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Proteomic characterization of gastric cancer
response to chemotherapy and targeted
therapy reveals potential therapeutic
strategies

Yan Li 1,12, Chen Xu 2,12, Bing Wang 3,12, Fujiang Xu 1,4,12, Fahan Ma 1,12,
Yuanyuan Qu5,6,7, Dongxian Jiang 2, Kai Li 1, Jinwen Feng 1, Sha Tian 1,
Xiaohui Wu 1, Yunzhi Wang 1, Yang Liu 1, Zhaoyu Qin 1, Yalan Liu2,
Jing Qin 8, Qi Song 1, Xiaolei Zhang 2, Akesu Sujie2, Jie Huang2,
Tianshu Liu 9 , Kuntang Shen 8 , Jian-Yuan Zhao 10,11 ,
Yingyong Hou 2 & Chen Ding 1

Chemotherapy and targeted therapy are the major treatments for gastric
cancer (GC), but drug resistance limits its effectiveness. Here, we profile the
proteome of 206 tumor tissues from patients with GC undergoing either
chemotherapy or anti-HER2-based therapy. Proteome-based classification
reveals four subtypes (G-I–G-IV) related to different clinical and molecular
features. MSI-sig high GC patients benefit from docetaxel combination treat-
ment, accompanied by anticancer immune response. Further study reveals
patients with high T cell receptor signaling respond to anti-HER2-based ther-
apy; while activation of extracellular matrix/PI3K-AKT pathway impair anti-
tumor effect of trastuzumab. We observe CTSE functions as a cell intrinsic
enhancer of chemosensitivity of docetaxel, whereas TKTL1 functions as an
attenuator. Finally, we develop prognostic models with high accuracy to pre-
dict therapeutic response, further validated in an independent validation
cohort. This study provides a rich resource for investigating the mechanisms
and indicators of chemotherapy and targeted therapy in GC.

Gastric cancer (GC) is oneof themost commonmalignant tumorsof the
digestive system, and the second leading causeof cancer-relateddeaths
worldwide1. The risk factors for GC include smoking, a high-salt diet, a
high intake of meats, bile reflux, and infection with Helicobacter pylor2.
Currently, surgery, chemotherapy, and radiotherapy are the major
treatment strategies for GC. However, 70–90% of the patients with GC
arediagnosed at advanced stages, withpoorprognosis. TheMAGIC trial
revealed that the 5-year survival rate of patients receiving perioperative
chemotherapy is significantly higher than those undergoing only sur-
gical resection (36% vs. 23%)3. Preoperative chemotherapy, which is

regarded as a standard treatment, is also a promising approach to
improve survival in patients with locally advanced GC3,4. The triplet
combination chemotherapy DOS (docetaxel, oxaliplatin, and S-1)5 and
the doublet chemotherapy XELOX (capecitabine and oxaliplatin)6 have
been established as the first-line therapies in the treatment of both local
and metastatic GC. The trastuzumab-based chemotherapy exhibited a
survival benefit for human epidermal growth factor receptor-2 (HER2)-
positive GC patients in the ToGA trial7, where an anti-HER2 targeted
strategy was proposed as a standard approach for HER2-positive GC
patients. Several recent phase II studies and a recent EVIDENCE of the
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combination of trastuzumab with a range of treatment patterns have
supported the efficacy and safety of trastuzumab + XELOX in patients
with HER2-positive advanced GC8–11. However, the trastuzumab + DOS
combined therapy has been proved less effective with a shortermedian
OS (27.4 months) compared with trastuzumab + XELOX (34.6 months),
which has not beenwidely used in clinic12. The resistancemechanism of
the combination of trastuzumab and chemotherapy remained unclear.

Extensive chemotherapeutic drug resistance occurs in DOS,
XELOX, and anti-HER2 therapies for gastric cancer. It is reported that
80% of the patients with GC showdrug resistance. DOS therapy showed
a relatively lowclinical efficacy,with anobjective response rate (ORR) of
54.5%13. Similarly, in our previous study14, we retrospectively reviewed
248 patients with locally advanced GC treated with a XELOX or DOS
regimen and concluded that the response rates in the XELOX and DOS
groups were as low as 34.5% and 38.1%, respectively. Even for the 20%
HER2-positive GC patients, the ORR was variable (~32–68%). With the
increasing emergence of chemotherapy and targeted therapy resis-
tance nowadays, exploration of resistance mechanism and identifica-
tion of predictive biomarkers to these therapieswould be important for
improving therapeutic effects for GC patients. Many studies of che-
motherapeutic response have focused on a single drug in cell lines but
not combined therapy over the past few years15–17. Chemotherapeutic
drugs of these first-line therapies included fluoropyrimidines (5-fluor-
ouracil, capecitabine, and S-1), platinums (cisplatin and oxaliplatin), and
taxanes (paclitaxel and docetaxel). The clinical trials revealed a ques-
tionable benefit of triplet chemotherapy compared with doublet
treatment, themajor difference of which was docetaxel component18,19.
Docetaxel, as microtubule-targeting antitumor agents, involved in a
complex manner and altered multiple cellular oncogenic processes,
includingmitosis, angiogenesis, apoptosis, inflammatory response, and
ROS production20. In addition, trastuzumab, a monoclonal antibody,
which was used to treat patients with HER2-overexpressing gastric
cancer21. In the randomised controlled TOGA trial, patients treated with
trastuzumab plus cisplatin and fluoropyrimidine chemotherapy had
improved median overall survival compared with patients treated with
chemotherapy alone7. However, the priority of patient selection and
prevention of trastuzumab resistance for the trastuzumab combination
therapy still await to be convinced. Overall, a comprehensivemolecular
landscape for predicting the therapeutic response in GC is still lacking.

Several molecular classifications have been proposed to connect
molecular patterns to clinical features. The Cancer Genome Atlas
(TCGA) project mapped the genomic landscape of GC and classified
GC into four subtypes [Epstein-Barr virus (EBV) positive, microsatellite
instable (MSI), genome stable (GS), and chromosomal instability
(CIN)], which showed distinct salient genomic features, and implicated
candidate therapeutic targets22. The Asian Cancer Research Group
(ACRG) project classified GC based on gene expression data into four
subtypes: microsatellite instable (MSI), microsatellite stable (MSS) or
epithelial mesenchymal transition (MSS/EMT), MSS with TP53 intact
(MSS/TP53+), and MSS with TP53 loss (MSS/TP53-), which were asso-
ciated with distinct clinical outcomes23. Retrospective analyses and
large clinical trials suggested that MSI GC patients had a favorable
prognosis compared with MSS GC patients, but the benefit from
perioperative or adjuvant chemotherapy havebeen topicof debate24,25.
According to the MAGIC trial, high MSI was associated with a positive
prognostic effect in patients treated with surgery alone and a differ-
entially negative prognostic effect in patients treated with periopera-
tive epirubicin, cisplatin, and fluorouracil chemotherapy26. However,
no systematic data regarding the outcome of MSI GC patients with
first-line chemotherapy and targeted therapy (such XELOX, DOS, and
anti-HER2 therapies) has been reported.

Proteins, regarded as the “executors of life,” provide insight into
the disease at the protein level, and may bridge the gap between
research and clinical practice. Previously, we collected surgical sam-
ples from 84 patients with diffuse-type gastric cancer (DGC), and

presented a proteomic profiling of the Beijing Proteome Research
Center (BPRC) DGC cohort. The BPRC DGC cohort was classified into
three groups (PX1–3) based on the proteomic profile, in which group 3
(PX3) had the worst prognosis and was resistant to chemotherapy27.
This suggested an association between the chemotherapy response
and proteome signatures in patients. Based on this finding, we sought
to establish a comprehensive connection between the proteomic
panel and clinical outcomes.

Herein, we set out to investigate the responses to first-line thera-
pies (DOS, XELOX, and anti-HER2-based therapies) for GC through a
comprehensive proteomic analysis. We collect the biopsy tumor FFPE
samples derived from 206 therapy-naïve GC patients, and construct a
GC cohort that covers three clinical therapy subcohorts, including DOS
subcohort (44 patients treated with DOS therapy), XELOX subcohort
(70 patients treated with XELOX therapy) and HER2 subcohort (71
patients who received anti-HER2-based therapy). Proteomic clustering
results in four GCmolecular subtypes with distinct functions that show
associations with drug response and clinical outcomes. We validate the
GC subtyping and their prognosis difference in other independent GC
cohorts. We find GC patients with MSI-sig high status show sensitive
response to DOS but not XELOX therapy. Bioinformatic analysis reveals
higher T cell receptor signaling and aggerated CD8+Tcm in DOS sen-
sitive group compared with non-sensitive group, while it is opposite in
response to XELOX therapy. Further comparative analysis reveals that
patientswith highTCR signaling are unlikely tobenefit fromXELOX, but
instead the combination of anti-HER2-based therapy; while the activa-
tion of ECM and the downstream PI3K-AKT pathway impairs the anti-
tumor effect of trastuzumab.Weperform further validation experiment
to confirm the synergistic effects of the combination of trastuzumab
with XELOX, or the PI3K-AKT inhibitor in vitro. Furthermore, we
develop prognostic models with high accuracy to predict the che-
motherapeutic response, which are validated by PRM assay in an inde-
pendent validation cohort composed of 60 GC patients (50% sensitive
and 50% non-sensitive patients) receiving either DOS (N = 20), XELOX
(N = 20), or anti-HER2 (N = 20) therapies. Finally, we validate CTSE
functions as a cell-intrinsic enhancer of chemosensitivity of docetaxel,
whereas TKTL1 functions as an attenuator of docetaxel. This study
presents a comprehensiveproteomic approach for thepredictionof the
response to chemotherapy and targeted therapy, and implicates its
prognostic and therapeutic significance as well as the underlying reg-
ulatory mechanisms that may benefit clinical practice.

Results
The gastric cancer cohort: The response to chemotherapy and
targeted therapy in patients with gastric cancer
To investigate the proteomic patterns associated with the response to
chemotherapy and targeted therapy, we collected 206 GC patients
which received either DOS therapy (DOS subcohort, N = 44, 21.4%),
XELOX therapy (XELOX subcohort, N = 70, 34.0%), or anti-HER2-based
therapy (HER2 subcohort, N = 71, 34.5%). Another 21 patients (10.1%)
were assigned as “Others,” of which 3 patients received apatinib or
docetaxel therapies, and 18 cases had no chemotherapy information.
All the chemotherapy regimens were given at standard dosing as
described in previous studies8,11,14,28 (Methods). All samples were his-
tologically scoredby twoexpert gastrointestinal pathologists (C.X. and
Y.H) according to the widely accepted Response Evaluation Criteria in
Solid Tumors (RECIST) (version1.1) by CT/MRI scanning and grouped
into complete response (CR), partial response (PR), stable disease (SD),
or progressive disease (PD). Here, the ORR, defined as PR plus CR, was
selected for the efficacy evaluation; patients with CR and PR were
defined as sensitive (S) and those with SD and PDwere defined as non-
sensitive (NS). DOS subcohort was grouped into DOS-sensitive group
(DSG, N = 22) and DOS-non-sensitive group (DNSG N = 22); XELOX
subcohort was grouped into XELOX-sensitive group (XSG, N = 27),
XELOX-non-sensitive group (XNSG, N = 42), and NA (not available of
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the information of therapy response), N = 1]; HER2 subcohort was
grouped into anti-HER2-sensitive group (HSG, N = 32), anti-HER2-non-
sensitive group (HNSG, N = 37), and NA (N = 2). Archival formalin-fixed
paraffin-embedded (FFPE) tissues with at least 80% tumor purity were
collected from 206 chemotherapy-naive patients with GC, and then
subsequently analyzed by the mass spectrometry (MS)-based label-

free quantification strategy27,29 (Fig. 1a and Supplementary Fig. 1a). The
detailed clinical characteristics were shown in Supplementary Table 1,
Fig. 1b, and Supplementary Data 1. We made a formal assessment of
baseline clinical characteristics of all patients enrolled in the study,
especially inDOS, XELOX, andHER2 subcohorts. Therewasnobaseline
difference in gender, age, grade, and Lauren type in the DOS, XELOX,
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and HER2 subcohorts (Supplementary Data 1). Survival analysis
showed that the sensitive group (S, N = 79) had a higher survival rate
than the non-sensitive group (NS, N = 97) (log rank test, P = 0.002;
hazard ratio (HR) = 0.56; 95% CI, 0.34–0.93) (Fig. 1c).

Proteomic analysis of the gastric cancer cohort
For the quality control of the performance of mass spectrometry, the
HEK293T cell lysate wasmeasured every two days as the quality-control
standard, which was adopted in proteomic studies29,30. A Pearson’s
correlation coefficient was calculated for all the quality-control runs,
and the results were shown in Supplementary Fig. 1b. The average
correlation coefficient among the control samples was 0.964, demon-
strating the consistent stability of the MS platform. Proteomics mea-
surement resulted in 6369–8119 gene products (GPs) in each sample
(Fig. 1d and Supplementary Fig. 1c, d). A total of 12,519 gene products
(GPs) were identified in all patient samples (N = 206) (Supplementary
Data 2), 10,496 GPs, 10,766 GPs, 10,920 GPs were identified in the DOS,
XELOX, and HER2 subcohorts, respectively (Supplementary Fig. 1e).
Principal components analysis (PCA) revealed no batch effects among
DOS, XELOX, and HER2 subcohorts (Supplementary Fig. 1f). No major
differences in the proteomic coverage between S (11,258 GPs) and NS
(11,388 GPs) was observed (Student’s t test, P >0.05) (Fig. 1e). Our study
has so far presented a comprehensive view of the proteomic landscape
of this GC cohort treated with first-line therapies.

Proteomic subtypingof theGCcohort and their associationwith
a therapeutic response
Consensus clustering analysis was performedon the 206 samples based
on 1,000 most variable proteins (proteins with the top 10% median
absolute deviations) (Methods), which resulted in four subtypes: G-I
(N = 29), G-II (N= 60), G-III (N =97), and G-IV (N= 20) (Supplementary
Fig. 2a and Supplementary Data 3). Further analysis of 179 patients with
complete prognosis among the four proteomic subtypes revealed sig-
nificant association of proteomic subtypes with survival, among which
the G-IV subtype had the worst overall survival (log rank test, P =0.034)
(Supplementary Fig. 2b). After excluding the patients who were lost to
follow-up, we then performed the same consensus clustering analysis
only on the 179patients. Consensus clustering analysis of theproteomic
profiles among 179 samples identified four proteomic subtypes of GCs,
inwhich 28, 56, 75, and 20patientswere grouped into subtypesG-I, G-II,
G-III, and G-IV, respectively (Fig. 2a and Supplementary Fig. 2c, and
SupplementaryData 3). Sankeyplot showedhigh concordance between
the two proteomic subtyping systems of 206 samples and 179 samples
(Supplementary Fig. 2d and Supplementary Data 3). We then mainly
focused on the proteomic subtyping system of 179 samples with the
complete survival information during the further analysis. The pro-
teomic subtypes of 179 samples displayed distinct clinical outcomes
(therapy response and overall survival). The chemotherapy and tar-
geted therapy response exhibited a gradual resistance phenomenon
from G-I to G-IV, as the percentage of sensitive patients (CR and PR)
dramatically decreased from 60% in G-I to 20% in G-IV. Conversely, the
percentage of non-sensitive patients (SD and PD) increased from40% in
G-I to 80% in G-IV (Fisher’s exact test, P =0.04) (Fig. 2b and

Supplementary Fig. 2e). Among four subtypes, the G-IV had the worst
prognosis (log rank test, P <0.05) (Fig. 2c). In addition, an obvious
association between proteomic subtyping and therapy subcohort or
TNM stage was determined (Fisher’s exact test, P <0.01), but this
association was not observed with either grade, Lauren’s type, the pri-
mary site, or tumorpurity (P >0.05) (Fig. 2bandSupplementary Fig. 2e).
Further statistical analysis revealed the significant distribution differ-
ence of therapy subcohorts among proteomic subtypes, which was
mainly derived from HER2 subcohort (mainly enriched in G-II subtype
(Fisher’s exact test, P <0.05)); while no significant difference was
observed in DOS and XELOX subcohorts (Supplementary Fig. 2e). The
distribution difference among proteomic subtypes could be caused by
the specific proteomic feature related to HER2 expression, due to the
selection of HER2-positive patients for anti-HER2 targeted therapy,
which was further validated by HER2 evaluation by IHC and FISH ana-
lysis (Supplementary Fig. 2e). This result showed the specific molecular
pattern in HER2-positive GC patients, which could be identified at
proteome level. Formal statistical tests for interaction analysis revealed
there was no significant interaction between therapy responses and
other baseline clinical characteristics, such as therapy subcohort and
TNM stage (Supplementary Table 2). Furthermore, univariate cox ana-
lysis of overall survival showed proteomic subtyping was associated
with clinical outcome irrespective of gender, age, and therapy sub-
cohort. Remarkably, proteomic subtyping served as an independent
predictive factor (Cox P trend =0.009;HR= 1.49; 95%CI, 1.10 to 2.02) in
the multivariable analysis after adjusting for clinical TNM stage and
other covariates (Supplementary Table 3). Overall, these results
demonstrated the strong association of proteomic subtyping with
therapy response and prognosis, and supported its reliability at pro-
teomic level.

Comparative analysis of proteomic profiling resulted in 301 (G-I),
611 (G-II), 925 (G-III), and 467 (G-IV) GPs (P <0.05; fold change >2;
identification frequency ≥10%), showing distinct molecular features
among the four proteomic subtypes (Supplementary Fig. 3a). We
performed a functional enrichment analysis according to the Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathway annotations,
and determined the dominant bioprocesses of each subtype. As shown
in Supplementary Fig. 3b, c, the same criteria were applied in pro-
teomic subtypes of 206 samples, and KEGG pathway enrichment
analysis revealed the consistency of the overrepresented pathways
dominant in four proteomic subtypes both in 179 samples and
206 samples. The G-I subtype was dominant for endocytosis
(P = 4.73E − 4), and ssGSEA analysis revealed that the activation of
endocytosis pathway indicted a better prognosis (log rank test,
P <0.05) (Supplementary Fig. 3d). As shown in Supplementary Fig. 3e,
a group of endocytosis related proteins, such as DNM2, EPS15, WIPF1,
ACAP2, and CHMP6, showed positive association with overall survival
(hazard ratios range: 0.10–0.54, P < 0.05). In the G-II subtype, we
observed a significant enrichment of glycolysis/gluconeogenesis
(P = 3.53E− 2) and pantothenate/CoA biosynthesis (P = 3.59E − 3)
(Fig. 2d and SupplementaryData 3). In theG-III subtype, lysosomal acid
hydrolases proteases (such as CTSA, CTSB, CTSC, and CTSE) and
synthesized lysosomal enzymes (such as CLTA, CLTB, GGA1, and

Fig. 1 | Summary of the proteomic analysis of gastric cancer. a The proteomics
workflow involved threemodules: cohort construction (including discovery cohort
and validation cohort), proteomic profiling, and data analysis. The proteins were
trypsin-digested, and then analyzed in a single-run (75min) high-performance
liquid chromatography mass spectrometry (HPLC-MS) using a Q Exactive HF-X
Hybrid Quadrupole-Orbitrap Mass Spectrometer. MS proteomics data were quan-
tified with the Firmiana proteomics workstation, and PRM-MS proteomics data
were quantified with Skyline-daily. b The gastric cancer (GC) cohort included three
clinical therapy subcohorts: DOS, XELOX, and HER2. Clinical parameters are indi-
cated in the heatmap. c Kaplan–Meier plots show significant differences between
the sensitive group (S) and non-sensitive group (NS) in overall survival (OS). P-value

is calculated by two-sided log rank test. d Overview of the proteomic profile of
patientswith GC. Shown are the dynamic range of the protein identification of each
sample according to the descending sort of protein abundance in this sample.
Range: 6369–8119 proteins. Proteins were quantified as a normalized intensity-
based fraction of total (FOT) value and log10 transformed. The highest- and lowest-
abundance proteins are shown in the box. e Venn diagram showing the protein
overlap of S and NS. Number of proteins were quantified in S and NS (two-sided
Student’s t test, P =0.228). n (S) = 82, and n (NS) = 103 biologically independent
samples examined. Data are shown as mean values ± SD. P <0.05 considered sta-
tistically significant. Source data are provided as a Source Data file.
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AP1S2) were exclusively upregulated. In contrast with other three
subtypes, the G-IV subtype was characterized by ECM-receptor inter-
action, focal adhesion, complement/coagulation cascades, and PI3K-
AKT signaling pathway, of which the activation of ECM-receptor
interactionpathway indicted aworseprognosis (log rank test,P < 0.05)
(Supplementary Fig. 3f). The extracellularmatrix proteins, such as FGB,
TGFB1, THSD4, LAMB2, and LAMB4, exhibited a significant upregula-
tion in G-IV subtype compared with other subtypes (Student’s t test,
P <0.05; fold change >2), among which the expression of THSD4 was
significantly associated with poor prognosis (P = 0.007; HR = 1.96; 95%
CI, 1.12–3.44) (Supplementary Fig. 3g). These results suggested that
activation of endocytosis in G-I subtype was associated with drug
sensitivity; while high expression of ECM in G-IV subtype was asso-
ciated with drug resistance. GSEA analysis further revealed the asso-
ciation of endocytosis/ECM pathways and drug sensitivity/resistance
was also applied for other proteomic subtypes (Supplementary
Fig. 3h), indicating the consistency of therapy mechanism in different
proteomic subtypes.

To investigate the association of proteins expression with therapy
resistance, we analyzed the correlation of the extracellular matrix pro-
teins significantly upregulated in the G-IV subtype with drug sensitivity
(half maximal inhibitory concentration [IC50]) using gastric cancer cell
lines data from the Cancer Dependency Map Project (DepMap). We
identified five proteins, including THSD4, SRPX2, TGFBI, THBS1, and
LAMB2, which showed high correlation with drugs response (5-FU,
oxaliplatin, or docetaxel) (Pearson r>0.4, P<0.05) (Fig. 2e). Among
these proteins, only THSD431 was resistant to all three drugs (5-FU,
oxaliplatin, or docetaxel), and the high expression of THSD4 was sig-
nificantly associatedwith poor prognosis (log rank test, P<0.05) (Fig. 2e
and Supplementary Fig. 3i). To further verify that high expression of
THSD4 was associated with drug resistance, we firstly overexpressed
THSD4 in two gastric cancer cell lines MKN45 and MGC803 (Supple-
mentary Fig. 3j, k). The CCK8 assay revealed that THSD4 overexpression
significantly promoted the proliferation of MKN45 and MGC803 cells
(Student’s t test, P<0.05), compared with the cells transfected with an
empty vector (Supplementary Fig. 3l, m). Then, we treated THSD4-
overexpressing and empty vector-overexpressing MKN45 and MGC803
cells with docetaxel, oxaliplatin, and 5-FU, respectively. The drug sen-
sitivities in the MKN45 and MGC803 cells were estimated by their half-
maximal inhibitory concentration (IC50) values. We observed IC50
values of docetaxel, oxaliplatin, and 5-FUwere significantly higher (4.26-
fold, 1.44-fold, and 1.38-fold increase inMKN45, respectively; Student’s t
test, P<0.05) in the THSD4-overexpressing MKN45 cells, compared
with the empty vector-overexpressing cells (Fig. 2f). Consistently, we
observed the similar change of IC50 values of docetaxel, oxaliplatin, and
5-FU in THSD4-overexpressing MGC803 cells (3.60-fold, 1.47-fold, and
1.20-fold increase in MGC803, respectively) (Fig. 2f). In conclusion, the
in vitro experiments further validated THSD4 overexpression reduced
the anti-tumor effect of chemotherapeutic drugs including docetaxel,
oxaliplatin, and 5-FU.

The parallel reaction monitoring (PRM) assays are powerful tar-
geted approaches to detect and quantify pre-specified proteins with a
high throughput using high-resolution mass spectrometers. We firstly
constructed an independent cohort composed of 60 GC patients
receiving either DOS (N = 20: DSG, N = 10; DNSG, N = 10), XELOX
(N = 20: XSG, N = 10; XNSG, N = 10), or anti-HER2 (N = 20: HSG, N = 10;
HNSG, N = 10) therapies (Supplementary Data 3). To further validate
the association between extracellularmatrix proteins and resistanceof
drugs (5-FU, oxaliplatin, and docetaxel), we employed the targetedMS
approach, PRM assays, which has been adopted in classifier’s valida-
tion in recent proteomic research32,33, to quantify these proteins in
FFPE tumor tissues from patients receiving DOS therapy (triplet
combination chemotherapy of 5-FU, oxaliplatin, and docetaxel). We
then selected a set of target peptides that unique to these ECM pro-
teins (including THSD4, SRPX2, TGFBI, THBS1, and LAMB2) using the

library search results (Supplementary Data 3). The fragment total areas
of targeted peptides reported by Skyline-daily (4.2.1.19004, University
of Washington, USA) were used to quantify these proteins. As a result,
we observed these ECM proteins were higher expressed in DNSG
compared with DSG in PRM-MS experiments (Fold change (DNSG/
DSG) > 2, P <0.05, Wilcoxon rank-sum test): THSD4 (Fold change
(DNSG/DSG) = 2.49, P = 5.2E − 3), SRPX2 (Fold change (DNSG/DSG) =
7.10, P =0.035), TGFBI (Fold change (DNSG/DSG) = 1.97, P = 0.035),
THBS1 (Fold change (DNSG/DSG) = 7.63, P = 1.5E − 3), and LAMB2 (Fold
change (DNSG/DSG) = 2.94, P =0.043) (Fig. 2g). In conclusion, our data
demonstrated the association between these ECM proteins and drug
resistance was validated by PRM approach in the independent cohort.
Overall, the results illustrated the high expression of extracellular
matrix proteins is associated with drug resistance, and these extra-
cellular matrix proteins could serve as indicators to predict che-
motherapy response.

MSS/MSI status of gastric cancer are associated with tumor
immune microenvironment and therapy resistance
To further test if the proteomic subtyping algorithm of the Fudan GC
cohort (FDGC) was feasible in other GC cohorts, we constructed the
Fast Large Margin classifier model based on the overrepresented
proteins in the subtypes of the FDGC cohort using RapidMiner 9.6.0
(Methods). Then, we applied the same model with FDGC subtyping
algorithm in three independent cohorts of GCpatients (BPRC cohort27,
N = 84; EOGC cohort34, N = 80; and ACRG cohort23, N = 300). Con-
sistent with the FDGC cohort, the application of the model in BPRC
cohort, EOGC cohort, and ACRG cohort resulted in subtype realloca-
tions: G-I (N = 15), G-II (N = 0), G-III (N = 31), and G-IV (N = 38) in BPRC
cohort; G-I (N = 20), G-II (N = 20), G-III (N = 19), and G-IV (N = 21) in
EOGCcohort; G-I (N = 35), G-II (N = 103),G-III (N = 127), andG-IV (N = 35)
in ACRG cohort (Supplementary Data 4). We observed a significant
concordance between FDGC subtype and EOGC subtype or ACRG
subtype (P = 8.5E − 9, P = 5.0E − 4, respectively), but not between FDGC
subtype and BPRC subtype (P =0.422) (Fig. 3a, b, and Supplementary
Fig. 4a, b), whichmight due to the similar composition of Lauren’s type
between FDGC subtype and EOGC subtype or ACRG subtype, while
BPRC cohort only included diffuse-type cancer. Although no con-
cordance in the composition of Lauren’s type between FDGC subtype
and BPRC cohort, the proteomic features associated with therapy
response and prognosis revealed in FDGC subtypes were applicable in
the BPRC cohort (log rank test, P =0.021) (Fig. 3a and Supplementary
Fig. 4a). In the comparison of FDGC and the BPRC subtypes, we found
the PX3 subtype accounted for the highest proportion in G-IV subtype
(50%) compared with other subtypes (20% in G-I, 26% in G-III, respec-
tively), indicating PX3 subtype wasmostly clustered into G-IV subtype.
As reported in BPRC subtype, PX3 subtype was characterized with the
enrichment of pathways including ECM organization, EMT, and com-
plement, had the worst prognosis and was resistant to chemotherapy.
Consistently, in our study, G-IV subtype was characterized by ECM-
receptor interaction, focal adhesion, and complement/coagulation
cascades, had the worst prognosis and highest proportion (80%) of
non-sensitive patients. As for EOGC cohort, the comparison of FDGC
subtype and EOGC subtype suggested the Sub2 accounted for most
(75%) of G-I subtype. As reported in the research related to EOGC
subtype, the Sub2 had the best survival; consistently, in our study, the
G-I had the best survival. Importantly, besides the significant con-
cordance with ACRG subtype, FDGC subtyping stratified patients of
ACRG cohort into four groups with distinct prognosis (log rank test,
P =0.022) (Fig. 3b). Taken together, these results indicated the similar
survival patterns in the comparison of FDGC subtype with other sub-
types, demonstrating the robustness of our proteomic subtyping in
other GC cohorts.

The comparison of FDGC subtype and ACRG subtype showed
MSS/EMTsubtype originated fromACRG subtyping accounted for 56%
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of the G-IV subtype. We speculated that the characteristics of MSS or
EMT might be associated with poor survival. Therefore, we further
predicted the microsatellite instability (MSI)35 of the ACRG cohort
classified by FDGC subtyping based on a small pre-defined set of gene
expression signatures. We found the G-IV subtype was characterized
with lower MSI/MSS-sig score, while higher MSI/MSS-sig score was

enriched in the G-II subtype (Fig. 3c and Supplementary Fig. 4c). We
assessed whether the MSI/MSS-sig score was associated with distinct
somatic alterations, and observed that MSI/MSS-sig score or MSI high
(MSI-H) assay status of the G-II was highly consistent with the presence
of hypermutation, with mutations in genes such as MLL4 (10%), FAT4
(10%), PIK3CA (14%), and KRAS (8%). Among them, PIK3CA and KRAS
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were reported as recurrent neoantigen-associated mutations36. In
addition, further analysis of copy number profiles in ACRG cohort, we
found that genomic instability index (termed CNV GI), which was
present in 28% cases, showed significant difference among four sub-
types (G-I to G-IV) (Fisher’s exact test, P =0.011) and G-IV had the
lowest CNV GI (Fig. 3c and Supplementary Fig. 4d). We applied the
same set of gene expression signatures to assess the expression of
MSI/MSS-sig, and observed the similar trend in FDGC cohort (ANOVA
test, P < 1.0E − 4), which suggested the robustness of FDGC subtyping
(Fig. 3c and Supplementary Fig. 4c). The lowMSI/MSS-sig significantly
correlated with poor clinical outcome both in ACRG cohort and FDGC
cohort (log rank test, P < 0.05) (Fig. 3d), which was consistent to the
previous studies25,37. Importantly, the MSI/MSS-sig level showed sig-
nificant association with the response to chemotherapy and targeted
therapy (Fisher’s exact test, P = 0.049) (Supplementary Fig. 4e). Fur-
thermore, we found that gastric cancer with high MSI/MSS-sig was
featured by oxidative phosphorylation, while gastric cancer with low
MSI/MSS-sig showed high expression of extracellular matrix pro-
teins (Fig. 3e).

As previously reported, antigen-driven immune response could
be activated in microsatellite instable (MSI) cancers38. We firstly eval-
uated the relative abundance of the cytokines and proteins involved in
antigen processing and presenting process among four proteomic
subtypes. We observed the consistent downregulation of a group of
cytokines (such asCXCL17, IL16, and IL18), proteins involved in antigen
processing (such asCASP1, CTSE, PSMD8, andTRIM32), andMHCclass
II molecules (such as HLA-DMB, HLA-DPB1, and HLA-DQA1) in G-IV
subtype (Fig. 3f). For further exploring the possible molecular
mechanisms of low MSI/MSS-sig accounting for drug resistance and
poor prognosis, we then evaluated the tumor immune microenviron-
ment among four subtypes by xCell analysis (Supplementary Data 5).
As reported, the high immunoactivity defined by the microsatellite
instability (MSI) is associated with the high degree of infiltration of M1
macrophages39. We found that G-IV had the lowest MSI/MSS-sig score
(Fig. 3g). In addition, the proteomic subtypes were featured with dif-
ferent cell types, among which macrophages M1 were enriched in G-II.
In contrast with macrophages M1, precursor monocytes were aggre-
gated in the G-IV subtype (Fig. 3g, h). Further analysis suggested the
significant correlation between MSI/MSS-sig and monocytes (Pearson
r = −0.37, P = 2.9E − 7) or macrophages M1 (Pearson r =0.25,
P = 9.3E − 4) (Fig. 3i). Increasing studies have also shown that tumor-
associatedmacrophages (TAMs) can either enhance or antagonize the
antitumor efficacy of cytotoxic chemotherapy. For example, the
skewing of TAMs to M1-like phenotype contributed to the anti-tumor
and anti-angiogenic effects of pharmacological agents such as
5-fluorouracil and docetaxel, respectively in colorectal cancer and
breast cancer40,41. Therefore, we investigated the effects ofmonocytes/
macrophages M1 on the clinical outcome of GC patients with che-
motherapy and targeted therapy. Survival analysis of significantly dif-
ferential cell types among four proteomic subtypes revealed that xCell

score of monocytes/macrophages M1 showed significant association
with prognosis in the patients of stage IV (log-rank P = 0.041, HR = 1.79,
95% CI, 0.99–3.24; log-rank P =0.013; HR =0.55; 95% CI, 0.30–1.01,
respectively), but not of stage II and III (Fig. 3j and Supplementary
Fig. 4f–h). Consistently, these results were also validated in the inde-
pendent ACRG cohort (Fig. 3j and Supplementary Fig. 4i). Further-
more, we observed that biomarkers of macrophages M1, including
HLA-DRA, HLA-DRB3, and IL18, were significantly increased in MSI/
MSS-sig high group (Fig. 3k). Among them, IL18, as a secreted pro-
inflammatory factor of macrophage M1, showed significantly positive
correlation with MSI/MSS-sig both in FDGC cohort and ACRG cohort
(Pearson r = 0.31, P = 1.8E − 5; Pearson r = 0.37, P = 2.8E − 11, respec-
tively). The high expression of IL18 also reflected significant associa-
tion with prognosis in patients of stage IV (log-rank P =0.035,
HR =0.49, 95% CI, 0.22–0.83) (Fig. 3l). These results demonstrated the
MSI/MSS-sig level correlated with clinical outcome; in particular, the
MSI/MSS related immune cell types (monocytes andmacrophagesM1)
have been shown to be associatedwith clinical outcome in the patients
of stage IV, indicating the importance of immune cell types to the
prognosis of patients in stage IV. Overall, we proposed microsatellite
stable tumor cells featured with aggregated monocytes and few mac-
rophages M1 were prone to drug resistance and had a poor prog-
nosis (Fig. 3m).

T cell receptor signaling pathway exerts diverse effects in
response to DOS and XELOX chemotherapy
A better outcome for patients with MSI-H tumors than with MSS
tumors has been reported in gastrointestinal tumors25,42, whereas the
benefit of adjuvant chemotherapy seems to be unclear according to
exploratory analyses of recent phase III trials. We next examined the
association of MSI/MSS-sig level with clinical outcomes in GC patients
receiving different chemotherapy regiments. Surprisingly, we
observed DSG had a higher MSI-sig level than DNSG (P = 0.02), while
no obvious difference between XSG and XNSG (P >0.05) (Supple-
mentary Fig. 5a). Consistently, survival analysis also indicated GC
patients with MSI-sig high level had a positive association with overall
survival in DOS therapy; while we didn’t observe the difference in
association of MSI/MSS-sig level with clinical outcomes in XELOX
therapy (Fig. 4a). These results indicated MSI-sig high GC patients
could benefit from DOS therapy, but not XELOX therapy.

To investigate the mechanism of sensitivity/resistance of different
treatment regimens, we further examined the functional differences
between sensitive group and non-sensitive group in DOS and XELOX
subcohorts, respectively. We firstly compared the proteome of DSG,
DNSG, XSG, and XNSG, and identified the overrepresented proteins
(ORPs) of each group (twofold changes in each group at a 1% false
discovery rate (FDR) at the protein levels) (Supplementary Fig. 5b and
Supplementary Data 6 and 7). We then performed pathway enrichment
on the overrepresented proteins of each group according to the KEGG
pathway annotations shown in Fig. 4b. Surprisingly, we found that Fc

Fig. 2 | Proteomic subtyping of the gastric cancer cohort and its association
with clinical characteristics. a The heatmap depicts the relative abundance (Z
score of FOT) of the signature proteins in four subtypes of 179 GC samples. Bio-
logical functions related to these signature proteins are denotedon the right.bThe
association of four proteomic subtypes with clinical characteristics (including
gender, grade, Lauren’s type, primary site, HER2 status, RECIST, and tumor purity,
etc.) are annotated with *P-values (two-sided Fisher’s exact test for categorical
variables, and two-way ANOVA test for continuous variables). c The Kaplan–Meier
curves of overall survival (OS) of each proteomic subtype (G-I, n = 28; G-II, n = 56; G-
III, n = 75; and G-IV, n = 20). P-value is calculated by two-sided log rank test. d Left
panel: Bubbleplot showing theKEGGpathway enrichment (two-sided Fisher’s exact
test) of each proteomic subtype. Right panel: Diagram illustrating the differentially
expressed signatures and signaling cascades involved in G-I to G-IV. The little
heatmap under each protein depicted the Z score of average protein abundance in

each proteomic subtype. Red, upregulatedproteins; blue, downregulated proteins.
e The correlation of the extracellularmatrix proteins and different drugs, including
5-FU, OXA, and DOC. The drug sensitivity (half maximal inhibitory concentration
[IC50]) of gastric cancer cell lines was from the Cancer Dependency Map Project
(DepMap). P-values are derived from two-sided Pearson’s correlation test. f Dose-
response curves ofMKN45 andMGC803 cell lines overexpressing THSD4 after 72-h
treatments with DOC, OXA, and 5FU. Barplots showing the comparison of IC50
values in each group. Bars represent the mean of n = 3 independent experiments
with error bars indicating SD. P-values are calculated using two-sided Student’s t
test. g Boxplot showing the differential expression of ECM proteins validated by
PRM assay (two-sided Wilcoxon rank-sum test, n = 10 biologically independent
samplesper group). Boxplots showmedian (central line), upper and lower quartiles
(box limits), 1.5× interquartile range (whiskers). Source data are provided as a
Source Data file.
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epsilon RI signaling, TNF signaling, T cell receptor (TCR) signaling, and B
cell receptor (BCR) signaling pathways were enriched in DSG and XNSG
(P<0.05) (Fig. 4b and Supplementary Data 6 and 7). Among these
pathways, GSEA analysis showed that TCR signaling pathway was enri-
ched in DSG and the high activation of this pathway represented better
prognosis in DOS subcohort (P=0.015; HR=0.18; 95% CI, 0.04–0.88);

on the contrary, in the XELOX subcohort, TCR signaling pathway was
enriched in XNSG and the high expression represented poor prognosis
(P=0.013; HR= 5.19; 95% CI, 2.15–12.52) (Fig. 4c). Meanwhile, the TCR
signaling pathway enriched in XELOX non-sensitive patients was vali-
dated in BPRC cohort received XELOX therapy (Fig. 4d). The xCell
analysis also showed that immune cells such as CD8+Tcm, CD8+Tem,

b
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B-cells, dendritic cells (cDC and iDC), were enriched inDSG; similarly, we
observed CD8+Tcm, CD8+ T-cells, and cDC were enriched in XNSG
(Fig. 4e). Consistently, we found immune effectors such as dendritic
cells and T cells were also enriched in XELOX non-sensitive patients in
BPRC cohort (Fig. 4f). Among these immune cells, CD8+Tcm showed
positive correlation with TCR signaling pathway (Supplementary
Fig. 5c). Collectively, immune modulation exerts diverse effects in
response to DOS and XELOX chemotherapy.

The immune-induced anticancer response was reported to con-
tribute to the efficacy of conventional chemotherapeutic agents43,44.
The major difference of DOS and XELOX in therapeutic regiments was
docetaxel component, of which DOS has docetaxel, while XELOX has
not. We hypothesized docetaxel might play an important role in the
immune-induced anticancer response. We next surveyed the immu-
nogenic cell death (ICD) prediction scores for chemotherapeutic
agents in NCI library base on molecular descriptors obtained with the
chemistry development kit45,46. Significantly, among 31 anticancer
drugs, the docetaxel ranked the top one ICD component, indicating
higher capability of docetaxel in inducing immunogenic cell
death (Fig. 4g).

To search for the indicators in response to DOS and XELOX
therapies, we focused on the overlapped up-regulated proteins and
pathways in sensitive or non-sensitive response to DOS and XELOX
therapy. We observed the overlapped 2053 ORPs among DSG, DNSG,
XSG, and XNSG. Almost half (46.5%, 954) of the 2053 ORPs was found
in DSG and XSG, DNSG and XNSG, which might due to the common
therapeutic components oxaliplatin and 5-FU in XELOX and DOS
therapies; while the remaining 53.5% (1099) was found in DSG and
XNSG, DNSG and XSG, whichmight due to the differential therapeutic
component docetaxel (Supplementary Fig. 5b). Remarkably, the
higher proportion (64.4%, 708 proteins) of the 1099 proteins was
found in both DSG and XNSG, which were involved in immune mod-
ulation (TCR signaling pathway and immune system) and ERBB path-
way (Fig. 4h and Supplementary Fig. 5b). As shown in Fig. 4i, the
univariable cox analysis identified a panel of 12 proteins involved in
immune modulation (such as BCL2L1, CD81, CTSE, ENAH, MRC1,
ORMDL3, RAB24, REG3A, and VNN1) and ERBB signaling (such as
ERBB2, MAP2K2, and PPP3CB) showed positive association with
disease-free survival (DFS) in DOS subcohort, while negative associa-
tion in XELOX subcohort. Among the 12 proteins, ERBB2 was a poor
prognostic factor in XELOX subcohort (HR = 1.3, Cox P-value = 0.035).
To assess statistical independence of prognostic power of ERBB2, we
then performed multivariable cox analysis adjusted for baseline clin-
ical covariates. The result illustrated that ERBB2 could serve as an
independent prognostic factor (P = 0.001; HR = 1.497; 95% CI,
1.169–1.92) in the multivariable analysis after adjusting for Lauren’s
type, grade and RECIST in XELOX, but not DOS subcohort (Supple-
mentary Table 4). ERBB2, as known as HER2, was the only drug target

approved for the first-line treatment of HER2-positive GC. Therefore,
we speculated that XELOX combined with anti-HER2 (Trastuzumab,
Herceptin) targeted therapy could improve the therapeutic response.

To validate the speculation that the combination of trastuzumab
and XELOX therapy have synergistic effects in vitro, we treated NCI-
N87 cells (HER2-positive cell line) with XELOX, trastuzumab (TRA), and
combination of XELOX and trastuzumab (XELOX+TRA), respectively.
We observed the IC50 values of XELOX and TRA were 36.6μM and
43.7μM in NCI-N87 cells (Fig. 4j). As indicated in Fig. 4j, the IC50 value
of the XELOX in the combination treatment (XELOX+TRA) was sig-
nificantly decreased from 36.6μM to 19.6μM (two-sided Student’s t
test, P = 1.4E-2). Similarly, the IC50 value of TRA in the combination
treatment (XELOX+ TRA)was also significantly decreased from 43.7 to
19.6μM(two-sided Student’s t test, P = 8.2E−3). These results indicated
trastuzumab could increase the sensitivity of HER2-amplified human
gastric cancer cells to XELOX therapy.

We then compared the combination of XELOX with anti-HER2
targeted therapy and XELOX chemotherapy alone. After examining
the association of MSI/MSS-sig level with clinical outcomes, we
observed a better prognosis in MSI-sig high GC patients in
XELOX+HER2 subcohort (log rank test, P < 0.05), but not in XELOX
subcohort (Supplementary Fig. 5d and Fig. 4a). For further exploring
the sensitive and non-sensitive mechanism of the combination ther-
apy, we next performed functional enrichment analysis on the over-
represented proteins of XHSG and XHNSG [FC (XHNSG vs XHSG) >2 or
<0.5], and observed that GC patients featured by TCR signaling, BCR
signaling, and Fc epsilon RI signaling pathways showed non-sensitive
to XELOX therapy but sensitive to XELOX combined with anti-HER2
targeted therapy (Supplementary Fig. 5e and Supplementary Data 8).
GSEA analysis also showed TCR signaling was enriched in XHSG
(P = 0.033) and positively correlated with clinical outcome (P =0.038;
HR =0.45; 95%CI, 0.18– 1.14) (Fig. 4k). The xCell analysis illustrated the
abundance of immune cells such as CD4 + T-cells, CD4 + Tcm, and
CD8 + Tcm was significantly increased in XHSG (P < 0.05) (Fig. 4l). The
proteins involved in antigen processing and presentation and CD8 +
Tcm markers were also upregulated in XHSG (Supplementary Fig. 5f).
We observed activated immune signaling and aggregated immune
cells in XHSG, in contrast with XNSG. To directly address the result, we
performed immunohistochemistry (IHC) of T-cell marker CD8+ and
CD4+ to evaluate tumor-infiltration lymphocytes (IT-TILs) in FFPE
tumor tissue, frompatients received XELOX therapy or combinedwith
anti-HER2 therapy. Here, we included sensitive and non-sensitive
patients treated with XELOX therapy (XSG and XNSG) or XELOX+
HER2 therapy (XHSG and XHNSG). As a result, we observed the
expression of CD4 and CD8 was significantly increased in FFPE tumor
tissues from patients of XNSG compared with XSG; while in FFPE
tumor tissues from patients of XHSG, we observed the expression of
CD4 and CD8 was significantly increased, compared with XHNSG

Fig. 3 | The application of FDGC subtyping algorithm in multiple independent
cohorts, and the association of MSI/MSS characteristics with clinical out-
comes. a Sankey diagram indicating the comparison of FDGC subtype and BPRC
subtype or EOGC subtype. b Sankey diagram and barplot indicating the compar-
ison of FDGC subtype and ACRG subtype. Survival analysis of ACRG cohort clas-
sified by FDGC subtyping (two-sided log rank test). c Heatmap of CNV GI (copy
number variation genomic instability index), MSI-H assay status, mutations, and
MSI/MSS-sig (microsatellite instability/microsatellite stability gene expression sig-
natures assessment) of ACRG cohort classified by FDGC subtyping (upper). Heat-
map of MSI/MSS-sig of FDGC subtype (bottom). P-values are calculated by two-
sided Fisher’s exact test (categorical variables) and two-way ANOVA test (con-
tinuous variables). d The association of MSI/MSS-sig level with OS in ACRG and
FDGC cohorts (two-sided log rank test). e Heatmap illustrating significantly dif-
ferential expressed proteins in MSI/MSS-sig high and low group (two-sided Wil-
coxon rank-sum test). f Heatmap illustrating down-regulated proteins in G-IV
compared with other subtypes (Kruskal-Wallis test). g Heatmap illustrating the

dominant cell type compositions of G-II, G-III, and G-IV (two-sided Student’s t test).
h Boxplot showing the xCell score of Macrophages M1 andmonocytes among four
proteomic subtypes (two-sided Student’s t test). n (G-I) = 28, n (G-II) = 56, n (G-
III) = 75, n (G-IV) = 20 biologically independent samples examined. Boxplots show
median (central line), upper and lower quartiles (box limits), 1.5× interquartile
range (whiskers). i Correlation between MSI/MSS-sig with Macrophages M1 and
monocytes (two-sided Pearson’s correlation test). j The association of Macro-
phages M1 and monocytes with OS in FDGC and ACRG cohorts (two-sided Gehan-
Breslow-Wilcoxonor two-sided log rank test).kThe abundance ofMacrophagesM1
markers in MSI/MSS-sig high and low groups (two-sided Wilcoxon rank-sum test).
l Correlation between IL18 abundance with MSI/MSS-sig (two-sided Pearson’s cor-
relation test), and survival analysis of IL18 expression with OS (two-sided log rank
test). m Diagram illustrating the potential association between MSS/MSI char-
acteristics with drug response. *P <0.05 is considered statistically significant.
*P <0.05, **P <0.01, ***P <0.001, ****P <0.0001. Source data are provided as a
Source Data file.
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(Supplementary Fig. 5g). Moreover, XHSG had significantly increased
percentage of CD4 positive cells (43.7%) and CD8 positive cells (39.2%)
than XHNSG (3.2% and 2.9%, respectively) (P < 1E − 4); while the per-
centage of CD4 positive cells and CD8 positive cells were higher in
XNSG (54.2% and 29.7%, respectively) compared with XSG (2.9% and
1.4%, respectively) (P <0.05) (Fig. 4m).The result verified the findings

that GC patients with high TCR signaling are unlikely to benefit from
XELOX, but instead respond toXELOX+ anti-HER2. Taken together, the
combination of trastuzumab with XELOX therapy could resulted in a
synergistic antitumor effect, and TCR signaling pathway and CD8 +
Tcm emerged as a favorable response marker for the combination
therapy (Fig. 4n).
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Activation of ECM/PI3K-AKT pathway related to resistance to
anti-HER2 targeted therapy
We then focused on the HER2 subcohort, and separated the subcohort
as HER2 sensitive group (HSG) and non-sensitive group (HNSG). There
was a significant difference of prognosis in OS (P =0.039; HR =0.75;
95% CI, 0.41–1.35) and PFS (P < 1.0E − 4; HR =0.30; 95% CI, 0.17–0.54)
between HSG and HNSG as expected (Fig. 5a). We then hypothesized
the therapy response of anti-HER2 targeted therapy was related to the
expression of HER2. Therefore, we evaluated the expression of HER2
identified in HSG and HNSG by MS, and found no difference between
HSG and HNSG. Cox analysis suggested that ERBB2 could not be
regarded as an independent prognostic factor in HER2 subcohort.
These results reflected the low association of HER2 expression level
with trastuzumab resistance (Fig. 5b). For investigating functional
characteristics and molecular markers in sensitive or non-sensitive
response to anti-HER2 targeted therapy, we performed further com-
parative analysis of HSG and HNSG. The KEGG pathway enrichment
analysis revealed that HSG was featured by TCR signaling pathway,
etc.; while HNSG was featured by ECM-receptor interaction, PI3K-AKT
pathway, etc. (Fig. 5c, d and Supplementary Data 9). In addition, ECM
was negatively correlated with clinical outcome (P =0.046; HR = 2.6;
95% CI, 1.19–5.67) (Fig. 5e).

To further validate the association of ECM proteins with the
response to anti-HER2 targeted therapy, we compared gene expres-
sion profiles data from GSE77346 in trastuzumab-sensitive NCI-N87
cell line versus four trastuzumab-resistant cell lines (N87-TR1, N87-
TR2, N87-TR3, N87-TR4) by microarray analysis. As a result, we found
ECM proteins such as COL4A1, COL6A5, FN1, GP1BA, ITGA4, THBS3,
and THBS4 were also overrepresented in trastuzumab-resistant cell
lines47 (Fig. 5f). The PI3K-AKT signaling pathwaycouldbeactivatedby a
range of signals, including hormones, growth factors and components
of the extracellular matrix (ECM), subsequently regulating cell pro-
liferation and apoptosis. We found PI3K-AKT signaling pathway,
showed the highest positive correlationwith ECM-receptor interaction
pathway (Pearson r =0,72, P = 2.4E − 12) (Fig. 5g and Supplementary
Fig. 5h). In addition, we observed the subsequent downregulation of
apoptosis-related proteins, including BCL2, BCL2L1, CASP3, CASP7,
andCDKN2A, inHNSG (Fig. 5h). Basedon thesefindings, we speculated
there was a potential synergistic effect of PI3K-AKT inhibition in
combination with anti-HER2 therapy.

To validate the hypothesis, we performed further in vitro valida-
tion experiment to confirm the synergistic effects of the combination
of anti-HER2 and the PI3K-AKT inhibitors. As reported in the previous
studies, buparlisib (BKM120) is a commonly used potent, pan-class I
PI3K inhibitor approved for clinical trials48–50. We treated NCI-N87 cells
(HER2-positive cell line) with trastuzumab (TRA), buparlisib (BUP), and
combination of trastuzumab and buparlisib (BUP +TRA)with a ratio of
1:1, respectively. We observed the IC50 values of BUP and TRA were
8.19μM and 46.57μM in NCI-N87 cells, respectively (Fig. 5i). As indi-
cated in Fig. 5i, the IC50 value of BUP in the combination treatment
(BUP +TRA) was significantly decreased to 3.44μM, compared with

single BUP treatment (two-sided Student’s t test, P = 3.4E−3). Similarly,
the IC50 value of TRA in the combination treatment (BUP + TRA) was
also significantly decreased to 3.44μM, compared with single TRA
treatment (two-sided Student’s t test, P < 1.0E-4). These results sug-
gested BUP could synergize with TRA, resulting an enhanced anti-
tumor effect. Taken together, ECM could activate PI3K-AKT pathway
and inhibit the apoptosis, thus impairing the anti-tumor effect of
trastuzumab (Fig. 5j). Therefore, the PI3K-AKT inhibition combined
with anti-HER2 therapy provided a promising therapeutic strategy for
HER2-positive GC patients.

Interestingly, we found the negative association of ECM and MSI/
MSS-sig, therefore, we wonder whether the response to trastuzumab-
based therapy was related to MSI/MSS characteristics. We evaluated
the MSI/MSS-sig level in HSG and HNSG, and found GC patients with
lowMSI/MSS-sig level hadpoor prognosis, which accounted for 56%of
HNSG (higher thanHSG (33%)) (log rank test, P < 0.05) (Supplementary
Fig. 5i). Finally, we proposed the decision-making strategy for the GC
therapy. As summarized in Fig. 5k, GC patients with MSS status might
not benefit fromchemotherapy and targeted therapy;GCpatientswith
MSI status were featured by TCR activation and could benefit from the
docetaxel, or trastuzumab + XELOX combined therapies; GC patients
with high immune activation showed non-sensitive response to XELOX
therapy; GC patients with high ECM level were resistant to anti-HER2
targeted therapy.

Construction and validation of the predictive models for GC
chemotherapy and targeted therapy
Having proposed the decision tree for the personalized chemotherapy
and targeted therapy guidance, we next set out to determine whether
comparing S-overrepresented and NS-overrepresented proteomes
could distinguish sensitive GC patients from non-sensitive GC patients
in response to DOS therapy, XELOX therapy, anti-HER2 therapy or
combined with chemotherapies (Fig. 6a). We analyzed DSG (N = 22)
and DNSG (N = 22), XSG (N = 27) and XNSG (N = 42), HSG (N = 32) and
HNSG (N = 37), respectively. We applied Wilcoxon rank-sum tests with
a Benjamini-Hochberg (BH) adjusted P value cutoff (P <0.05, BH
P <0.05) and found 234, 278, and 194 differentially expressed proteins
(DEPs) in the DOS, XELOX, and HER2 subcohorts, respectively (Sup-
plementary Data 6, 7, and 9 and Supplementary Fig. 5j). We employed
stepwise logistic regression, which is robust to noise andoverfitting, to
identify a subset of signatures that accurately discriminates DSG/
DNSG, XSG/XNSG, and HSG/HNSG (named as DSG/DNSG-sig, XSG/
XNSG-sig, HSG/HNSG-sig). To train and subsequently test the model,
samples were partitioned based on sample type (i.e., S or NS) and 80%
of samples were used as a training set with the remaining 20% repre-
senting the independent testing set. Based on DSG/DNSG-sig (N = 6),
XSG/XNSG-sig (N = 14), HSG/HNSG-sig (N = 12) (Supplementary Fig. 6a
and Supplementary Data 10),we applied 10-fold cross-validation to the
training set yielded three predictive models with high sensitivity (true
positive rate) (≥89%) and specificity (true negative rate) (≥88%) in the
three subcohorts (Fig. 6b). When applied to the independent test set

Fig. 4 | The differential expression of proteins and signaling pathways in sen-
sitive andnon-sensitive groupsof therapy subcohorts. aThe associationofMSI/
MSS-sig level with OS in DOS and XELOX subcohorts (two-sided log rank test).
b Bubble plot showing the KEGG pathway enrichment (two-sided Fisher’s exact
test) ofDSG, DNSG, XSG, andXNSGgroups. c,d,kTheGSEA enrichment analysis of
TCR signalingpathway inDOS (c), XELOX(d,n (S) = 25,n (NS) = 20), XELOXofBPRC
cohort (k), and XELOX+HER2 subcohorts, respectively (left). Boxplots show
median (central line), upper and lower quartiles (box limits), 1.5× interquartile
range (whiskers). The survival analysis of ssGSEA TCR signaling pathway score with
OS in these subcohorts (two-sided log rank test) (right). e, f, l Heatmap illustrating
significantlydifferential cell type compositions between sensitive andnon-sensitive
groups of these subcohorts (two-sided Student’s t test).g ICDprediction score of 31
anticancer drugs from NCI library. h The overlap of upregulated proteins in DSG

and XNSG, and the KEGG pathway enrichment (two-sided Fisher’s exact test) of
these overlapped proteins. i Cox analysis (two-sided Cox test) of the proteins
involved in immune modulation and ErbB2/ErbB3 signaling pathway with disease-
free survival (DFS). The little boxes indicate the DFS hazard ratios. j Dose-response
curves of NCI-N87 cells after 72-h treatments with XELOX, trastuzumab, and com-
bination of trastuzumab and XELOX. The comparison of IC50 values of different
therapies (two-sided Student’s t test). Bars represent themeanofn = 3 independent
experiments with error bars indicating SD. m The qualification of CD4 and
CD8 stained by immunohistochemistry (IHC) in representative examples in the
XELOX and XELOX +HER2 subcohorts. Data are analyzed by two-sided Student’s t
test and shown asmean ± SD (n = 3 independent experiments). n Diagram showing
the potential connection of immune characteristics and the therapy response.
Source data are provided as a Source Data file.
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samples, the three predictive models based on DSG/DNSG-sig, XSG/
XNSG-sig, HSG/HNSG-sig separately achieved high accuracy of 89%,
93%, and 100% (Fig. 6b).

To evaluate the accuracy of the predictive signatures for the
chemotherapeutic response, we designed PRM strategy to quantify
these signature proteins in FFPE tumor tissues from the new

independent cohort composed of 60GC patients receiving either DOS
(N = 20: DSG,N = 10; DNSG,N = 10), XELOX (N = 20: XSG, N = 10; XNSG,
N = 10), or anti-HER2 (N = 20: HSG, N = 10; HNSG, N = 10) therapies
(Supplementary Data 11). We selected a set of target peptides that
unique to these proteins, including DSG/DNSG-sig (ATP5S, C11orf31,
CDC42SE2, CHP2, and AHR), XSG/XNSG-sig (RFC2, NIT1, RAB32, FLG2,
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FNBP1, GCLC, DYNLRB1, RBBP7, LPXN, LMAN2, NUB1, WAS, FAM82B,
and MYCBP), and HSG/HNSG-sig (CAPN5, BAIAP2, SRPX2, COMMD4,
SCIN, DSC2, SEPSECS, TECPR1, DDX60L, NPL, SLC39A4, and IRF6)
using the library search results (Supplementary Data 11). Based on the
PRM quantification, we performed comparative analysis of signature
proteins (includingDSG/DNSG-sig, XSG/XNSG-sig, andHSG/HNSG-sig)
between DSG and DNSG, XSG and XNSG, HSG and HNSG, respectively.
As a result, we observed the significantly differential expression of
these signature proteins betweenDSG and DNSG, XSG and XNSG, HSG
and HNSG, respectively. In DOS subcohort, we observed signature
proteins, including AHR, ATP5S, C11orf31, CDC42SE2, andCHP2, had at
least twofold differences between DSG and DNSG (P < 0.05, Wilcoxon
rank-sum test). In XELOX subcohort, XSG/XNSG-sig (RFC2, NIT1,
RAB32, FLG2, FNBP1, GCLC, DYNLRB1, RBBP7, LPXN, LMAN2, NUB1,
WAS, FAM82B, and MYCBP) were significantly increased in XNSG
compared with XSG (Fold change (XNSG/XSG) > 2, P <0.05, Wilcoxon
rank-sum test). In HER2 subcohort, we observed HSG/HNSG-sig
(CAPN5, BAIAP2, SRPX2, COMMD4, SCIN, DSC2, SEPSECS, TECPR1,
DDX60L, NPL, SLC39A4, and IRF6) had amore than twofold increase in
HNSG compared with HSG (Fold change (HNSG/HSG): 2.17, 2.22, 4.44,
5.43, 5.71, 4.60, 5.27, 5.03, 4.06, 2.18, 5.40, 3.35; P <0.05, Wilcoxon
rank-sum test) (Supplementary Fig. 6b–d). In addition, the heatmaps
showed a clear separation between DSG and DNSG, XSG and XNSG,
HSG and HNSG in the new independent cohort, respectively (Fig. 6c).
Collectively, predictive power of the signature proteins in different
therapies (including DOS, XELOX, and anti-HER2) was validated in an
independent cohort by PRM assays.

Furthermore, XSG/XNSG-sig model was also validated in the
external clinically annotated BPRC DGC cohort which is accessible in
the PRIDEArchiveunder the accession number PXD00884027. Here, 45
patients with GC received XELOX chemotherapy with long-term fol-
low-up. In the BPRC DGC cohort, chemo-non-sensitive group (N = 20,
mediandisease-free survival (mDFS) = 339.5 days) and chemo-sensitive
group (N = 25, mDFS = 695.0 days) were defined (Supplementary
Fig. 6e), and showed strong correlations with prognosis (log rank test,
P <0.05). The XSG/XNSG-sig revealed in our study was then applied to
predict the therapeutic response of XELOX in the BPRC cohort. Sig-
nificantly, our predictive model resulted in a high sensitivity and spe-
cificity of prediction with an AUC of 0.95 in the BPRC DGC cohort
(Supplementary Fig. 6e), demonstrating the robustness, accuracy, and
stability of thepredictionmodel. Taken together, the accuracy of these
models for predicting response of different therapies were verified by
multi-center GC cohorts based on the proteomic data.

Overexpression of CTSE synergistically enhances sensitivity to
docetaxel by stabilizing microtubules
Based on the proteomic subtyping analysis, we found that intracellular
proteinase such as cathepsin E (CTSE) overrepresented inG-III subtype
featured with response to DOS but not XELOX therapy; the result was
further validated in the following differential analysis of DOS and

XELOX subcohorts. Taken together, the expression level of CTSE
positively correlated with the patient chemosensitivity to DOS (Sup-
plementary Fig. 7a).

We first investigated how CTSE levels modulated the response of
tumor cells to DOS and XELOX, in cultured MKN45 and MGC803 GC
cell lines. Compared with the cells transfected with an empty vector,
CTSE overexpression significantly promoted the proliferation of
MKN45 and MGC803 cells (Student’s t test, P <0.01) (Supplementary
Fig. 7b and Fig. 7a, b), consistent with previous reports51,52, and exclu-
ded the negative effect of CTSE overexpression on cell proliferation.
Next, we conducted similar experiments using clinical combined pat-
terns of DOS (docetaxel: oxaliplatin: 5-fluorouracil = 1:1:10) and XELOX
(oxaliplatin: 5-fluorouracil = 1:7.7) to treat MKN45 and MGC803 cells19.
The degree of DOS andXELOX sensitivities in theMKN45 andMGC803
cells were estimated by their half-maximal inhibitory concentration
(IC50) values53,54. We treated CTSE-overexpressing and empty vector-
overexpressing MKN45 and MGC803 cells with DOS and XELOX
therapies, respectively; consistent results in the two GC cell lines were
observed. The IC50 values of DOS were significantly lower (0.37-fold
and 0.53-fold decrease inMKN45 andMGC803, respectively; Student’s
t test, P <0.01) in the CTSE-overexpressing groups (IC50, 1.47 and
1.26 nM, respectively) compared with the control groups (IC50, 2.32
and 2.69 nM, respectively) (Fig. 7c), whereas there was no obvious
change for XELOX (1.23 and 0.83 fold change, respectively; P > 0.05)
(Fig. 7d). Taking into consideration the differences between DOS and
XELOX, we further treated each CTSE-overexpressing and empty
vector-overexpressing MKN45 and MGC803 cells with docetaxel
(DOC), 5-fluorouracil (5-FU), and oxaliplatin (OXA). The CTSE-
overexpressing groups were shown to have lower IC50 values for
DOC than the control groups (0.31-fold and 0.38-fold decrease in
MKN45 and MGC803 cells, respectively; Student’s t test, P < 0.05)
(Fig. 7e). This, together with the findings that the IC50s of 5-FU (0.91
and 1.03 fold change, respectively; P >0.05) and OXA (1.05 and 0.84
fold change, respectively; P > 0.05) did not change (Supplementary
Fig. 7c, d), suggested that CTSE overexpression is an important
determinant of DOC, but not 5-FU or OXA, sensitivity.

To elucidate the molecular mechanism by which CTSE over-
expression enhanced the cytotoxic effects of DOC, we performed
proteomic analysis using a label-free technique and compared the
proteome between the CTSE-overexpressing and control MKN45 cells
treatedwith or without DOC.We performed three repeats in the CTSE-
overexpressing and control MKN45 cells, and made a uniformed
quality control, which resulted in the identification of 5371 and 5735
GPs, respectively, in MKN45 cells with and without DOC treatment at a
1% global protein FDR (Supplementary Data 12). There were no major
differences in the coverage between the CTSE-overexpressing and
control MKN45 cells with or without DOC treatment (Supplementary
Fig. 7e–g). Differential proteomic analysis of the CTSE-overexpressing
and control MKN45 cells without treatment showed that 971 upregu-
lated GPs were enriched in basal transcription factors (P = 4.36E − 3)

Fig. 5 | The differential expression of proteins and signaling pathways in HSG/
HNSG. a Kaplan–Meier plots show significant differences between the sensitive
group (S) and non-sensitive group (NS) in overall survival (OS) (upper) and
progression-free survival (PFS) (bottom) in theHER2 subcohort (two-sided log rank
test). b Boxplot showing the ERBB2 expression in HSG (n = 32) and HNSG (n = 37)
(two-sided Wilcoxon rank-sum test) (upper). Boxplots show median (central line),
upper and lower quartiles (box limits), 1.5× interquartile range (whiskers). Cox
analysis (two-sided Cox test) of ERBB2 with OS (bottom). c Heatmap showing the
abundance of differentially expressed proteins in HSG and HNSG. d Pathway
alterations inHSGandHNSG (two-sidedFisher’s exact test).eTheGSEAenrichment
analysis of ECM in HER2 subcohort (Nominal P value, calculated as Phenotype-
based permutation test). The survival analysis of ssGSEA ECM pathway score with
OS in HER2 subcohort (two-sided log rank test). f Heatmap illustrating the abun-
dance of ECM proteins in HER2 subcohort and five gastric cancer cells (two-sided

Wilcoxon rank-sum test). g, h Left panel: Correlation of ECMpathway score (g) and
PI3K-AKTpathway score (h)with its downstreampathwayassessedby ssGSEA (two-
sided Pearson’s correlation test). Right panel: Heatmap illustrating the protein
abundance of PI3K-AKT pathway (g) and apoptosis (h) related proteins (two-sided
Wilcoxon rank-sum test). i Dose-response curves of NCI-N87 cells after 72-h treat-
ments with buparlisib (BUP), trastuzumab (TRA), and combination of trastuzumab
and buparlisib with a ratio of 1:1. IC50, half-maximal inhibitory concentration. The
comparison of IC50 values of different therapies (two-sided Student’s t test). Bars
represent themeanofn = 3 independent experimentswith error bars indicating SD.
j Diagram showing the potential mechanism of resistance to anti-HER2 targeted
therapy. k The decision-making strategy for the GC therapy. *P <0.05 is considered
statistically significant. *P <0.05, **P <0.01, ***P <0.001, ****P <0.0001. Source data
are provided as a Source Data file.
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(including TAF2, TAF3, TAF4, TAF13, GTF2H4, etc.), ubiquitin-
mediated proteolysis (P = 4.45E− 3) (including UBE2C, UBE2G1,
UBE2G2, CUL2, PIAS2, etc.), and p53 signaling pathway (P = 3.52E − 2)
(including CCNB1, CASP3, TSC2, CDK6, IGFBP3, etc.), (Fig. 7f and
Supplementary Data 12). The 969 downregulated GPs were mainly
enriched processes involving endocytosis (P = 2.29E − 4) (including

CHMP2A, CLTA, WASH1, SNX2, SNX6, etc.), lysosome (P = 3.37E − 3)
(including CTSB, CTSC, GUSB, ATP6V0C, LAMP1, etc.), regulation of
autophagy (P = 7.76E − 3) (including GABARAPL1, GABARAPL2, ATG5,
ATG7, BECN1, etc.), and ribosome (P = 9.47E − 3) (including MRPL1,
MRPL30, RPL17, MRPS11, RPLP1, etc.) (Fig. 7f and Supplementary
Data 12), which potentiated CTSE’s promotion of tumor growth.
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Further differential proteomic analysis suggested that CTSE over-
expression rendered MKN45 cells prone to necrosis with DOC treat-
ment [e.g., the upregulation of the TNF pathway (P = 3.96E − 2)
(including MAP3K7, AKT1, CEBPB, JUN, NFKB1, etc.) and the down-
regulation of VEGF (P = 1.90E − 2) (includingMAPK3, MAPK14, PIK3CA,
PXN, PIK3R2, etc.) and basal transcription factors (P = 2.68E − 2)
(including TAF8, TAF10, MNAT1, GTF2H5, GTF2B, etc.)], which sug-
gested that CTSE has a positive response to DOC (Fig. 7g and Sup-
plementary Data 13). Overexpression of CTSE did not alter the protein
expression levels of MAP4, and TUBB3 (Wilcoxon rank-sum test,
P >0.05) (Supplementary Fig. 7h). Interestingly, overexpression of
CTSE andDOC treatment synergistically reduced the expression levels
of the proteins involved in the microtubule assembly bioprocesses
[MAP4 (fold change = 0.15), and TUBB3 (fold change =0.46) (Wilcoxon
rank-sum test, P <0.05)] (Supplementary Fig. 7h). According to pre-
vious research,microtubule associated protein share the samebinding
site to microtubule as paclitaxel, and the increase of soluble intracel-
lular tubulin is an indicator of microtubule stability55,56. Therefore, we
speculated that the low expression ofmicrotubule-associated proteins
rendered the microtubules vulnerable to DOC and made the GC cell
lines hypersensitive. We also performed immunoblot analysis to verify
that DOC exposure in the CTSE group reduced the content of both
soluble α- and β-tubulin subunits (Student’s t test, P < 0.001), indicat-
ing the enhanced polymerization of tubulin into microtubules to
increase DOC sensitivity (Fig. 7h). The immunohistochemical staining
showed significant differences in the CTSE expression between the
sensitive and non-sensitive groups in patients treated with DOS and
XELOX (Student’s t test, P < 0.0001) (Supplementary Fig. 7i–l), which
verified the aforementioned observations that CTSE levels positively
responded to DOS treatment.

Overexpression of TKTL1 decreases the sensitivity to docetaxel
by inducing abnormal chromosome segregation
Transketolase-like-1 (TKTL1), a rate-limiting enzyme in the non-
oxidative part of the pentose-phosphate pathway, has been demon-
strated to promote carcinogenesis and cell proliferation57. In contrast
to CTSE, the levels of TKTL1 negatively corresponded to DOS therapy
(Supplementary Fig. 7a). A 6.9-fold increase of TKTL1 expression was
observed in the DNSG, but not DSG, suggesting that TKTL1 led to a
decreased sensitivity to DOS. Consistent with previous findings58, we
confirmed that the overexpression of TKTL1 promoted cell prolifera-
tion in both MKN45 and MGC803 cell lines (Student’s t test, P <0.01)
(Supplementary Fig. 8a and Fig. 7i, j). By comparing the sensitivities of
TKTL1-overexpressing and control cells toDOSandXELOX,we showed
that the IC50 values of DOS were significantly higher (3.76-fold and
2.50-fold increase in MKN45 and MGC803, respectively; Student’s t
test, P <0.001) in the TKTL1-overexpressing cells (IC50, 9.71 nM and
6.73 nM, respectively) compared with the control groups (IC50,
2.59nM and 2.69 nM, respectively), whereas, no significant change in
XELOX was observed (1.16 and 1.35 fold change respectively, P > 0.05)

(Fig. 7k, l). Taking into consideration the differences between DOS and
XELOX, we further treated each TKTL1-overexpressing and empty
vector-overexpressing MKN45 and MGC803 cells with DOC, 5-FU, and
OXA, and observed that the TKTL1-overexpressing groups had higher
IC50 values for DOC than the control groups (3.57-fold and 3.18-fold
increase, respectively; Student’s t test, P < 0.01) (Fig. 7m). This, toge-
ther with findings that the IC50s of 5-FU (1.16 and 1.24 fold change,
respectively; P >0.05) and OXA (0.95 and 0.98 fold change, respec-
tively; P >0.05) did not change (Supplementary Fig. 8b, c), suggested
that TKTL1-overexpressing cells were resistant to DOC. DOC is repor-
ted to cause cell cycle arrest in mitosis, and increases the apoptosis of
cancer cells59. Here, we confirmed that DOC induced G2/M arrest and
increased the apoptosis in MKN45 cell lines; however, the over-
expression of TKTL1 alleviated the G2/M arrest and reduced cell
apoptosis following treatment with DOC (Student’s t test, P <0.01)
(Supplementary Fig. 8d–g). Considering that increased TKTL1 pro-
moted the release of a DOC-mediated mitosis block, we examined the
chromosome status in TKTL1-overexpressing and control cells. Severe
abnormal chromosome segregation phenotypes were observed in the
DOC-treated TKTL1-overexpressing cells, including misaligned, multi-
polar, and lagging chromosomes (Student’s t test, P < 0.05) (Fig. 7n).
Moreover, increased aneuploidy was observed in DOC-treated TKTL1-
overexpressing cells, compared with DOC-treated control cells
(P < 0.05) (Fig. 7o). The immunohistochemical staining showed sig-
nificant differences in TKTL1 expression between the sensitive and
non-sensitive groups in patients treatedwith XELOXor DOS (Student’s
t test, P <0.0001) (Supplementary Fig. 8h–k), which agreed with the
findings above that TKTL1 positively and negatively responds to
XELOX and DOS, respectively. Taken together, these results indicated
that TKTL1 promoted DOC-treated cell survival by causing abnormal
chromosome segregation and DNA aneuploidy. Finally, we proposed a
model in which CTSE functions as a cell intrinsic enhancer of the
chemosensitivity of DOC via microtubule stabilizing effects, while
TKTL1 functions as an attenuator by inducing abnormal chromosome
segregation (Fig. 7p).

Discussion
GC is currently the fourth most common malignancy, and the second
leading cause of cancer-related deaths worldwide. As it is most often
diagnosed at an advanced stage, the preferred treatment for advanced
GC is surgery60,61. However, for patients with no chance of surgical
treatment, the ultimate goal of chemotherapy is to prolong survival
and improve quality of life62. Recently, significant progress has been
made by the iterative updates of first-line chemotherapeutic drugs19,63,
and the integration of HER2-targeting drugs11,64. Meanwhile, significant
challenges have been added as there are no indicators for their che-
motherapeutic effectiveness, and the development of drug resistance
remains unresolved. Therefore, it is imperative to make a preclinical
diagnosis of tumor response to thefirst-line therapies XELOX andDOS.
Herein, we collected FFPE tissues of 206 patients with GC before the

Fig. 7 | Effect of CTSE and TKTL1 overexpression on anticancer activity of DOS
and XELOX in gastric cancer cell lines MKN45 and MGC803. a. b Effect of CTSE
overexpression on proliferation in gastric cancer (GC) cell lines (MKN45 and
MGC803, n = 3 independent experiments, two-sided Student’s t test, mean± SD).
c–e Dose-response curves of MKN45 and MGC803 cell lines overexpressing CTSE
after 72-h treatments with DOS, XELOX, and DOC. IC50, half-maximal inhibitory
concentration. *P-values are calculated using two-sided Student’s t test. Barplots
showing the comparison of IC50 values in each group. f, g KEGG pathway analysis
showing the differential function in the CTSE groupwith or withoutDOC treatment
(two-sided Fisher’s exact test). h Immunoblot analysis of soluble alpha-tubulin and
soluble beta-tubulin in MKN45 cells after DOC treatment, and the normalization of
qualified western blots (n = 3 independent experiments, two-sided Student’s t test,
mean ± SD). i, j Effect of TKTL1 overexpression on MKN45 and MGC803 cell pro-
liferation (n = 3 independent experiments, two-sided Student’s t test, mean ± SD).

k–mDose-response curves ofMKN45 andMGC803 cell lines overexpressing TKTL1
after 72-h treatments with DOS, XELOX, and DOC (n= 3 independent experiments,
two-sided Student’s t test,mean± SD). IC50, half-maximal inhibitory concentration.
Barplots showing the comparison of IC50 values in each group. n, o Chromosome
segregation defects (n) and percentage of aneuploid cells (o) in DOC-treated
MKN45 cells with or without TKTL1 overexpression. The left panel shows the
representative results. The scale bar indicates 10μm. The right panel shows the
statistical results from n = 3 independent experiments in the MKN45 cells (two-
sided Student’s t test, mean ± SD). p Schematic illustration indicating how CTSE
inducts microtubule stabilization, and how TKTL1 induces abnormal chromosome
segregation. Bars represent the mean of n = 3 independent experiments with error
bars indicating SD (for c–e, h, k–m, n–o). Source data are provided as a Source
Data file.
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initiation of different treatments (including DOS, XELOX, and anti-
HER2-based therapy), and presented an unprecedented large-scale
clinical proteomic landscape, with the aim of identifying reliable pre-
dictive markers of the GC patient response to the diverse che-
motherapies and targeted therapies.

In the study, the proteomic subtypes were identified with distinct
molecular features and clinical outcomes, and associated with therapy
subcohorts. Further analysis revealed that the significant distribution
difference of therapy subcohorts among proteomic subtypes were
mainly derived from HER2 subcohort, due to the selection of HER2-
positive patients for anti-HER2 targeted therapy. In addition, HER2
expression detected by IHC and FISH analysis demonstrated the spe-
cific molecular pattern in HER2-positive GC patients, supporting the
reliability of proteomic subtyping. We also surveyed the robust
quantification of the signature proteins identified in four proteomic
subtypes. We found 1679 signature proteins (74% of 2279 signature
proteins) have immunohistochemistry (IHC) staining data as reported
by The Human Protein Atlas (HPA), among which 1467 (87.4%) sig-
nature proteins showed medium to high tumor-specific staining in GC
samples, demonstrating these signature proteins could be reused and
validated in the future research community (Supplementary Fig. 3a).
Pathway enrichment analysis of the proteomic subtypes suggested
that activation of endocytosis indicated drug sensitivity, while high
expression of ECM associated with drug resistance. These results
suggested endocytosis activation or ECM inhibition could be applied
in the combination of chemotherapy and targeted therapy, thus
improving therapy sensitivity and alleviating therapy resistance. Fur-
ther analysis revealed high expression of THSD4 was significantly
associated with poor prognosis and highly correlated with responses
of drugs (including 5-FU, oxaliplatin, and docetaxel) in gastric cancer
cell lines data from the DepMap. We also validated THSD4 over-
expression reduced the anti-tumor effect of chemotherapeutic drugs
in vitro. The association between ECM proteins and drug resistance
was validated by PRM approach in an independent cohort, indicating
these extracellularmatrix proteins could serve as indicators to predict
chemotherapy response in clinic.

In addition, the proteomic subtyping system have been applied in
other gastric cancer cohorts (BPRC cohort, ACRG cohort, and EOGC
cohort). The results demonstrated therewas a significant concordance
between FDGC subtype and EOGC subtype or ACRG subtype, but not
between FDGC subtype and BPRC subtype. After our examination of
the composition of clinical characteristics, we speculated the compo-
sition of Lauren’s type, not other clinical characteristics, was the pos-
sible reason for no concordance between the FDGC and the BPRC
subtypes. Based on the unique features of our proteomic subtypes
associated with therapeutic response, we could assess the possibility
of response to specific therapy inother cohorts (although therewas no
exact therapy response). Overall, the result demonstrated the
robustness of FDGC subtyping and their consistent and significant
association with clinical outcomes despite the various sources of het-
erogeneity and cohort differences. Importantly, the FDGC subtyping in
ACRG cohort provided a clue that GC patients with MSS status had an
association with drug resistance and poor survival. We further
explored the association of immune microenvironment and MSI/MSS
characteristics among four proteomic subtypes. The results showed
G-IV had the lowest MSI/MSS-sig level, and was featured by less cyto-
kines and antigen processing and presentation, which made more
monocytes aggregated and less macrophages M1 differentiated.

WhetherMSI/MSS characteristics couldbe a predictivemarker for
response to chemotherapy and targeted therapy remain not clearly
reported. Even though XELOX and DOS are two major first-line
treatments19, there is no indication for patients to choose the appro-
priate treatment strategy. Surprisingly, we found MSS characteristics
served as a chemo-resistance indicator and poor prognosis marker in
the DOS subcohort, but not in the XELOX subcohort. Furthermore, we

conducted a thorough bioinformatic analysis of the sensitive and non-
sensitive patient groups to elucidate the potentialmechanismsof drug
response, thereby aiding the prediction of sensitivity to chemotherapy
and the reversal of drug resistance to improve therapeutic efficacy.
Interestingly, our results showed that patients with GC with pre-
dominant immune pathways (BCR, TCR, and FcεRI pathways) were
inclined to be sensitive to DOS therapy while resistant to XELOX
therapy. Among these pathways, TCR signaling pathway showed
obvious association with drug response and clinical prognosis. The
xCell analysis also revealed that immune cells such as CD8 +Tcm
enriched inDSG and XNSG, indicating the distinct immunostimulatory
effect in response to DOS and XELOX therapies. The ranked immu-
nogenic cell death (ICD) prediction score of chemotherapeutic regi-
ments showed docetaxel was the top one ICD drug. Surprisingly, we
found ERBB pathway was enriched in XNSG and DSG, and univariable
and multivariable cox analysis validated ERBB2 was a predictive
prognostic marker adjusted for baseline clinical covariates in XELOX
subcohort, indicating the clinical implication of XELOX combinedwith
anti-HER2 targeted therapy. The synergistic effects of the combination
of anti-HER2 and XELOX therapy was confirmed by the in vitro vali-
dation experiment. Further differential analysis focused on the com-
bination therapy and revealed the activation of TCR signaling pathway
was associated with sensitive response to XELOX combined with anti-
HER2 targeted therapy. These results indicated that TCR signaling
pathway exerts diverse effects in response to DOS, XELOX, as well as
XELOX combined with anti-HER2 targeted therapy, which assist to
determine the appropriate chemotherapy and targeted therapeutic
strategy for GC patients.

Clinically, the usage of the anti-HER2 targeted therapy was
determined by the expression of HER2 detected by FISH (fluorescence
in situ hybridization) and IHC (Immunohistochemistry). Although
trastuzumab-based first-line treatments represent the standard
approach for HER2-positive GC, not all HER2-positive patients with GC
benefit from this treatment, and show variable ORR (~32–68%).
Researchers have explored various approaches, such as circulating
tumor DNA detection and gene expression analyses, to elucidate the
possible mechanisms involved in trastuzumab resistance65,66. In this
study, consensus clustering analysis identified four proteomic sub-
types (G-I to G-IV), among which G-II subtype had the highest pro-
portionof patients receiving anti-HER2 therapy, due to the selection of
HER2-positive patients for anti-HER2 targeted therapy, indicating the
specific proteome panel of HER2-positive patients. However, HSG and
HNSG accounted nearly half in G-II subtype, suggesting glycolysis/
gluconeogenesis and pantothenate/CoA biosynthesis (enriched in G-II
subtype) were unrelated to anti-HER2 therapy response. On the con-
trary, G-IV subtype, featured by ECM pathway, had the highest pro-
portion of non-sensitive patients of anti-HER2 therapy. Consistently,
further comparative analysis of between sensitive and non-sensitive
patients with anti-HER2 targeted therapy also revealed ECM-receptor
interaction pathway were enriched in non-sensitive group, and nega-
tively correlated with clinical outcome. Surprisingly, we found the low
association of HER2 expression level with trastuzumab resistance.
Importantly, apart from steric hindrance to anti-HER2 antibody bind-
ing through ECM components in tumor, we found a potential
mechanism related to trastuzumab resistance that ECM could activate
PI3K-AKT signaling pathway and inhibit the subsequent apoptosis
signaling, thus impairing the anti-tumor effect of trastuzumab. Further
experiments validated that PI3K-AKT inhibitor buparlisib (BKM120)
could synergizewith trastuzumab, resulting in an enhanced anti-tumor
effect, and provided a promising therapeutic strategy for HER2-
positive GC patients.

Current clinically used tumor markers for GC screening have
achievedmuch progress, including HER267, human epidermal growth
factor receptor (EGFR)68, mammalian target of rapamycin (mTOR)69,
PD-L170,71, and TP5322. However, predictive markers for specific
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therapeutic strategies in GC are still lacking. The identification of
effective biomarkers for clinical diagnosis, prognosis, prediction,
and therapy is a continuous effort. For clinical guidance in the
response to therapy, in this study, we employed proteomic tech-
nology implemented with machine learning statistics to search for
drug sensitive and non-sensitive predictive biomarkers in GC as an
alternative to clinical therapeutic strategies. Statistical analysis was
performed on the discovery set to identify potential chemosensi-
tivity mediators for GC. Furthermore, these signature proteins
identified in predictive models for DOS, XELOX, and
HER2 subcohorts, were validated by parallel reaction monitoring
(PRM) quantification with 100% expression frequency, in the new
independent cohort, exhibiting a well distinguish between sensitive
patients and non-sensitive patients and indicating the reliability of
these results. In addition, the good diagnostic performance of pre-
diction model for XELOX therapy was also confirmed by an external
validation (BPRC DGC cohort, AUC = 0.95). Besides proteomic
quantification, the expression of these signature proteins was also
validated by the IHC staining data reported by HPA, (Supplementary
Fig. 6f). Taken together, our study provides a panoramic view of the
clinical proteomic landscape of GC which can be specifically coupled
to the therapeutic response. Multicenter validation of predictive
signatures demonstrated the robustness and accuracy of this pre-
diction model; PRM quantification and HPA IHC staining data vali-
dated that these signature proteins in models could be reused and
validated in the future research community.

Based on the proteomic analysis, we concluded that CTSE
expression levels were sensitive to DOS therapy but non-sensitive to
XELOX therapy. As recently reported, cathepsins have emerged as an
important class of proteolytic enzymes in cancer development, and
cysteine cathepsin inhibitors have been proposed as anticancer
agents72–75. Data presented in this study confirmed the potential for
CTSE to promote GC growth. More importantly, we further demon-
strated that CTSE could enhance the cytotoxic response of GC cells to
docetaxel, suggesting it as a candidate marker of the drug response.
Differential proteomic analysis further revealed the downregulation of
microtubule-associated proteins (MAP4 and MAP7), suggesting a
potential chemoresistance mechanism by which CTSE overexpression
can affect microtubule dynamics. CTSE is widely distributed in diges-
tive cancers, such as esophageal cancer, GC, colorectal cancer, pan-
creatic cancer, and liver cancer. We speculate that CTSE also has an
enhanced antitumor effect on DOC-based chemotherapy in other
digestive cancers.

In addition, increased TKTL1 expression76,77 attenuates the che-
mosensitivity of patients to DOS therapy, which is completely
opposite to the response to DOC-based chemotherapy observedwith
CTSE. Our previous study revealed that TKTL1 gathered signals from
the nutrition and cell cycles, and promoted cell cycle proceeding78. In
the current study, we further found that high levels of TKTL1 pro-
moted the escape of tumor cells from apoptosis induced by DOC,
mediated by abnormal chromosome segregation and DNA aneu-
ploidy. As a result, TKTL1 promoted DOC-treated cells’ survival.
Taken together, we propose that CTSE functions as a cell intrinsic
enhancer of chemosensitivity to DOC via microtubule stabilizing
effects, whereas TKTL1 functions as an attenuator by inducing
abnormal chromosome segregation.

In summary, our proteomic data described an atlas of che-
motherapy and targeted therapy in GC, covering three first-line
therapy subcohorts: the DOS, XELOX, and HER2 subcohorts. This
study identified the proteomic subtyping correlated with clinical
outcomes (overall survival and therapy response), the performance
of which was further evaluated in multi-center GC cohorts. Impor-
tantly, we provided indicators for these chemotherapy and targeted
therapy, including MSI/MSS, ERBB2 expression, the activation of
ECM and TCR signals, to help develop rational treatment options for

GC patients in clinic, thus providing them more effective strategy.
Finally, we extracted S-overrepresented and NS-overrepresented
proteomes and constructed predictive models, which could well
distinguish sensitive GC patients from non-sensitive GC patients in
response to DOS therapy, XELOX therapy, and anti-HER2 therapy.
The construction and validation of proteomic-based predictive
classifiers for these first-line therapies of GC contributed to perso-
nalized chemotherapy and targeted therapy, to a certain extent;
thereby, moving us toward the era of proteomic-driven precision
medicine. More importantly, we propose that CTSE coupled with
TKTL1 can facilitate a more effective clinical decisions to determine
the relative benefit of DOC-based therapy for patients. In summary,
our study has potentially important clinical implications in GC, and
we look forward to further developing potential therapeutic combi-
nations for DOC-based therapy.

Methods
Clinical sample acquisition
This study was approved by the Research Ethics Committee of
Zhongshan Hospital (B2019-200R). Written informed consent was
received from all patients included in this study.

Archival formalin-fixed, paraffin-embedded (FFPE) tissues from
patients with GC, from January 2002 to March 2020, were reviewed in
the Department of Pathology, Zhongshan Hospital, Fudan University
(Shanghai, R. P. China). The discovery cohort consisted of the DOS
subcohort (44 cases treated with S-1 and oxaliplatin combined with
docetaxel), the XELOX subcohort (70 cases treated with capecitabine
and oxaliplatin), and the HER2 subcohort (71 cases treated with the
anti-HER2-based therapy), according to the treatment profiles.
Another 21 cases were assigned as “Others,” of which 3 cases received
apatinib or docetaxel therapies, and 18 cases had no chemotherapy
information. The independent validation cohort for PRM verification
included 60 patients with GC, receiving either DOS (N = 20), XELOX
(N = 20), or anti-HER2 (N = 20) therapies. All the chemotherapy regi-
mens were given at standard dosing as described in previous studies.
Briefly, the XELOX regimen was administered as follows: capecitabine
(1000mg/m2, twice daily on days 1–14) and oxaliplatin (130mg/m2 on
day 1)28. The DOS regimen was provided as S-1 (tegafur, gimeracil and
oteracil porassium capsules; 40mg/m2 orally administered twice a day
on days 1–14), oxaliplatin (100mg/m2 on day 1), and docetaxel (40mg/
m2 on day 1). The two regimens were repeated every 3 weeks79. In the
HER2 subcohort, patients generally received the anti-HER2-based
therapy either as a XELOX combined anti-HER2 therapy or other che-
motherapies combined anti-HER2 therapy, as reported in the previous
two phase II trials8,11. All the patients of the HER2 subcohort received
trastuzumabwith a dose of 6mg/kg every 3 weeks after a first infusion
of 8mg/kg80. Medical records were reviewed to obtain the follow-up
data. The treatment response was evaluated by CT/MRI scanning fol-
lowing the Response Evaluation Criteria in Solid Tumors (RECIST)
(version1.1)81. Tumor response was assessed and categorized as a
complete response (CR), partial response (PR), stable disease (SD), or
progressive disease (PD). In clinic, the ORR, generally defined by the
Food and Drug Administration as the sum of PR plus CR, is a direct
measurement of drug antitumor activity. Here, the ORR, defined as PR
plus CR, was selected for the efficacy evaluation; patients with CR and
PRweredefined as sensitive (S) and thosewith SD and PDwere defined
as non-sensitive (NS). Major clinical parameters were collected
including age, gender, grade, Lauren’s type, primary site, chemother-
apy and targeted therapy, therapy cycle (3 weeks per cycle), RECIST,
TNM stage (according to the eighth edition of the American Joint
Committee on Cancer staging system), status of cancer recurrence or
progression, and status of survival. Archival FFPE tissues with at least
80% tumor purity of GC cases were taken from chemotherapy naive
patients. The detailed clinical informationof eachpatient is included in
Supplementary Data 1.
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HER2 evaluation
Immunohistochemistry (IHC) and in selected casesfluorescence in situ
hybridization (FISH) diagnostics have been implemented to confirm
the status of HER2 expression. For all patients, HER2 expression was
detected by IHC. IHC staining was carried out using the rabbit mono-
clonal anti-HER-2/NEU (4B5) antibody (working solution with the
concentration of 6μg/mL for IHC, Ventana Medical Systems, Inc.
Tucson, AZ, USA) as the primary antibody against HER2 on a Ventana
Benchmark XT automatic staining system, according to the manu-
facturer’s instructions. The amended HER2 IHC scoring system for
gastric cancer was used as the criteria for scoring the stained slides82.
For scoring the IHC image, Histoscore (H-score) was calculated by
multiplying the proportion of positive cells in the sample (0–100%) by
the average intensity of the positive staining (1+, 2+, or 3+) to obtain a
score ranging between 1 and 300 as previously described83,84. HER2
amplification levels weremeasured when the result of IHC was 2+. The
PathVysion HER2 DNA Probe kit (Abbot Laboratories, Des Plaines,
Illinois, USA) was used to perform FISH analysis, according to the
manufacturer’s protocol. Any case with IHC 3+ or IHC 2+/FISH+ was
considered to be HER2-positive, while cases with IHC 0 or IHC 1+ or
IHC 2+/FISH− were considered as HER2-negative (Supplementary
Data 1), according to criteria of the European Medicines Agency.

Cell line
Human HEK293T (Cat# CRL-11268 from ATCC; RRID: CVCL_QW54),
MKN45 (Cat# JCRB0254 from Japanese Collection of Research Bior-
esources (JCRB) Cell Bank, RRID: CVCL_0434), MGC803 (Cat# C6582
from Beyotime Biotechnology, RRID: CVCL_5334), and NCI-N87 (Cat#
CRL-5822 from ATCC; RRID: CVCL_1603), were obtained and cultured
in DMEM (GIBCO) with 10% FBS (GIBCO) in 5% CO2 at 37 °C. Cells
validation using short tandem repeat markers (STR) were performed
by Meixuan Biological Science and Technology Ltd. (Shanghai). In
detail, these cell lines were firstly tested cell species by PCR method
using extracted total genomic DNA, and examined by STR profiling.
Then, STR data were analyzed using the DSMZ (German Collection of
Microorganisms and Cell Cultures) online STR database (http://www.
dsmz.de/fp/cgi-bin/str.html). Cell lines were tested negative for
mycoplasma contamination. All cells were grown according to the
instruction.

Protein extraction and trypsin digestion of GC FFPE samples
The biopsy tumor FFPE samples derived from 206 therapy-naïve GC
patients were collected, and the tumor regions were determined by
pathological examination. For clinical sample preparation, sections
(10μm thick) from FFPE blocks were macro-dissected, deparaffinized
with xylene, and washed with ethanol. The ethanol was removed
completely and the sections were left to air-dry. For this purpose, a
hematoxylin-stained section of the same tumor was used as reference.
Areas containing 80%ormore tumorwere examined independently by
two expert gastrointestinal pathologists (C.X. and Y.H.).

Lysis buffer [0.1M Tris-HCl (pH 8.0), 0.1M DTT (Sigma, 43815),
1mM PMSF (Amresco, M145)] was added to the extracted tissues, and
subsequently sonicated for 1min (3 s on and 3 s off, amplitude 25%) on
ice. The supernatants were collected, and the protein concentration
was determined using the Bradford assay. The extracted tissues were
then lysedwith 4% sodiumdodecyl sulfate (SDS) and kept for 2–2.5 h at
99 °C with shaking at 1800 rpm. The solution was collected by cen-
trifugation at 12,000 × g for 5min. A fourfold volume of acetone was
added to the supernatant and kept in −20 °C for a minimum of 4 h.
Subsequently, the acetone-precipitated proteins were washed three
times with cooled acetone. Filter-aided sample preparation (FASP)
procedure was used for protein digestion85. The proteins were resus-
pended in 200μL 8M urea (pH 8.0) and loaded in 30 kD Microcon
filter tubes (Sartorius) and centrifuged at 12,800 × g for 20min. The
precipitate in the filter was washed three times by adding 200μL

50mM NH4HCO3. The precipitate was resuspended in 50μL 50mM
NH4HCO3. Protein samples underwent trypsin digestion (enzyme-to-
substrate ratio of 1:50 at 37 °C for 18–20h) in the filter, and then were
collected by centrifugation at 12,800 × g for 15min. Additional wash-
ing, twice with 200μL of water, was essential to obtain greater yields.
Finally, the centrifugate was pumped out using the AQmodel Vacuum
concentrator (Eppendorf, Germany).

LC-MS/MS
Peptide samples were analyzed on a Q Exactive HF-X Hybrid
Quadrupole-Orbitrap Mass Spectrometer (Thermo Fisher Scientific,
Rockford, IL, USA) coupled with a high-performance liquid chroma-
tography system (EASY nLC 1200, Thermo Fisher Scientific). Peptides,
re-dissolved in Solvent A (0.1% formic acid in water), were loaded onto
a 2-cm self-packed trap column (100-μm inner diameter, 3-μm
ReproSil-Pur C18-AQ beads, Dr. Maisch GmbH) using Solvent A, and
separated on a 150-μm-inner-diameter column with a length of 15 cm
(1.9-μm ReproSil-Pur C18-AQ beads, Dr. Maisch GmbH) over a 75min
gradient (Solvent A: 0.1% formic acid in water; Solvent B: 0.1 % formic
acid in 80 % ACN) at a constant flow rate of 600 nL/min (0–75min,
0min, 4% B; 0–10min, 4–15% B; 10–60min, 15–30% B; 60–69min,
30–50% B; 69–70min, 50–100% B; 70–75min, 100% B). The eluted
peptides were ionized under 2 kV and introduced into the mass
spectrometer. MS was operated under a data-dependent acquisition
mode. For theMS1 Spectra full scan, ionswithm/z ranging from300 to
1400 were acquired by Orbitrap mass analyzer at a high resolution of
120,000. The automatic gain control (AGC) target value was set as
3E +06. The maximal ion injection time was 80ms. MS2 Spectra
acquisition was performed in top-speed mode. Precursor ions were
selected and fragmentedwith higher energy collision dissociationwith
a normalized collision energy of 27%. Fragment ions were analyzed
using an ion trap mass analyzer with an AGC target value of 5E + 04,
with amaximal ion injection timeof 20ms. Peptides that triggeredMS/
MS scans were dynamically excluded from further MS/MS scans for
12 s. A single-run measurement was kept for 75min. All data were
acquired using Xcalibur software v2.2 (Thermo Fisher Scientific).

Peptide and protein identification
MS raw files were processed using the Firmiana proteomics
workstation86. Briefly, raw files were searched against the NCBI human
Refseq protein database (released on04-07-2013; 32,015 entries) using
the Mascot search engine (version 2.4, Matrix Science Inc). The mass
tolerances were: 20 ppm for precursor and 50 mmu for product ions
collected by Q Exactive HF-X. Up to two missed cleavages were
allowed. The database searching considered cysteine carbamido-
methylation as a fixed modification, and N-acetylation, and oxidation
of methionine as variable modifications. Precursor ion score charges
were limited to +2, +3, and +4. For the quality control of protein
identification, the target-decoy-based strategy was applied to confirm
the FDR of both peptide and protein, which was lower than 1%. Per-
colator was used to obtain the quality value (q-value), validating the
FDR (measured by the decoy hits) of every peptide-spectrum match
(PSM), whichwas lower than 1%. Subsequently, all the peptides shorter
than seven amino acidswere removed. The cutoff ion score for peptide
identification was 20. All the PSMs in all fractions were combined to
comply with a stringent protein quality control strategy. We employed
the parsimony principle and dynamically increased the q-values of
both target and decoy peptide sequences until the corresponding
protein FDR was <1%. Finally, to reduce the false positive rate, the
proteins with at least one unique peptide were selected for further
investigation.

Label-free-based MS quantification of proteins
The one-stop proteomic cloud platform “Firmiana” was further
employed for protein quantification. Identification results and the raw
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data from the mzXML file were loaded. Then for each identified pep-
tide, the extracted-ion chromatogram (XIC) was extracted by search-
ing against the MS1 based on its identification information, and the
abundance was estimated by calculating the area under the extracted
XIC curve. For protein abundance calculation, the nonredundant
peptide list was used to assemble proteins following the parsimony
principle. The protein abundance was estimated using a traditional
label-free, intensity-based absolute quantification (iBAQ) algorithm87,
which divided the protein abundance (derived from identified pep-
tides’ intensities) by the number of theoretically observable peptides.
A match between runs88 was enabled to transfer the identification
between separate LC-MS/MS runs based on their accurate mass and
retention time after retention time alignment. We built a dynamic
regression function based on the commonly identified peptides in
tumor samples. According to correlation value R2, Firmiana chose
linear or quadratic functions for regression to calculate the retention
time (RT) of corresponding hidden peptides, and to check the exis-
tenceof theXICbased on them/z and calculatedRT. Subsequently, the
fraction of total (FOT), a relative quantification value was defined as a
protein’s iBAQdividedby the total iBAQof all identifiedproteins in one
experiment, and was calculated as the normalized abundance of a
particular protein among experiments. Finally, the FOT values were
further multiplied by 105 for ease of presentation, and missing values
were assigned 10−527.

Quality control of the mass spectrometry data
To quality control the MS performance, the HEK293T cell lysate was
measured every three days as the quality control standard. The quality
control standard was digested and analyzed using the same method
and conditions as the GC samples. Pearson’s correlation coefficient
was calculated for all quality control runs using theR statistical analysis
software v.3.5.1 (Supplementary Fig. 1b). The average correlation
coefficient among the standards was 0.964, and the maximum and
minimum values were 1 and 0.87, respectively. The log10 transformed
FOTs for eachGCsample (SupplementaryFig. 1d)wereplotted to show
consistency of data quality. The dynamic range of protein identifica-
tion of each sample was shown according to the descending sort of
protein abundance with a range of 6369–8119 proteins identified in
each sample. The protein with highest intensity has theminimum rank
number, representing the highest rank; the protein with lowest
intensity has the maximum rank number, representing the maximum
identification number in one sample.

The proteomic subtypes generated by consensus clustering
analysis and their biological function
The protein expression matrix of the gastric cancer cohort was used to
identify the proteomic subtypes using the consensus clustering
method implemented in the R package ConsensusClusterPlus v.3.889.
All FOTs < 10−5 were replaced with 10−527. Prior to the consensus clus-
tering analysis, we performed a log10 transformation and median cen-
tered normalization to facilitate the interpretation of the expression
data. Then, the top 1,000 proteins with the highest median absolute
deviation were subjected to ConsensusClusterPlus in R v.3.5.1 for
unsupervised consensus clustering. The cluster analysis was performed
with the following setting: maxK = 10, reps = 10,000, pItem=0.8,
pFeature = 1, clusterAlg = “hc”, distance = “pearson” for the clustering
runs. A preferred cluster result was selected by considering the profiles
of the consensus cumulative distribution function (CDF) and delta area
under the CDF curve for clustering solutions between 2 and 10 clusters.
As shown in Supplementary Fig. 2a, c, the rank survey profiles of the
consensus CDF and the delta area under the CDF curve, along with the
consensus membership heat maps, indicated a four-subtype solution
for 206 cases and 179 cases of GC using the proteomic data. This
showed clear separation and the significant prognostic differences (OS)
among 4 clusters (Fig. 2c and Supplementary Fig. 2b). To generate the

abundance heatmap shown in Fig. 2a, the GC samples in each subtype
were rearranged from G-I to G-IV, using the signature protein abun-
dancematrix enriched in the signature pathways for each subtype. The
signature proteins of each subtype defined here should meet the fol-
lowing criteria: (1) detected in at least 10% of the subtype, (2) differ-
entially expressed of the subtype compared with other subtypes with
fold change >2 and P <0.05 (log10-transformed FOT, two-sided Stu-
dent’s t test). KEGG90 pathway enrichment was performed to determine
the biological function of proteomic subtypes.

Correlation between proteomic subtype and clinical features
The association between the clinical information and proteomic sub-
types was examined using Fisher’s exact test for categorical data,
including gender, grade, Lauren’s type, primary site, TNM stage,
HER2 status, and response. A two-sided log rank test andKaplan–Meier
survival curves were applied to compare the prognosis among the four
proteomic subtypes (G-I to G-IV) using GraphPad Prism 8 software. To
evaluate the prognostic power of the proteomic subtypes, we applied
univariable Cox analysis andmultivariableCox analysis of the subtypes
with known clinical covariates (such as grade and Lauren’s type)
(Supplementary Table 3). P-values < 0.05 were considered as sig-
nificantly different. OS was used as primary endpoint. For proteomic
subtype and clinical variables, hazard ratio was calculated from Cox
proportional hazards regression analysis. P-values < 0.05 were con-
sidered as significantly different. OS was used as primary endpoint.
Clinical variables analyzed with P-values < 0.05 using univariate ana-
lysis was chosen to enter Cox regression multivariate analysis. In the
multivariate analysis, proteomics subtyping could also serve as an
independent predictive factor after adjusting for clinical covariates.

Validation of the FDGC subtyping in other independent cohorts
We validated the FDGC subtyping identified in our cohort using other
dependent gastric cancer cohorts (BPRC cohort, EOGC, and ACRG
cohort) using Rapidminer 9.6.0 (RapidMiner Inc, Boston, USA). Poly-
nomial by Binomial Classification operator uses a binomial classifier
and generates binomial classification models for different classes and
then aggregates the responses of these binomial classification models
for classification of polynomial label. The Fast large margin operator
using logistic regression, applied in the subprocess of the Polynomial
by Binomial Classification operator, was employed to build the pre-
diction model based on signature proteins of each subtype in the
FDGC cohort.

The evaluation of MSI/MSS characteristics
We calculated the gene expression signature scores using the average of
log intensity (also known as the geometric average) of expression of
genes in the signature.We compared the association of FDGC subtyping
in our cohort and ACRG cohort with the pre-defined published gene
expression signatures relevant for MSI/MSS35 examined by ANOVA test.

The single sample gene set enrichment analysis (ssGSEA)
All scores were inferred by single sample gene set enrichment analysis
(ssGSEA) method from the GSVA R package (v1.34.0) based on the
protein expression matrix. The genset (c2.all.v7.4.symbols) of Mole-
cular Signature Databse(MSigDB) was used to ssGSEA91. The para-
meters: min.sz = 10, max.sz = 300 were set and other parameters were
used default.

Differential protein and pathway analysis in subcohorts
The protein expression matrices of the DOS, XELOX, XELOX+HER2,
andHER2 subcohorts were used to perform the differential expression
analysis of the sensitive group (S) and the non-sensitive group (NS).
The overrepresented proteins of S and NS of subcohorts were defined
as proteins differentially expressed in the S and NS groups (NS/S > 2 or
<0.5); the significantly differentially expressed proteins was defined as
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proteins with more than twofold change and Wilcoxon rank-sum test
with a Benjamini-Hochberg (BH) adjusted p value cutoff (BH p
value < 0.05) (Supplementary Data 6 to 9). Pathway enrichment ana-
lysis of the overrepresented proteins was performed by KEGG90 data-
bases. Pathways with a P-value < 0.05 were regarded to be significant
enrichment. Gene set enrichment analysis (GSEA) was also used for
pathway enrichment analysis92. GSEA analysis in each proteomic sub-
type using the clusterProfiler R package (v3.18.1)93. GSEA evaluates and
determines whether a priori defined sets of genes show statistically
significant, cumulative changes in gene expression that are correlated
with a specific phenotype. Samples grouped according to S and NS
were subjected to GSEA, respectively. Molecular Signatures Database
(MSigDB) of hallmark gene sets (H), curated gene sets (C2) and GO
gene sets (C5) were used for enrichment analysis. A P value of 0.05 was
used as a cutoff. The enrichment score (ES) in GSEA was calculated by
first ranking theproteins from themost to least significantwith respect
to S and NS, the entire ranked list was then used to assess how the
proteins of each gene set were distributed across the ranked list.

The assessment of drug sensitivity
Gene expression profiles of GC cell lines were from Expression 21Q2
Public dataset (https://depmap.org/portal/download/?releasename=
DepMap+Public+21Q2&filename=CCLE_expression.csv). These RNA-
Seq files were aligned with STAR and quantified with RSEM, then TPM-
normalized and log2(TPM+ 1) transformation. Reported values of
geneswere log2 (TPM+ 1). Thedrug sensitivity todocetaxel (BRD:BRD-
K30577245-001-04-3), oxaliplatin (BRD: BRD-K78960041-001-03-2),
and 5-fluorouracil (BRD: BRD-K24844714-001-24-5) using Drug sensi-
tivity (PRISM Repurposing Primary Screen) 19Q4 dataset filtered by
gastric cancer cell lines. Reported values of drug sensitivity were log2
[fold change (treatment group vs control group)]. The Pearson’s cor-
relation of gene expression value [log2 (TPM+ 1)] and drug sensitivity
[log2 fold change] were calculated. All datasets were downloaded from
DepMap database (https://depmap.org/portal/).

Immune cell type composition
The abundance of 64 different cell types were computed via xCell
based on proteomic profiles94. The Supplementary Data 5 contains the
final score computed by xCell of different cell types.

Construction and validation of predictive models for therapy
response
Multiple logistic regression analysis was used to construct the ther-
apeutic response prediction model based on the significantly differ-
entially expressed proteins in S and NS of DOS, XELOX, and
HER2 subcohorts using in theR softwarev3.5.1. Andbackward stepwise
method was utilized to feature selection. Samples was randomly divi-
ded into 80% of individuals (the training set) and the remaining 20%
(the testing set)95. Moreover, the diagnostic value of this model was
verified usingROC analysis (pROCRpackage version 1.16.2 andCaret R
package version 6.0–86). Sensitivity, specificity, accuracy, and AUC
were used to determine predictive values. The predictive model of
XELOX cohort was validated in an external clinically annotated DGC
cohort (the Beijing Proteome Research Center) accessible in the PRIDE
Archive under the accession number PXD00884027.

Targeted PRM analysis
Using the library search results, a set of target peptides that unique to
ECMproteins (THSD4, SRPX2, TGFBI, THBS1, and LAMB2), DSG/DNSG-
sig (ATP5S, C11orf31, CDC42SE2, CHP2, and AHR), XSG/XNSG-sig
(RFC2, NIT1, RAB32, FLG2, FNBP1, GCLC, DYNLRB1, RBBP7, LPXN,
LMAN2, NUB1, WAS, FAM82B, and MYCBP), and HSG/HNSG-sig
(CAPN5, BAIAP2, SRPX2, COMMD4, SCIN, DSC2, SEPSECS, TECPR1,
DDX60L,NPL, SLC39A4, and IRF6) see SupplementaryData 3 and 11 for
the list of targeted peptides) was selected and parallel reaction

monitoring (PRM) method was designed. Besides, house-keeping
proteins, such as VCP, RPLP0, PSMB4, were also included for the
reference. Equal amount of tumor tissue from each sample (an inde-
pendent cohort with 60 gastric cancer FFPE samples, including
30 sensitive patients and 30 non-sensitive patients) was digested as
described in the part of profiling preparation. Peptide samples were
injected into the Q Exactive HF-X Hybrid Quadrupole-Orbitrap Mass
Spectrometer (Thermo Scientific) operating in PRM mode with quad-
rupole isolation and HCD fragmentation. The full MS mode was mea-
sured at resolution60,000withAGC target valueof 3E6 andmaximum
IT of 20ms, with scanning range of 300 to 1400m/z. Target ions were
submitted to MS/MS in the HCD cell (1.6m/z isolation width, 27%
normalized collision energy). 60 PRM events were performed after
MS1 scanning, at resolution 15,000 with AGC target value of 1E6 and
maximum IT of 25ms. Separation was achieved on a 150-μm-inner-
diameter column with a length of 15 cm (1.9-μm ReproSil-Pur C18-AQ
beads, Dr. Maisch GmbH) in an Easy 1200 nLC HPLC system (Thermo
Scientific). Solvent A was 0.1 formic acid in water and solvent B was
0.1% formic acid, 80% ACN in water. Peptides were separated at 600
nL/min across a gradient ranging from 4 to 100% B over 75min
(0–75min, 0min, 4% B; 0–10min, 4–15% B; 10–60min, 15–30% B;
60–69min, 30–50% B; 69–70min, 50–100% B; 70–75min, 100% B).

Rawdata was searched by Skyline-daily (4.2.1.19004, University of
Washington, USA). The proteins were quantified with the fragment
total area reported by Skyline-daily. We selected peptides and tested
their stability of signal and shape of peaks in the pool sample for final
quantification, and referred to the ranking offered by skyline.

Plasmid construction
For the analysis of CTSE in tumor proliferation and tumor response to
drug treatment, we constructed stable cell lines overexpressing CTSE-
FLAG. The cDNA of CTSE was cloned into the pCDH-CMV-EF1-PURO
vector via the unique XbaI site and the neighboring EcoRI site. For
convenient detection, a FLAG-tag encoding sequence (GATTA
CAAGGATGACGACGATAAG) was inserted before the stop codon
(TAG) to express the CTSE-FLAG fusion protein.

The primers used for plasmid construction as following:
Forward primer (5′−3′): GCTCTAGAATGGAATACTTCGGCAC

TATC, Reverse primer (5′−3′):
GGAATTCTCACTTATCGTCGTCATCCTTGTAATCAGGTCTGTCA

GACAGGCA.
As for TKTL1, PCR-amplified TKTL1 was cloned into pRK7-Flag

vector between HindIII and EcoRI, using the primers as following:
Forward primer (5′−3′): CCCAAGCTTATGGCGGATGCTGAGGC

GAGG, Reverse primer (5′−3′): CGGAATTCTTAGTTCAGCAACATGCA
TTTCACGGC78.

To explore the association of THSD4with tumor proliferation and
drug resistance, the cDNA of THSD4 was cloned into the pcDNA3.1(b)-
Flag vector via the unique NheI site and the neighboring EcoRI site.

Forward primer (5′−3′): gggagacccaagctggctagcATGGTTTCCCAT
TTCATGGGG, Reverse primer (5′−3′): tgctggatatctgcagaattcTCTG
CTCCCCAGGAAGCC).

Lentivirus production and cell transduction
ForCTSE, the double-strandedDNAwas cloned into the pCDH-CMV-EF1-
PURO vector; 8μg of packaging plasmids pMD2.G: psPAX2 (1:3) and
8μg of Lenti-vector containing the target gene were co-transfected into
2.5 × 106 HEK-293T cells using Lipofectamine 2000 transfection reagent
(Invitrogen, 11668-019). The media containing the lentivirus particles
were collected after 24 and 48h, separately, and centrifuged at 1500× g
for 10min. These 24-h and 48-h supernatants were used independently
to infect MKN45 and MGC803 cells in the presence of 10μg/mL hex-
adimethrine bromide (Sigma, H9268) for 12 h. After infection, cells were
cultured and selected with puromycin for the generation of stably
overexpressed cells. Empty pCDH vector was used as a negative control.
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For TKTL1 and THSD4, the detailed process of cell transfection was
described as the previous publication78.

Proteome profiling and differential analysis of GC cell lines
MKN45 cells were divided into four groups according to the following
experimental conditions: scramble vector (Vector OE) and CTSE-FLAG
overexpression (CTSE OE) with or without docetaxel treatment. Each
group contained at least three biological replicates. The protein con-
centration was determined using the Bradford assay. Cells were boiled
in a 99 °C metal bath for 30min with 100μL of 50mM ABC buffer
(ammonium bicarbonate) containing SDS at a final concentration of
4%. Protein samples underwent trypsin digestion (enzyme-to-substrate
ratio of 1:50 at 37 °C for 18–20h). All peptide samples were desalinated
using a C18 column (50% acetonitrile and 0.1% formic acid) and then
analyzed using a Q Exactive HF-X Hybrid Quadrupole-Orbitrap Mass
Spectrometer (Thermo Fisher Scientific, Rockford, IL, USA) coupled
with a high-performance liquid chromatography system (EASY nLC
1200, Thermo Fisher). MS raw files generated by LC-MS/MS were
searched against the NCBI human Refseq protein database (released
on 04-07-2013; 32,015 entries) using MaxQuant (version 1.6.2.10)
software enabled with Andromeda search engine. Protease was Tryp-
sin/P. Up to 2 missed cleavages were allowed. Carbamidomethyl (C)
was considered as a fixed modification. For the proteome profiling
data, variable modifications were oxidation (M) and acetylation (Pro-
tein N-term). We screened the differentially expressed proteins in
CTSE-overexpressing and controlMKN45 cells without DOC treatment
(FC > 1.5 or 0.7) or with DOC treatment (FC> 2 or 0.5). Pathway
enrichment analysis was performed according to KEGG database.

Western blotting
For western blotting, cells were lysed with 0.5% NP-40 buffer con-
taining 20mM Tris-HCl (pH 8.0), 100mM NaCl, 1mM EDTA, 1mM
PMSF, and NONIDET P-40 SUBSTITUTE. The protein concentration
was quantified using Bradford assay. For each sample, 30 µg of
protein extract was separated using 10% sodium dodecyl
sulfate–polyacrylamide gel electrophoresis and transferred to nitro-
cellulose membranes. After blocking with 5% milk (BD Science) solu-
tion in TBST (Tris buffered saline with Tween) for 1–2 h, the
membranes were incubated with TBST containing the appropriate
primary antibodies overnight at 4 °C, followed by a 2 h incubationwith
horseradish peroxidase-conjugated secondary antibodies. The target
protein bands were detected using the Chemiluminescent detection
reagent. The mouse monoclonal anti-β-actin antibody (1:10,000,
Genscript, catalog No: A00702), the rabbit polyclonal anti-THSD4
antibody (1:2000, ABclonal, catalog No: A17773), the rabbit polyclonal
anti-CTSE antibody (1:2000, Signalway Antibody, catalog No: 35666),
the rabbit polyclonal anti-TKTL1 antibody (1:1000, Novus Biologicals,
catalog No: NBP1-31674), the rabbit polyclonal anti-alpha-tubulin
antibody (1:2000, Proteintech, catalog No: 11224-1-AP), and the rab-
bit polyclonal anti-beta-tubulin antibody (1:2000, Proteintech, catalog
No: 10094-1-AP) were used, and their specificity was confirmed by
western blotting. Western blot quantification was performed using
ImageJ software (Version 1.52a,National Institutes ofHealth,MD,USA).

Proliferation assay
Cell proliferation was assessed using the Cell Counting Kit-8 (CCK8;
Beyotime, C0046). The gastric cancer MKN45, MGC803, and NCI-N87
cell lines were seeded into 96-well plates (~2000 cells per well). The
cells were treated with different doses of the chemotherapy treat-
ments [DOS, XELOX, docetaxel (Aosaikang Pharm Co, Ltd, Jiangsu,
China), 5-fluorouracil (Shanghai Xudong Haipu Pharmaceutical Co,
Ltd, Shanghai, China), oxaliplatin (Jiangsu Hengrui Medicine Co, Ltd,
Jiangsu, China), trastuzumab (Shanghai Roche Pharmaceutical Co.,
Ltd, Shanghai, China), and buparlisib (MedChemExpress Co., Ltd,
Shanghai, China)] for 72 h. CCK8, at a final concentration of 10%, was

added to each well and incubated for 1.5 h. Absorbance was measured
at 450 and 630nm and the data were analyzed using GraphPad Prism
8 software. The drug sensitivity was estimated by their half-maximal
inhibitory concentration (IC50) values. The IC50 values were calcu-
lated as the concentrations of single agent.

Immunohistochemistry staining and evaluation
A standard immunohistochemistry (IHC) protocol was followed to
stain the tumor tissue samples using the rabbit polyclonal antibody
against CTSE (1:100, Signalway Antibody, catalog No: 35666), and the
rabbit polyclonal antibody against TKTL1 (1:500, Novus Biologicals,
catalog No: NBP1-31674), the rabbit antibody monoclonal against CD4
(1:250, GeneTech, catalog No: GT219107), the mouse monoclonal
antibody against CD8 (1:300, Leica, catalog NO: PA0183). IHC evalua-
tion was analyzed using an IHC profiler compatible plugin with inte-
grated options for the quantitative analysis of digital IHC images
stained for cytoplasmic or nuclear proteins96. Moreover, the intensity
of the cytoplasmic staining and the percentage of positively stained
tumor cells were also scored numerically.

Flow cytometric analysis of the cell cycle and apoptosis
For cell cycle analysis, ~106 cells were fixed in 4 °C pre-cooled 70%
ethanol overnight at 4 °C. Following threewashes, cells were incubated
for 1 h at 37 °C in PBS with DNase-free RNase A (100mg/mL) and
propidium iodide (50mg/mL). Next, the cells were analyzed using a
Beckman Coulter flow cytometer (Beckman Coulter, Brea, CA, USA).
Data were acquired and analyzed using FlowJo version 10.7.1 (Becton
Dickinson Life Sciences). Data are presented as means ± SD of three
independent experiments.

For cell apoptosis analysis, ~106 cells were harvested from culture
dishes using trypsin (without EDTA). After two washes with cold PBS,
cells were resuspended in 100 µL 1 × Binding Buffer (Annexin V-FITC/PI
Apoptosis Detection Kit, YEASEN, Shanghai, China). Cells were stained
with 5 µL annexin V-FITC and 10 µL PI staining solution (Annexin V-
FITC/PI Apoptosis Detection Kit) in the dark, at room temperature for
15min. Following this incubation, 400 µL 1 × Binding Buffer was added
to each sample, and then kept on ice until analysis (within 1 h).

Metaphase spreads
In order to count the chromosomes of a single cell in metaphase,
MKN45 cells were incubated with 50ng/mL colchicine (Sangon Bio-
tech, A600322-0100) at 37 °C for 2 h. Cells were harvested and sus-
pended in 8mL prewarmed hypotonic buffer (0.075mol/L KCl) at
37 °C for 20min which induced cellular distention. After centrifuga-
tion, cells were fixed with Carnoy’s buffer (methanol: acetic acid in 3:1
ratio) at 37 °C for 20min. Fixed cells were centrifuged and then
resuspended in Carnoy’s buffer, twice. The final supernatants, con-
taining the fixed mitotic cells, were dropped onto ice-cold slides and
dried for 10min. Slides were stainedwith 1μg/mLDAPI (Sigma, D8417)
for 1min followedbywashingwith PBS. Cellswere imagedusing aZeiss
LSM 880 (Carl Zeiss, Jena, Germany) confocal microscope using an oil
63 × 1.4 NA objective lens.

Immunocytochemistry and immunofluorescence
MKN45 cells were seeded into glass bottom culture dishes to reach
70–80% confluency. The cells were fixed using 4% paraformaldehyde
in PBS (pH 7.4) for 10min at room temperature, followed by three
5-minwashes with ice-cold PBS. Then, the samples were permeabilized
with PBS containing0.1%TritonX-100 for 10min at room temperature,
and washed with PBS three times for 5min. Cells were incubated with
1% BSA, 22.52mg/mLglycine in PBST (PBS +0.1% Tween 20) for 30min
at room temperature to block unspecific binding of the antibodies,
prior to incubation with the diluted antibody in 1% BSA in PBST over-
night at 4 °C. After three washes in PBS, the samples were incubated
with the fluorescent-labeled secondary antibody in 1% BSA for 1 h at
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room temperature in the dark. After three further washes in PBS, the
samples were incubated with 1μg/mL DAPI (Sigma, D8417) for 1min.
Finally, the samples were washed three times with PBS, for 5min each
wash, in the dark. Cells were imaged using a Zeiss LSM 880 (Carl Zeiss)
confocal microscope using an oil 63 × 1.4 NA objective lens.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The rawmass spectrometry (MS) proteomicsdata andparallel reaction
monitoring (PRM)-MS proteomics data generated in this study have
been deposited in the ProteomeXchange Consortium (dataset identi-
fier: PXD024255) via the iProX partner repository (http://www.iprox.
cn/)97 under Project ID IPX0002116000. All the H&E-stained slides of
tumor tissues in this study were deposited in Mendeley (https://data.
mendeley.com/datasets/cv6ytf2fz7/1). The gene expression profiles of
gastric cancer cell lines associated with drug sensitivity could be
accessed at DepMap data portal (https://depmap.org/portal/). The
gene expression profiles of gastric cancer cell lines in public dataset
Expression 21Q2 in this study are available in the Depmap database
(https://depmap.org/portal/download/?releasename=DepMap+Public
+21Q2&filename=CCLE_expression.csv). HPA IHC Staining Data could
be accessed at https://www.proteinatlas.org/. NCBI human Refseq
protein database could be accessed at https://www.ncbi.nlm.nih.gov/
refseq/. Source data are provided with this paper. The remaining data
are available within the Article, Supplementary Information or Source
Data file. Source data are provided with this paper.
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