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A calibratable sensory neuron based on epitaxial
VO, for spike-based neuromorphic multisensory
system
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Neuromorphic perception systems inspired by biology have tremendous potential in effi-
ciently processing multi-sensory signals from the physical world, but a highly efficient
hardware element capable of sensing and encoding multiple physical signals is still lacking.
Here, we report a spike-based neuromorphic perception system consisting of calibratable
artificial sensory neurons based on epitaxial VO,, where the high crystalline quality of VO,
leads to significantly improved cycle-to-cycle uniformity. A calibration resistor is introduced
to optimize device-to-device consistency, and to adapt the VO, neuron to different sensors
with varied resistance level, a scaling resistor is further incorporated, demonstrating cross-
sensory neuromorphic perception component that can encode illuminance, temperature,
pressure and curvature signals into spikes. These components are utilized to monitor the
curvatures of fingers, thereby achieving hand gesture classification. This study addresses the
fundamental cycle-to-cycle and device-to-device variation issues of sensory neurons,
therefore promoting the construction of neuromorphic perception systems for e-skin and
neurorobotics.
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s the development of wearable electronics and internet of

things (IoT), there is a dramatic upsurge in the type and

number of sensory nodes!, generating a great deal of
sensory data that must be processed efficiently and in real time. In
traditional architectures, the analog data collected by the sensors
are first converted into digital signals via analog to digital con-
verters (ADCs) and then stored in memory, before being for-
warded to the computing units?, hence causing high energy
consumption and low efficiency, which is dramatically different
from the highly efficient sensory processing of human. Human
could sense the real world and outperform current digital systems
in efficiency, robustness, flexibility, and fault tolerance®. The
sensory system of human combines a variety of senses that work
together and interact with the brain to allow people to explore
and capture information*8. In the human perception system,
receptors receive physical stimuli from the outside world and
convert physical information into electrical spikes, which are then
delivered to the cerebral cortex of the brain for further
processing’. This structure forms the basis of comprehensive
perception, pre-processing, and coding capabilities of biological
systems. To enable a biologically inspired perception system, it is
necessary to combine sensors with artificial synapses and neu-
rons. Constructing synapses and neurons with traditional CMOS
technology requires complex circuits, which results in inefficiency
in the overall area and energy consumption!®!l. Recently,
emerging devices, such as memristors, have been used to emulate
the functionalities of synapses and neurons due to their abundant
ion dynamics!>-23. The neuromorphic perception computing
system that combines sensors and synapses/neurons has proven
to be capable of processing sensory information, such as
tactile24-31, visual®2-36, nociception37-3® signals, etc. However,
these artificial neurons only handle single-mode physical signals,
and most of them suffer from significant cycle-to-cycle and
device-to-device variations, which are significant challenges
toward applications. A neuromorphic perception computing
system that can handle multi-mode physical signals and have
excellent uniformity is greatly desirable.

In this study, we report a calibratable artificial sensory neuron
(CASN) consisting of epitaxial VO, memristor grown by pulsed
laser deposition and a variety of coupled sensors. The high crys-
talline quality of epitaxial VO, gives rise to significantly improved
cycle-to-cycle uniformity of the artificial neuron, and a calibration
resistor is further introduced to optimize the device-to-device
consistency between different neurons. In addition, the artificial
spiking neuron is equipped with a scaling resistor to suit different
types of sensors with varied resistance levels. Based on this, we
demonstrate cross-sensory neuromorphic perception component
that is able to encode optical, thermal, pressure, and curvature
signals into spikes, showing capability in simulating biological
vision, temperature, haptic, and mechanical sensation capabilities.
The perception neurons are further incorporated as the input
neurons of a 3-layer spiking neural network by simulation,
achieving an accuracy of 90.33% on MNIST-based pressure image
classification. Finally, we have utilized these neuromorphic per-
ception components to monitor the curvatures of fingers and
thereby achieved classification of hand gestures. These results
demonstrate the great potential of our CASN-based neuromorphic
perception system in highly efficient multi-sensory neurorobotics.

Results

Calibratable spiking neuron based on epitaxial VO,. By uti-
lizing various senses, humans collect physical information of the
external world and encode it into spikes, which are then trans-
mitted to the cerebral cortex for perception and learning®%3%, A
highly efficient neuromorphic sensory system in hardware that

can process a variety of physical signals is thus desirable. Figure 1
shows the comparison between the biological perception system
and our spike-based artificial neuromorphic perception system.
In the biological perception system, certain types of receptors
(photoreceptors, thermal receptors, mechanoreceptors, etc.) and
neurons convert external environmental signals into electrical
spikes (Fig. 1a). The cerebral cortex then receives these spikes and
responds to external stimuli. In our spike-based artificial neuro-
morphic perception system, we implement a calibratable artificial
sensory neuron based on epitaxial VO, (Fig. 1b). The CASN is
able to encode different types of sensory signals into electrical
spikes, and these spikes can be further processed by spiking
neural network (SNN). Implementation of such sensory and
computing architecture is therefore important for building highly
efficient multi-sensory systems.

The VO, film with a thickness of 20 nm was epitaxially grown
on ¢-AlL,O; substrates by pulsed-laser deposition (PLD) using
308 nm XeCl excimer laser operated at an energy density of ~1]/
cm? and a repetition rate of 3 Hz. The films were deposited at
530°C in a flowing oxygen atmosphere at oxygen pressure of
2.0 Pa. The VO, memristor used in this work is designed as a
planar device (Fig. 2a). Figure 2b shows scanning electron
microscopy (SEM) image of the device, and in Fig. 2¢ the channel
region is enlarged, where the channel length is 400 nm and the
electrode width is 1um (see “Methods” for the details of
fabrication processes). Figure 2d, e shows the transmission electron
microscopy (TEM) image of the device, while the cross-sectional
scanning transmission electron microscopy (STEM) image and
corresponding energy-dispersive X-ray spectroscopy (EDS) map-
ping of O, Au, Ti, V, Si, and Al can be seen in Supplementary
Fig. 1a, along with EDS elemental line profile in the same region
(Supplementary Fig. 1b). A zoomed-in view of the film shows well-
ordered lattice fringes of VO, (Fig. 2f), and the corresponding fast
Fourier transformation (Fig. 2g) once again verifies the high
crystalline quality of the epitaxially grown VO,.

The excellent crystalline quality of the epitaxially grown VO,
plays a crucial role in achieving high uniformity in VO,
memristor. The VO, memristor exhibits volatile resistive switch-
ing as can be found from its current-voltage (I-V) characteristics
(Fig. 2h), where the device can change from a high resistance state
(HRS) to a low resistance state (LRS) when the applied voltage
exceeds a threshold voltage (Vi) of around *1.35V and
immediately return to HRS once the applied voltage gets lower
than a holding voltage (V}014) of around +0.85V. Such volatile
threshold switching (TS) characteristics and metal-insulator
transition in VO, have attracted extensive attention?®4!, which
has a complex mechanism involving both electronic and
structural phase transitions*2. Supplementary Fig. 2 shows the
experimental results and simulated I-V curve based on the metal-
insulator transition (MIT) model, where the blue points are the
experimental data and the red curve is the simulation result, along
with spatial heat distribution in different stages of the phase
transition. As the applied voltage progressively increases (state (1)
to (2)), heat is generated in the VO, memristor. Once the phase
transition is triggered, a filament is formed through the VO, gap,
which switches the device from HRS to LRS. The filament is
expanded as the voltage increases (state (2) to state (3)). When
the applied voltage is reduced, the heat dissipates, and the
filament size decreases (state (3) to state (4)). When the applied
voltage is below V14, the filament breaks down and the device
eventually returns to HRS (state (4) to state (1)), as shown in
Supplementary Fig. 2. More details of the model used for
simulation are provided in “Methods”, Supplementary Table 1,
and Supplementary Note 1. The symmetrical hysteresis curve can
be seen under both positive and negative biases of a voltage
sweep. Transient electrical measurements show that the switching
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Fig. 1 Comparison of biological perception system and spike-based neuromorphic perception system. a Schematic of biological perception system.
Biologically, physical signals from the outside world are converted by receptors and neurons into electrical impulse signals, which are then transmitted to
the cortex for further processing. b Schematic of spike-based artificial neuromorphic perception system. The calibratable artificial sensory neuron
combined with sensors (pressure sensor, light sensor, temperature sensor, curvature sensor) convert different physical signals into spikes and then

transform them into the spiking neural network (SNN) for complex tasks.

speed of VO, memristor in this work is <200 ns from off-state to
on-state and <75ns from on-state to off-state (Supplementary
Fig. 3 and Supplementary Note 2). Figure 2h depicts 1000 voltage
sweep cycles from 0 to 2V and 0 to —2V, demonstrating
extremely stable TS characteristics with low cycle-to-cycle (C2C)
variation. Since the resistance switching in VO, is ascribed to
the intrinsic electronic and structural phase transitions*? in the
material itself without necessarily incorporating defects unlike
redox-based memristors, the low C2C variation can be attributed
to the high crystalline quality of the epitaxial VO,. The
distributions of high and low resistance states of the epitaxial
VO, memristor and cumulative plots of positive and negative
threshold/holding voltages, including Vi, poss Vhold_pos Vih_neg
Vhold_neg i 1000 repeated cycles are shown in Fig. 2i-j. Following
the protocol introduced in previous studies??, we calculated the
coefficient of variation (Cy/) as the standard deviation (o) divided
by the mean value (¢). The minimum cycle-to-cycle variability in
Vthfpos> Vthfneg, Vholdﬁpop and Vholdfneg was 0.73%, 0.7%, 0.51%,
and 0.5%, respectively, demonstrating very low variability
(Supplementary Fig. 4). The device-to-device variability in
Vthfpos> Vthfneg) VhOldprS) and Vholdfneg was 5.32%, 5.12%,
6.96%, and 7.16%, respectively (Supplementary Fig. 5). Notably,
Chen et al. have reported low C2C variability of 1.53% and low
D2D varijability of 5.74% in hexagonal boron nitride-based
crossbar arrays*>. Our present epitaxial VO,-based memristor
hence demonstrates extremely low C2C variability and reasonably
low D2D variability due to its high crystalline structure.

It should be noted that despite the high film quality, PLD is still
limited in preparing large-scale thin films. Many methods have
been adopted to synthesize high-quality VO, films, however, the
growth of wafer-scale, high-quality VO, films with excellent
phase transition property is still a challenge. To date, 2-inch
epitaxial VO, film grown by molecular beam epitaxy was
reported*¥, and preparation of large-scale VO, films by
electron-beam evaporation®®, thermal oxidation®, sol-gel
method?’, and sputtering® has also been reported. Nevertheless,
the crystalline quality of the VO, film might be compromised in
some preparation processes, and the growth method should be
selected based on the detailed requirements on sample scale and
crystalline quality in the applications.

Here, the threshold switching characteristics of epitaxial VO,
memristors are used to realize spiking neurons, and the circuit
configuration is shown in Fig. 3a. The epitaxial VO, memristor is
connected in parallel with a capacitor and this structure is in turn
in series with a load resistor R;. The oscilloscope is used to
measure electrical waveforms across the VO, memristor and that
coming from the power supply through channels 1 and 2,
respectively. The capacitor begins to charge when a voltage is
applied, and once the voltage on the capacitor exceeds Vy, the
VO, memristor will switch to LRS. As a result, the artificial
neuron generates a spike and the capacitor will be discharged
through the on-state memristor®®. Subsequently, the voltage on
the capacitor will drop below Vjq4, and thus the device will
return to HRS. Such charging and discharging process can be
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Fig. 2 Characteristics of epitaxial VO, memristor. a Schematic diagram of the memristive device, which is a planar structure. b Scanning electron
microscopy (SEM) image of the epitaxial VO, memristor. € Zoom-in views of the channel locations in SEM. d Cross-sectional transmission electron
microscopy (TEM) image of the epitaxial VO, memristor. e A closer view of the device in TEM. f Zoom-in views of the epitaxial VO, region. g The
diffraction pattern extracted by fast Fourier transformation of (f). h Current-voltage characteristics of the device repeated for 1000 cycles. i Distributions of
high and low resistance states of the epitaxial VO, device in 1000 repeated cycles. j Cumulative plots of positive threshold voltage (Vin_pos), positive
holding voltage (Viold_pos), Negative threshold voltage (Vin_neg). and negative holding voltage (Vhoid_neg)-

clearly observed in Supplementary Fig. 6. Once the spike
generation is stabilized, the charging period should occur from
Vhold to Vi, and the discharging period is from Vi, to Vig. The
spiking rate of the artificial neuron is hence affected by the series
resistance, applied voltage, and parallel capacitance. Figure 3e
exemplarily the spiking patterns of the artificial neuron when
adopting different Ry (2.6kQ, 5kQ) under a constant input
voltage of 5V without an external parallel capacitor. More results
with >10 varied Ry, values can be found in Supplementary Fig. 7,
and the spiking frequency (f) is summarized in Fig. 3b, showing
that the frequency gradually decreases as R; increases. This is
because a larger R reduces the input current and thereby
decreases the rate of charge accumulation on the capacitor. On
the other hand, Fig. 3f shows the spiking waveforms with varied
input voltage (4.4 V, 6.4 V) when Ry, is fixed as 4k(, and more
results can be found in Supplementary Fig. 8 and summarized in
Fig. 3c. It can be seen that the spiking frequency increases as the
input voltage increases, similar to biological neurons. Figure 3d
and Supplementary Fig. 9 further reveal the relationship between
the parallel capacitance and the spiking frequency, when the
applied voltage is fixed at 5V and Ry is fixed at 4 kQ. The spiking
frequency gradually decreases as the parallel capacitance
increases, since a larger capacitance results in a slower integration

process. In all of the cases, the VO, neuron displays excellent
uniformity, which once again is based upon the high crystalline
quality of epitaxial VO,.

The spiking neuron can be modulated to a relatively low
frequency (<150Hz) when a 10uF capacitor is adopted
(Supplementary Figs. 10 and 11), whose spiking rate is at a
similar level with the human nervous system, implying a great
potential in the field of human-machine interaction. The
COMSOL model of memristor we constructed showed excellent
consistency with experimental results (Supplementary Fig. 12).

The high crystalline quality of epitaxial VO, has led to low C2C
variations, as demonstrated in Figs. 2, 3, and Supplementary
Figs. 7-11, whereas device-to-device (D2D) variations might still
exist, due to fabrication imperfections, etc. We have therefore
tested different artificial neurons, and their R;-, voltage- and
capacitance-modulation curves are shown in Fig. 3g-i. Despite
the similarity of the modulation trends among the neurons, there
is still considerable variation and shift among them, which still
poses significant challenges toward applications. In order to
further reduce the D2D variation, we have introduced a serial
calibration resistor into the neuron circuit (Fig. 3j). Figure 3k
demonstrates that the f-R; modulation curve can be well
controlled by the calibration resistance R. (more experimental
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Fig. 3 The artificial spiking neuron with its calibration design. a lllustration of circuit based on epitaxial VO, device for implementation of a spiking
neuron. b The effect of series resistance R_ on spiking frequency. The frequency of spiking decreases as the R increases. ¢ The effect of applied voltage on
spiking frequency. The firing frequency increases with the increase of the applied voltage. d The effect of the parallel capacitor on spiking frequency. As the
parallel capacitor increases, the firing frequency gradually decreases. e, f Artificial spiking neuron response under different series resistance R, and applied
voltage. g-i The effect of series resistance (R|), applied voltage (Vi,), and parallel capacitors on spiking frequency (f) of different neurons, respectively.
Variation from neuron to neuron is easily observable. j The circuit structure of calibratable artificial spiking neuron. k The effect of series resistance R, on
spiking frequency under different calibration resistances (R.). | The relationship between the spiking frequency of different neurons and the series
resistance R, after calibration. It is observed that the variation between neurons is effectively reduced compared with (g).

data are shown in Supplementary Fig. 13). This, therefore, offers a
valuable mechanism, based on which we can shift and align all the
modulation characteristics from different neurons. Indeed,
experimental results demonstrate that the D2D variation has
been effectively reduced (Fig. 31) compared with Fig. 3g. The
combination of epitaxial VO, and calibration resistance have
therefore addressed the C2C and D2D variations, respectively,
which dramatically enhanced the uniformity of the spiking
neurons. The power consumption of the spiking neuron is
displayed in Supplementary Fig. 14. The transient power is
calculated by multiplication of input voltage with output current,
and energy consumption is calculated by dividing the total energy
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consumption by the spike number, which gives rise to ~2.9 nJ for
each spike. This value is still lower than the state of the art
reporting few pJ/spike (ref. 28). The relatively high energy
consumption originates from two main factors: the relatively low
resistance and the relatively high Vi;,. The resistance of the device
can be improved by optimizing the growth conditions of the VO,
film. On the other hand, it is expected that the threshold voltage
could be reduced by decreasing the channel length of the VO,
memristor. To demonstrate this, we have optimized the thin film
growth conditions of VO, and one can see that the current is
reduced from mA level to 50-80 pA (see detailed results in
Supplementary Fig. 15a—c). The resistance of the device has
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increased by nearly two orders of magnitude as shown in
Supplementary Fig. 15d. Moreover, significant reduction in Vi,
and V4 could indeed be achieved by decreasing the channel
length of the VO, memristor (Supplementary Fig. 15e). Future
work will focus on continued optimization of the growth
conditions for VO, films and scaling the size of the devices to
further reduce the energy consumption.

Spike-based neuromorphic sensory system for multi-mode
perception. Human receives different types of sensory signals
from the environment through different receptors, and the signals
are encoded into spikes and sent to the cerebral cortex, allowing
them to learn and perceive. Based on the calibratable spiking
neuron depicted above, coupled with a variety of sensors, a
neuromorphic perception system for tactile, optical, and tem-
perature perception is realized.

We have first fabricated a pressure sensor based on graphene
aerogel (as shown in Supplementary Fig. 16a), which has gained
wide attention due to their low density, novel electrical properties,
high mechanical strength and chemical stability®0-2, and
integrated it with the spiking neuron to realize tactile perception.
Pressure sensors based on graphene aerogel can be easily
fabricated by sandwiching a graphene aerogel layer between
two thin copper electrodes and wrapping the overall structure in
PVA protective film. Such sensor can have different stable
resistance values under different pressures, as shown in
Supplementary Fig. 16b, because in contact with the almost flat
surface of the copper electrode, the graphene aerogel has a rough
surface made up of many graphene flake ends. When external
pressure is applied, the graphene aerogel is deformed, causing a
larger number of the graphene flake ends to contact the electrodes
and therefore decreasing the resistance. Supplementary Fig. 16¢
shows the dependence of resistance response on pressure.
Application of pressure from 0 to 0.98 N has resulted in a change
in the sensor resistance from 81 to 2.7 k(), revealing a wide range
of resistance output. The output resistance effectively replaces the
Ry in the original neuron circuit, therefore mapping the sensory
signal to the spiking frequency of the neuron based on the f-Ry,
modulation (Fig. 3b, g, k, I). Indeed, Fig. 4b shows the spiking
frequency of the tactile perception neuron as a function of the
pressure where an external parallel capacitor (2000 pF) and a
constant bias voltage (5 V) were applied, showing that the spiking
frequency increases monotonously from 104.8 to 253.5 kHz when
the pressure is increased from 0 to 0.98 N. The spiking response
under different pressures can be observed in Fig. 4c, and more
detailed results can be found in Supplementary Fig. 17. Never-
theless, the functioning of the spiking neuron places a require-
ment on the amplitude of Ry, but different types of sensors may
fall into different regions of output resistance. To accommodate
varied types of sensors, we have further incorporated a scaling
resistor Rycaling to adjust the resistance range to the desired range,
as shown in Fig. 4a, d, g. Based on this circuit configuration, a
spiking vision neuron has also been realized by introducing a
light sensor (Fig. 4d). Figure 4e shows the spiking frequency of
the vision perception neuron as a function of the illuminance, and
the spiking response under different illuminance can be observed
in Fig. 4f (more detailed results can be found in Supplementary
Fig. 18). As the illuminance increases from 0 to 1275 Lux, the
resistance of the light sensor decreases, resulting in a higher
spiking frequency from 111.2 to 282.69 kHz (Fig. 4e, f), therefore
encoding light into spike rates. Similarly, an artificial temperature
sensory neuron is constructed experimentally (Fig. 4g, h, i,
Supplementary Fig. 19). As the temperature increases, the
resistance of the temperature sensor decreases, leading to
increased spiking frequency (Fig. 4h, i). As a result, the

calibratable sensory neuron based on epitaxial VO, can emulate
neuromorphic tactile, vision, and temperature perception sys-
tems, and is able to convert pressure, illuminance and
temperature into rate-encoded spikes, therefore providing a
potential as an interface between the external environment and
neuromorphic computing systems.

Figure 4j shows the schematic of a spike-based neuromorphic
sensory computing system for MNIST-based pressure image
classification. Here, 784 spiking tactile sensory neurons are used
to sense the pressure and encode it into pulses with different
frequencies. The value of each pixel in a handwritten digit image is
regarded as pressure. The encoded spike trains are then processed
by a spiking neural network with three layers, which consists of
784 input neurons, 196 hidden neurons, and 10 output neurons.
The pressure images can be divided into 10 different categories
after training the network, and Fig. 4k shows the detailed
simulation process. The training of SNN has been done online
using backpropagation based on the experimentally measured
electrical characteristics of VO, devices and the dependence of the
spiking frequency of the artificial tactile neuron on the pressure
(Supplementary Fig. 20). Detailed procedure for the simulation can
be found in Supplementary Note 3. Figure 41 shows the evolution of
the test accuracy during training process, where the classification
accuracy on the test set can reach 90.33% after 50 training epochs.
The averaged spiking numbers of neurons in the output layer after
50 training epochs are shown in Fig. 4m. The columns represent
the labels of the input pressure images, while the rows describe the
index of 10 output neurons and the color bars represent the average
number of spikes. The input pressure image is correctly identified
in most cases after 50 training epochs. Figure 4n further shows a
confusion matrix of the classification results of the 10,000 test
dataset after 50 epochs. The columns here designate the category of
actual pressure image, while the rows show the classification results
and the color bars represent the number of instances. Most of the
pressure distribution pictures can be classified correctly after 50
epochs, once again showing that the spike-based neuromorphic
perception system in this work is capable of converting physical
signals into spikes and completing complex tasks.

To evaluate the sensing performance, the sensitivity of the
spiking sensory neurons is defined as S = Af/Ax, where Af and Ax
are the values of change in the neuronal frequency and input,
respectively. The spiking sensory neuron is able to achieve high
sensitivity of 151.74kHz/N, 0.13kHz/Lux, and 2.8kHz/°C in
tactile, optical, and temperature perception, respectively. Given that
our pressure sensor is 2 cm in diameter, the calculated sensitivity to
pressure is 47.67 kHz/kPa, which is slightly lower than the
60.8 kHz/kPa reported in ref. 30. This can be improved by
increasing the sensitivity of the pressure sensor itself. As for the
sensitivity to temperature and light intensity, there seem to be no
prior works reporting such metrics that can serve as the
background for direct comparison, to the best of our knowledge.
The important point is that our spiking sensory neuron can be
matched with different kinds of sensors, which is a significant
advantage over existing studies. Furthermore, the signal-to-noise
ratio (SNR)>3 of the spiking sensory neuron is defined for the first
time, which can be described as:

u(f)’
o(f)’

where u(f), o(f) are the mean and standard deviations of spiking
frequency in every oscillation cycle, respectively. Statistical analysis
on the experimental results shows that the artificial spiking sensory
neurons can achieve SNRs of 33.66, 31.90, and 29.92dB in the
tactile, optical, and temperature sensing using our approach. These

SNR = 10 log 1)
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SNR values can originate from the sensor, circuit as well as
fluctuations in Vi, Vhoas Rogs and Ry, of the VO, device.

Moreover, we established a model of the spiking sensory
neuron. The artificial spiking neuron circuit is essentially an RC
circuit. Using Kirchhoff’s Current Law, we have the following
differential equation:

de _ Vin — Vm Vm

c - m__"m 'm
™ dt R,

()

Ryo,

0123456789

Neuron

012345617389
Classification result

where C,,, is the capacitance in parallel to the VO, device or can
be parasitic capacitance. Vy, is the output voltage across the VO,
device. The VO, resistance is Ryp = R,z in HRS and
Ryo, =R in LRS. For simplicity, we assume that Ry and R,
are constant in our analyses.

To obtain the rising time, ¢, from Vjg4 to Vy, during
oscillation, we analyze the circuit when Ry, = R, By
integrating the equation and applying the initial condition
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Fig. 4 lllustration of the spike-based neuromorphic perception system for tactile, optical, and temperature perception. a Schematic of artificial spiking
tactile sensory neuron. The graphene aerogel-based pressure sensor is combined with a calibratable artificial sensory neuron to replace R, in the original
neuron circuit. A scaling resistor (Rscaiing) is used to adjust the range of the sensor resistance where Rycaiing is set as 4 kQ. b The effect of pressure on
spiking frequency. ¢ Artificial spiking tactile sensory neuron response under different pressure. d Schematic of artificial spiking vision sensory neuron where
Rscaling is set as 3 kQ. e The effect of illuminance on spiking frequency. f Artificial spiking vision sensory neuron response under light intensity. g Schematic
of the artificial spiking temperature sensory neuron where Rscaiing is set as 4.5kQ. h The effect of temperature on spiking frequency. i Artificial spiking
temperature sensory neuron response under different temperatures. j Schematic of the spike-based neuromorphic perception computing system for

MNIST-based pressure image classification. The value of each pixel in a handwritten digital image is regarded as pressure. A pressure image is translated
into spikes by 784 artificial spiking tactile sensory neurons, which are input into a three-layer spikes neural network (SNN), and finally, we calculate the
firing rate of neurons in the output layer to get the classification result. k Flow chart of the simulation process. In the forward process (yellow arrow), first, a
pressure distribution image is encoded into spikes by the spiking sensory neurons, then sent to the linear layer for weighted, and integrated on the spiking
neurons. The spiking rate of the output layer is used to calculate the loss. In the error backpropagation stage (red arrow), the sigmoid type function is used
to calculate the gradient. The calculation module in the green box is simulated based on experimental data, and the calculation module in the blue box is
software simulation. I Evolution of the test accuracy with training epochs. After 50 epochs of training, the accuracy on the test set can reach 90.33%.
m The average spiking numbers of neurons in the output layer when different pressure images are input. n Confusion matrix of the classification results of

the test dataset after 50 epochs showing images of pressure can be well classified.

V., (0) = V4> We obtain:
R
ROff Vin - < off Vin - Vhold) exp 7%
Ry + Ry Ry + Rt (R [l Roge) Cn
(€)

At t=t, V. (t)=Vy. Inserting these values into the
equation and further rearranging, we arrive at the expression:

Rt vy vy
R +Ryg " in — Vhold
tr = (RL ” Roff)cm : 111( . Roﬁ.ﬁ )
Rk Vin — Vin

V() =

(4)

For the falling time, t;, from Vy, to V},01q during oscillation, we
let Ry, = R,,. By integrating the differential equation at initial
condition V (0) = V,, we arrive at the following equation:

Vo(t)=— Ry R v _y !
= L — - ex -
o RL + Ron " RL + Ron " t p (RL ” Ron)cm

(©)
Att =t V, (t;) = Vyoq Hence, we have:
Vi — Ron v,
tf = (RL”Ron)Cm -In (%) (6)
Vhold ~ &1k Vin
Thus, the oscillating frequency is:
1
f= te+t; @
This model is similar to the one given in refs. °4-6, which are

essentially relaxation oscillators relying on volatile threshold
switching devices to enable self-sustained oscillations. However, it
is worthwhile noting that the detailed time constant and voltage
dividing terms across the capacitor are different due to their
different circuit designs, and more importantly, this model takes
into account the scaling resistance and the calibration resistance.
Extending the model to calibratable spiking sensory neuron, we
have:

RL = Rsensor' |Rscaling + Rc (8)

where Rgensors Recaling @and R are resistance of sensor, scaling
resistance, and calibration resistance.

To evaluate potential device variation of VO, memristors on
precise sensing, the SNR is calculated by our model considering
the factors related to the VO, device, i.e., the distribution of Vi,
Vhold’ Roff) and Ron (Flg Zh—]), ShOWiIlg SNR of 36.38 dB (Vin) RL,
and C,, are set as 5V, 2.6 kQ), and 1000 pF, respectively).

It is worth noting that VO, is a system that is very sensitive to
oxygen content, protons, and temperature in ambient environ-
ment. In order to examine these factors, we have first performed
control experiments to measure the characteristics of VO, devices
under different atmospheric pressure, including air (Supplemen-
tary Fig. 21a), varied atmospheric pressure from 1.5 x 1073 mbar
to 2x 10~* mbar (Supplementary Fig. 21b-h) and N, environ-
ment (Supplementary Fig. 21i). Therefore, the concentration of
oxygen and moisture/proton is gradually reduced in this process,
where the VO, device showed no significant change in its I-V
characteristics. To quantify the impact, the threshold and holding
VOltageS (Vth_pos> Vth_neg’ Vhold_pos> and Vhold_neg) as well as Roff
and R,, of the devices at different atmospheric pressures are
extracted (Supplementary Fig. 21j-k). The highly stable threshold
and holding voltages as well as resistance states demonstrate that
the VO, memristor can operate stably under varied oxygen and
moisture concentrations. To model and address the effect of
temperature, we tested the I-V characteristics of the device at
different temperatures. The I-V characteristics of VO, memristor
at 283-305K are displayed in Supplementary Fig. 22a-h.
Supplementary Fig. 22i shows Vi, and Vj,q at different
temperatures, where one can find that both Vy, and Vigq
gradually decrease with increased temperature. Moreover, the
firing frequency of the VO, spiking neuron at different
temperatures is further tested from 283 to 291 K with constant
Ry of 4kQ and the same input voltage of 5V (Supplementary
Fig. 22k), where the devices are placed directly on a temperature-
controlled probe station (Supplementary Fig. 22j). As the
temperature increases, one can find that the firing frequency of
VO, neurons gradually increases (576.13-656.02 kHz). We have
systematically tested the dependence of the spiking frequency as a
function of load resistance (Ry) and temperature, and the results
are displayed in Supplementary Fig. 221, showing similar Ry and T
dependence in all cases. This might be ascribed to the gradual
decrease in threshold voltages of VO, memristors with increased
temperature, so that the neuronal circuit requires lower voltage
to fire.

It is worth noting that the relatively low phase transition
temperature (T;) of VO, could limit the operating temperature of
neuromorphic systems and poses a challenge in electronic
applications. Hence, appropriate material engineering to increase
T, is highly desirable. A possible strategy to increase the T, of VO,
is by doping. For example, doping by Cr3*, Ge**, and Ti*t+
cations®’%0 have been reported to increase T, of VO, thin films,
with Cr-doped VO, and Ge-doped VO, showing T, of ~100°C
and ~95 °C, respectively. Besides, T; may also be modulated via
strain engineering. In particular, tensile strain along the c-axis of
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the VO, lattice results in a higher T;. It has been demonstrated
that VO, thin films deposited on TiO,(100)°! and TiO,(110)%2
substrates have increased T due to substrate-induced strain, with
the latter reporting a T, of ~95°C. Such transition temperature
range, by means of doping or strain engineering, is more
favorable for practical applications.

After considering the effect of temperature, the threshold and
holding voltages are corrected and can be described as®3:

Ry

th

Vin(T) = (T, T) ©)

RO
_on(r _T
Rth(t )

Viod(T) = (10)

where Ry, T, and T are the effective thermal resistance, the
transition temperature of VO,, and the operating temperature,
respectively. Therefore, the impact of temperature on VO,
neuron spiking can be obtained by inserting Eqs. (9) and (10)
into Egs. (2)-(8). The validity of this model has been verified in
Supplementary Fig. 23, where a set of f-R; curves under different
temperatures are calculated using this model (the values of the
parameters are shown in Supplementary Table 2). The calculated
results are well consistent with the experimentally measured data
(Supplementary Fig. 221), hence demonstrating the reliability of
our model.

Spike-based neuromorphic perception system for gesture
recognition. Human gesture recognition is valuable in fields such
as healthcare®¥, human-machine interaction®>%, and cognitive
neuroscience research®. A highly efficient gesture-sensing system
that works like biological systems is therefore desirable. Here, a
spike-based neuromorphic perception system for gesture recog-
nition that can encode hand gestures into differentiable spikes has
been experimentally implemented (Fig. 5). First, we designed and
fabricated a spiking curvature sensory neuron that can convert
curvatures into spikes, which is composed of a curvature sensor
attached in series with the calibratable spiking neuron (Figs. 2 and
3), as shown in Fig. 5a. When the curvature is increased, the
resistance of the curvature sensor will be increased, which in turn
leads to reduced spiking frequency of the neuron. Afterward, the
curvature sensor is attached onto a human finger, so as to sensing
the bending of the finger. One can see that the spiking frequency
of the sensory neuron becomes lower when the finger is bent to a
larger extent, as shown in Fig. 5b.

To achieve hand gesture recognition, the thumb, index, middle,
ring, and little fingers are paired with 5 spiking curvature sensory
neurons, and we experimentally monitored and measured the
output spike trains of 8 different hand gestures. The correspond-
ing spike profiles of the hand gestures are shown in Fig. 5c.
Figure 5d statistically analzyed the spiking frequency of the
sensory neurons in each finger under the different gestures. It can
be seen that the spiking frequency encoded by each gesture can be
easily distinguished, hence demonstrating that the spike-based
neuromorphic perception system can be effectively used for
gesture recognition.

The calibratable artificial sensory neurons based on epitaxial
VO, shown here demonstrate significant advantages compared
with traditional silicon circuits and other spiking sensory
neurons. Supplementary Fig. 24 schematically depicts the
comparison between neuromorphic perception system based on
silicon circuits and our approach. In traditional silicon-based
circuits, in order to sense physical signals a large number of
ADCs (analog-to-digital converters) are necessary besides the

sensors, which are very costly in area and energy consumption,
and when the subsequent information processing is in spike-
based neuromorphic computing systems, a large number of
additional VSCs (voltage-to-spike converters) will be required3?
to realize spike conversion, which also consume a large amount of
area and energy, as shown in Supplementary Fig. 24a. In stark
contrast, our calibratable sensory neuron (Supplementary
Fig. 24b) can directly achieve both sensing and spike conversion
with the simple circuit consisting of the sensor, the VO,
memristor, and a few resistors and capacitors, which is much
more efficient in area and energy consumption compared to
silicon circuits. Supplementary Table 3 further benchmarks our
approach with other state-of-the-art spike-based sensory neurons.
Compared with existing works in the literature, our work
effectively addressed the impedance matching problem between
sensors and neurons by utilizing the scaling resistance and
calibration resistance to adapt the working resistance ranges of
different sensors. As a result, a variety of different perception
modalities including pressure, light, temperature, and curvature
have been achieved for the first time, which is a significant
advantage of our approach and not seen in existing studies. The
high crystalline quality of epitaxial VO, has addressed the
fundamental cycle-to-cycle and device-to-device variation issues
in sensory neurons, and the resultant excellent uniformity of our
devices gives rise to excellent SNRs of 33.66, 31.90, and 29.92 dB
in tactile, optical and temperature sensing, respectively. Our
investigations have revealed that the present energy consumption,
sensitivity, and firing frequency of the sensory neurons could be
further improved by optimizing the growth conditions of the VO,
film (Supplementary Fig. 15a-d), the channel length (Supple-
mentary Fig. 15a-e), and circuit parameters such as parallel
capacitance (Fig. 3, Supplementary Figs. 7-11).

Discussion

A highly uniform, calibratable artificial sensory neuron based on
threshold switching in epitaxial VO, memristor has been
experimentally implemented for the first time. The epitaxial VO,
memristor has excellent cycle-to-cycle and device-to-device uni-
formity, due to the high crystalline quality of epitaxially grown
VO, and introduction of calibration resistor. A variety of spiking
sensory neurons can be constructed based on the CASN capable
of sensing and converting physical signals into spikes, and a
scaling resistor can be further used to accommodate varied types
of sensors by adjusting their various resistance ranges to the
desired regime. Based on this, a multi-sensory perception system
capable of encoding pressure, curvature, illuminance, and tem-
perature into electrical spikes is demonstrated experimentally by
combining CASN with pressure, curvature, light, and temperature
sensors. Simulation results show that combination of the spiking
tactile neurons with a 3-layer SNN can lead to successful pattern
classification on pressure images, showing classification accuracy
of >90.33%. A spike-based neuromorphic perception system with
spiking curvature sensory neurons has been utilized to achieve
hand gesture recognition experimentally. This study could extend
the currently limited sensing mode of sensory neurons and
address their fundamental cycle-to-cycle and device-to-device
variation issues, therefore significantly promoting the develop-
ment of neurorobotics, perception, and neuromorphic
computing.

Methods

Fabrication of epitaxial VO, threshold switching devices. The 20 nm VO, films
were epitaxially grown on ¢-Al,O; substrates by pulsed-laser deposition (PLD)
technique using a 308-nm XeCl excimer laser operated at an energy density of
about 1J/cm? and a repetition rate of 3 Hz. The VO, films were deposited at 530 °C
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Fig. 5 lllustration of the spike-based neuromorphic perception system for gesture recognition. a Schematic of artificial spiking curvature sensory neuron.
The curvature sensor is combined with a calibrated artificial spiking neuron, replacing the R, in the original spiking neuron circuit. b Artificial spiking
curvature sensory neuron response under different curvatures. With the curvature sensor attached to the finger, the spiking frequency of the curvature
sensory neuron depends on how much the finger bends. The greater the bend of the finger, the lower the frequency of spiking. ¢ Artificial spiking curvature
sensory neurons response under different gestures. A person's five fingers are attached with artificial curvature sensory neurons. The spiking frequencies
of the five neurons change with the gestures, which constitute a neuromorphic perception system for gesture recognition where the gestures can be

encoded into five spike trains. d Statistics of spiking frequency of spiking curvature sensory neurons in five fingers during different gestures showing each
gesture can be easily distinguished.
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in a flowing oxygen atmosphere at the oxygen pressure of 2.0 Pa. Then, the films
were cooled down to the room temperature at the speed of 20 °C/min. The
deposition rate of VO, thin films was calibrated by X-ray Reflection (XRR).

The electrodes, which are composed of Au (40 nm) and Ti (5 nm) with a
distance of 400 nm, were patterned with electron-beam lithography (EBL) along
with electron-beam evaporation and lift-off.

Electrical measurements. Electrical measurements were performed using an
Agilent B1500A semiconductor parameter analyzer, Keithley 2450 SourceMeter,
and the RIGOL MSO8104 digital storage oscilloscope. We used an Agilent B1500A
semiconductor parameter analyzer to perform electrical measurements of a single
VO, device in Fig. 2h-j and Supplementary Figs. 2-5. In Figs. 3-5 and Supple-
mentary note 4-5, Agilent BI500A is applied to create the pulse signal, and one
channel of the oscilloscope is used to measure the output of Agilent B1500A, while
the other channel measures the voltage of the output node in the spiking neuron
circuit. In Fig. 3b, the series resistance Ry, is changed to explore the relationship
between the spiking frequency and the series resistance Ry, where the voltage
applied is 5 V. In Fig. 3¢, the series resistance Ry, is set at 4 kQ), we change the input
voltage to see how it relates to the spiking frequency. In Fig. 3d, the voltage is set to
5V and the series resistance Ry, is set to 4 kQ), with the parallel capacitor changed to
investigate the relationship between the spiking frequency and the parallel capa-
citor. More experimental circuit parameters are shown in Supplementary Table 4.
In the spike-based neuromorphic perception system (Figs. 4 and 5), we used the
off-the-shelf light sensor (GL3537-1), temperature sensor (NTC10KB3950), and
curvature sensor (FLEX4.5).

Simulation of VO, device in COMSOL. We simulated the operation of the VO,
device in COMSOL Multiphysics software based on the metal-insulator transition
(MIT) model described in ref. 8. In this model, the resistive switching process is
simply due to the temperature change in the switching region resulting from the
interplay of Joule-heating and the heat dissipation of the device. The thermally-
activated high resistivity of VO, in the lower temperature range is given by Eq. (11):

Eam
Pm :Po.m-exr’(ka) (11

where E, ,, is the activation energy. For the low resistivity (p,) region in the higher

temperature range, we used the same equation with different values of p, . and E, .
As both high and low resistivity phases coexist during the transition, the switching

region can be regarded as a parallel circuit. Hence, the overall resistivity is given by
Eq. (12):

PrPm
Fubm ¥ (1= F)p, (12)

where f; is the volume fraction of the low resistivity phase and is given by Eq. (13):

1
fr=—w
1+A'5XP(1<TT)

W is the energy scale of the MIT and is related to the steepness of the resistivity
change. A is a constant related to the temperature at which the MIT takes place.
The values of A during the heating process (Ay,) and the cooling process (A.) are
different. The parameters in the equations above were tuned so that the simulated
I-V curve fit the measured I-V curve of our device (more details are shown in
Supplementary Note 1).

p=

(13)

Simulation of the spike-based neuromorphic perception system. A spike-based
neuromorphic perception computing system for pressure image recognition using
the artificial spiking tactile sensory neurons and spiking neural networks (SNN) is
implemented in simulation by the SpikingJelly®® based on experimental data. We
used Origin to fit the pressure and spiking frequency curve in Supplementary
Fig. 20a. The high resistance of the device, Vi, and Vy,o1q are set to 2.2kQ, 14V,
and 0.85 V, respectively, which is extracted from Supplementary Fig. 20b-c. More
details are shown in Supplementary Note 3.

Data availability

All data supporting this study and its findings are available within the article, its
Supplementary Information and associated files. The source data underlying Figs. 2h-j,
3b-i, k-1, 4b, ¢, e, f, h, i, I-n and 5b-d have been deposited at https://zenodo.org/record/
6609313#.YplfNGhBxPY or are available from the corresponding author upon
reasonable request.

Code availability

The codes used for the simulations are described in https://github.com/billyuanpku96/
SNN-for-sensory-neuron or are available from the corresponding author upon
reasonable request.
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