare the overall survival in groups of interest using the survfit() function
from the “survival” R package (v.3.2-11).

All-component total immune cell scoring on H&E slides. To segregate inflamed
tumors, H&E staining was utilized as a simple, unbiased, and comprehensive
measure of the lymphocyte content of each tumor (Supplementary Fig. 1C).
Immune/inflammatory cells per 10 high-power fields were quantified by a trained
pathologist unbiased to clinical-pathological information and values averaged. The
sum of the average counts in the tumor edge, tumor and stroma was calculated as
all-component total immune cell score. Samples above the median inflammation
score were categorized as inflamed and samples below the inflammation score were
non-inflamed. One patient’s slides (HN03) had no viable tumor cells (only necrosis
and stroma) after its use for fresh digestion and scRNAseq, so it was excluded from
analysis of inflammation status. Furthermore, all UMAP plots showing inflam-
mation scores do not include PBL cells and all cells from HN03.

RNA in situ hybridization for high-risk HPV. Three clinical cases of metastatic
squamous cell carcinomas with unknown primary tested were reviewed with
Advanced Cell Diagnostics (RNAscope® HPV-HR, Hayward, CA). All slides were
handled based on the manufacturer’s guidelines. Images were acquired using an
Olympus BX45 (Olympus K.K., Tokyo, Japan).
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Quantitative PCR (qPCR) for HPV genes. RNA was isolated from scraped FFPE
tumor sections using the AllPrep DNA/RNA FFPE kit (QIAGEN; Germantown,
MD). C3.43, an HPV-transformed cancer cell line, was used as the positive, while
the HPV− JHU029 cell line was used as the negative control for the analysis.
Reverse transcription was performed with total RNA using the Maxima H Minus
First Strand cDNA Synthesis Kit (ThermoFisher Scientific, K1652)67. qPCR ana-
lysis was performed using the SsoAd-vanced Universal SYBR Green Supermix Kit
(Bio-Rad, 172-5272). The relative expression levels of target genes were normalized
to the expression level of HPV16 E6 or E7, which yielded 2–ΔΔCt cycle threshold
(Ct) values. All reactions were run in triplicate. The primers used for gene
expression were as follows: 5′-CAGGAGCGACCCAGAAAGTT-3′ (forward) and
5′-GCAGTAACTGTTGCTTGCAGT-3′ (reverse) for HPV16 E6; 5′-CCGGACA-
GAGCCCATTACAA-3′ (forward) and 5′-GCTTTGTACGCACAACCGAA-3′
(reverse) for HPV16 E7; 5′-GGTGTTGAGGTAGGTCGTGG-3′ (forward) and 5′-
CACACCTGCATTTGCTGCAT-3′ (reverse) for HPV16 L1; 5′-GAATTGGAA-
CAGGGTCGGGT-3′ (forward) and 5′-AAGGGCCCACAGGATCTACT-3′
(reverse) for HPV16 L2.

IHC staining and quantification. 5uM thick formalin-fixed paraffin-embedded
(FFPE) tissue sections for selected patient tumor samples were mounted on slides.
Sections were deparaffinized at 60 °C for 30 min. and rehydrated using a standard
histology protocol. Antigen retrieval was performed using an EDTA buffer (Cell
Signaling, Danvers, MA) in Decloaking chamber at 120 °C for 2 min. The slides
were stained using an Autostainer Plus (Agilent Dako) platform with TBST rinse
buffer (Cell Signaling). The IHC slides were treated with 3% hydrogen peroxide for
5 min. The primary antibody, MFAP4 (Rabbit Polyclonal IgG; cat.# NBP2-30439,
Novus Biological, Centennial, CO) was applied using a dilution of 1:200, at room
temperature for 30 min. The detection applied, consisted of Mach 2 Rabbit, HRP
(Biocare Medical, Pacheco, CA) for 20 min. at room temperature. The substrate,
3,3, Diaminobenzidine+ (Agilent Dako), was applied for 5 min. The slides were
then incubated in Denature solution (Biocare Medical). The slides were then
counterstained with Hematoxylin (Agilent Dako).

Flow cytometry analysis. Single-cell tumor suspensions were stained with Zombie
NIR (Biolegend) labeling per the manufacturer’s protocol. Samples were washed
with FACS buffer (0.2% BSA, 0.02% NaN3, PBS) and labeled for 20 min at 4 °C
using the anti-human antibodies detailed in Supplementary Table 3. Data were
acquired using LSR Fortessa cytometer (BD Biosciences) and analyzed using
FlowJo version 10.6.1 software.

Vectra staining and imaging. Multispectral immunohistochemistry was per-
formed on 5uM thick FFPE tissue sections using Akoya Manual 7 color IHC kit
(Cat# NEL811001KT). Briefly, tissues were deparaffinized followed by 7 cycles of
antigen retrieval, blocking, primary antibody followed by secondary- HRP and
Opal staining9. Panel markers and dilutions used are listed in Supplementary
Table 4. Imaging was performed at ×20 on the Vectra Polaris 3.0.

Analysis of multispectral immunofluorescence images. Images were inspected
using Akoya InForm® (v2.4.6) and Phenochart™ (v1.0)(Akoya Biosciences, Inc.) to
select ROIs consisting of both tumor and peritumoral/stromal regions. Channels
were spectrally unmixed and exported as multi-channel composite TIFF files for
data analysis in QuPath (v0.2.3), including cell segmentation by watershed algo-
rithm and classification of marker positive/negative cells using a machine learning
approach68. Briefly, a small number of positive/negative cells (30–50 per class per
ROI) were manually selected from multiple ROIs as the training set to build a
Random Forests model, which was then used to predict all remaining cells. Tumor/
peritumoral/stromal compartment annotation was performed using pixel classifi-
cation by pan-CK intensity signals. Measurement matrices consisting of centroid
position (x,y), per-channel intensity, and class label of phenotyped cells were
exported and further processed in R (v4.0.3). PD-L1+ cell density was calculated as
the number of PD-L1+ cells divided by CD68+ cells, PanCK+ cells, or all cells from
each compartment. Distance between CD68+PD-L1+ or pan-CK+PD-L1+ cell
subsets to CD3+CD8+CD68− cell subsets was computed using the nearest
neighbor algorithm with Euclidean distance, defined as the smallest distance
between each CD68+PD-L1+ or pan-CK+PD-L1+ cell to CD3+CD8+CD68− cell
within the same compartment. Differences in mean PD-L1 intensity per ROI
between groups of interest were tested using a linear mixed-effects model based on
restricted maximum likelihood in R (lme469 (v1.1.26)), with cell type (CD68+PD-
L1+, pan-CK+PD-L1+) as the fixed effect and individual patient as the random
effect. Contrasts of cell subsets were performed using t-tests with the
Benjamini–Hochberg FDR adjustment for multiple comparisons. Marker inten-
sities were log-transformed before statistical testing. All tests are two-sided unless
otherwise noted.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Raw data are available on NCBI Sequence Read Archive: accession ID SRP301444.
Processed gene barcodes are available on the Gene Expression Omnibus database:
accession ID GSE164690. The bulk RNAseq and clinical HNSCC data utilized for
survival analysis and deconvolution using CIBERSORTx from TCGA is available through
the Broad Genome Data Analysis Center Firehouse (https://gdac.broadinstitute.org/).
Gene signatures from the MSigDB can be found on the database website (http://
www.gsea-msigdb.org/gsea/msigdb). The remaining data are available within the Article,
Supplementary Information or Source Data file. Source data are provided with this paper.
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