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Coherent interaction-free detection of
microwave pulses with a superconducting
circuit

Shruti Dogra 1 , John J. McCord 1 & Gheorghe Sorin Paraoanu 1

The interaction-free measurement is a fundamental quantum effect whereby
the presence of a photosensitive object is determined without irreversible
photon absorption. Here we propose the concept of coherent interaction-free
detection and demonstrate it experimentally using a three-level super-
conducting transmon circuit. In contrast to standard interaction-free mea-
surement setups, where the dynamics involves a series of projection
operations, our protocol employs a fully coherent evolution that results, sur-
prisingly, in a higher probability of success. We show that it is possible to
ascertain the presence of a microwave pulse resonant with the second tran-
sition of the transmon, while at the same time avoid exciting the device onto
the third level. Experimentally, this is done by using a series of Ramsey
microwave pulses coupled into the first transition andmonitoring the ground-
state population.

Since the inception of quantum mechanics, the quest to understand
measurements has been a rich source of intellectual fascination. In
1932 vonNeumann provided the paradigmatic projectivemodel1 while
in recent times a lot of research has been done on alternative forms
and generalizations such as partial measurements and their reversal2–5,
weak measurements6–9 and their complex weak values10,11, observation
of quantum trajectories12,13, and simultaneous measurements of non-
commuting observables14–16.

The interaction-free measurements belong to the class of quan-
tum hypothesis testing, where the existence of an event (for example
the presence of a target in a region of space) is assessed. In a nutshell,
the interaction-free detection protocol17 provides a striking illustration
of the concept of negative-results measurements of Renninger18 and
Dicke19. The very presenceof anultrasensitive object in oneof the arms
of a Mach-Zehnder interferometer modifies the output probabilities
even when no photon has been absorbed by the object. The detection
efficiency can be enhanced by using the quantum Zeno effect20

through repeated no-absorption “interrogations” of the object21–24 – a
protocol which we will refer to as “projective”. Other detection
schemes in the hypothesis testing class have been advanced, most
notably quantum illumination25,26, ghost imaging – where the imaging

photons have not interacted with the imaged object27–29, and imaging
with undetected photons30,31. The interaction-free concept has tou-
ched off a flurry of research in the foundations of quantummechanics,
for example the Hardy paradox32, non-local effects between distant
atoms exchanging photons33, and quantum engines34.

Here we describe and demonstrate experimentally a hypothesis-
testing protocol that employs repeated coherent interrogations
instead of projective ones. In this protocol, the task is to detect the
presence of a microwave pulse in a transmission line using a
resonantly-activated detector realized as a transmon three-level
device. We require that at the end of the protocol the detector has
not irreversibly absorbed the pulse, as witnessed by a non-zero
occupation of the second excited state. Clearly this task cannot be
achieved with a classical absorption-based detector (e.g., a bol-
ometer) or by using a simple two-level system as a detector. Our
protocol is fundamentally different from the quantum Zeno
interaction-freemeasurement: while in the latter case themechanism
of detection is the suppression of the coherent evolution by pro-
jection on the interferometer path that does not contain the object,
in our protocol the evolution of the state of the superconducting
circuit remains fully coherent. Surprisingly, this coherent addition of
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amplitude probabilities results in a higher probability of successful
detection.

This concept can be implemented in other experimental platforms
where a three-level system is available. We note that projective
interaction-free measurements have found already applications
in optical imaging35, counterfactual communication36–41, ghost-
imaging42,43, detection of noise in mesoscopic physics44, cryptographic
key distribution45,46, andmeasurement-driven engines47. We expect that
our coherent version will be similarly adapted to these nascent fields.

In our experiments, we realize a series ofNRamsey-like sequences
by applying beam-splitter unitaries SN to the lowest two energy levels
of a superconducting transmon. This creates the analog of the stan-
dard Mach-Zehnder spatial setup in a time-domain configuration48.
Themicrowave pulses of strength θj that we wish to detect –which we
will refer to as B-pulses – couple resonantly into the next higher
transition, see Fig. 1. Specifically, let us denote the first three levels of
the transmon by ∣0i, ∣1i, and ∣2i and the asymmetric Gell-Mann gen-
erators of SU(3) by σy

kl = � i∣k
�
l
�
∣+ i∣l

�
k
�

∣, with k, l∈ {0, 1, 2}. Micro-
wave pulses applied resonantly to the 0−1 and 1−2 transitions
respectively result in unitaries SN = exp½�iπσy

01=2ðN + 1Þ� and
BðθjÞ= expð�iθjσ

y
12=2Þ (See Supplementary Information). The protocol

employs a series of j = 1,N Ramsey segments, each containing a B-pulse
with arbitrary strength θj, overall producing the evolution
UNðθ1,:::,θNÞ=

QN
j = 1½SNBðθN + 1�jÞ�SN = SN

QN
j = 1½BðθN + 1�jÞSN �. Note that

the absence of B-pulses results in ½SN �N + 1 = � iσy
01 + ∣2i 2h ∣, acting non-

trivially only on the subspace ∣0i,∣1i – therefore at the end of the
sequence the entire ground-state population is transferred onto the
first excited state ∣0i ! ∣1i. The goal is to ascertain the presence of B-
pulses without absorbing them, that is, without creating excitations on
level ∣2i of the transmon.

To understand the interaction-free physics in this setup, consider
first a single sequence N = 1. The transmon is initialized in the ground
state ∣0i, which, when acted upon by S1 (π/2 rotation around the y-axis
in the f∣0i,∣1ig subspace, corresponding to a 0.5: 0.5 beam-splitter),
drives the qubit into a coherent equal-weight superposition state
ð∣0i+ ∣1iÞ=

ffiffiffi
2

p
. Next, the application of B(θ) (here we take θ1 ≡ θ) and

the subsequent application of S1 results in the state
S1BðθÞS1∣0i= sin2ðθ=4Þ∣0i+ cos2ðθ=4Þ∣1i+ ð1=

ffiffiffi
2

p
Þ sinðθ=2Þ∣2i, while if

B(θ) is not present the final state is ∣1i. By measuring dispersively the
state of the transmon and finding it in the state ∣0i, we can successfully
ascertain the presence of the B pulse without irreversibly absorbing it.
On the other hand, if the transmon is found on ∣1i we cannot conclude
anything, since this is also the result for the situation when the pulse is
not present. For the ideal dissipationless case we have
p0ðθÞ= sin4ðθ=4Þ, p1ðθÞ= cos4ðθ=4Þ and p2ðθÞ= ð1=2Þsin2ðθ=2Þ. For θ =π
this implies that we have p0(π) = 25% chance of detecting the B-pulse
without absorption, leaving p2(π) = 50% as the probability of failure
due to absorption.

Our protocol generalizes this concept to a series of N ≥ 1 sequen-
ces, see Fig. 1, ending with detection by state tomography operators
D0 = ∣0i 0h ∣, D1 = ∣1i 1h ∣, and D2 = ∣2i 2h ∣, which yield the success prob-
ability p0 = 〈D0〉, the probability of inconclusive results p1 = 〈D1〉, and the
probability of absorption p2 = 〈D2〉. In addition, for a given string of θj’s,
as a key figure of merit we define the quantities relevant for the con-
fusionmatrix, as employed in standardpredictive analytics. ThePositive
Ratio, PR =p0/[p0 +p1], is the fraction of cases where the interaction-
free detection of B is achieved strictly speaking without irreversible
absorption. Its counterpart is the Negative Ratio, NR= p1/(p0 +p1), i.e.,
the fraction of experiments that are not accompanied by B absorption,
but forwhichwe cannot ascertainwhether aB-pulsewaspresent or not.
In addition, the so-called interaction-free efficiency is sometimes uti-
lized (see Supplementary Notes 1 and 2), which for the coherent case
reads ηc =p0/(p0 +p2).

We obtain considerable enhancement of the success probabilities
and efficiencies when detecting the pulses using this arrangement.

Results
As described in the previous section, we use a transmon circuit with a
dispersive readout scheme that allows us to measure simultaneously
the probabilities p0, p1, and p2. The 0−1 and 1−2 transitions are driven
by two pulsed microwave fields, respectively implementing the SN
unitaries and the B-pulses. Details of simulations and a description of
the experimental setup are presented in Methods.

Single B−pulse (N= 1)
The N = 1 case is important since it is the simplest realization of our
concept, allowing us to present all the relevant experimental data and
the most important figures of merit in a straightforward manner. The
main results are shown in Fig. 2 and Fig. 3. Fig. 2a presents the prob-
abilities p0, p1, and p2 obtained experimentally, aswell as a comparison
with the simulated values and the ideal case. First, one notices that the

MeasurementReadout
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Fig. 1 | Coherent interaction-free detection. Schematic of the protocol, where SN
and B microwave pulses are shown in blue and red, respectively, along with the
probe pulse for readout.
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Fig. 2 | Probabilities and associated positive/negative ratios for N = 1.
a Probabilities vs. strength for a single B-pulse in our three-level system. The
experimentally averaged profiles for the ground state (p0), first excited state (p1)
and second excited states (p2) are represented by blue, red and black colored
continuous lines respectively. The corresponding colored dot-dashed lines are the
simulated curves including decoherence and pulse imperfections, while the thin
dotted lines show the ideal case. Each experimental curve is accompanied by a
shaded region presenting the standard deviation of the mean obtained from 16
replicas of the same experiment. b Corresponding to each B-pulse strength,
PR(θ) = p0(θ)/[p0(θ) + p1(θ)] and NR(θ) = p1(θ)/[p0(θ) + p1(θ)] obtained from the
experiment are shown with purple circular markers and green square markers
respectively, closely followed by the simulated purple and green continuous
curves. The thin dotted lines represent the respective ideal cases, with no deco-
herence andwithout any experimental imperfections. The continuous yellow curve
stands for the norm of the system subspace: p0(θ) + p1(θ) = 1 − p2(θ).
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results are not invariant under θ→ θ + 2π, which is intrinsically related
to the lack of invariance of spin-1/2 states under 2π rotations. Indeed,
Bðθ+2πÞ= expð�iπσy

12ÞBðθÞ acts by changing the sign of the prob-
ability amplitudes on the subspace f∣1i,∣2ig, which subsequently alters
the interference pattern after the second beam-splitter unitary. Then,
we see that at θ =π, 3π the experimentally obtained probability for the
interaction-free detection is 0.26; the same would also be expected in
the projective case17(See Supplementary Information.).

FromFig. 2 we also notice that at θ = 2π the probability p0 reaches
a maximum (1 in the ideal case), while p1 and p2 are minimized (zero in
the ideal case). This also happens if beam-splitters with y-axis rotation
angles other than π/2 are used. It is a situation that has no classical
analog: we are able to detect with near certainty a pulse that does not
at all change the probabilities. As we will see next, when generalizing
this result to N > 1 pulses, this maximum at θ = 2π extends to form a
plateau of large p0 values.

We can further characterize the detection capabilities of the N= 1
protocol by standard predictive analytics methods. In Fig. 3 we con-
struct the histogram for the presence/absence of a θ =π B-pulse and we
extract the associated confusion matrix by excluding the cases where
the pulse is absorbed. The elements of the confusionmatrix are defined
by considering an actual positive or negative event (the pulse is either
present or not present) and examiningwhat can be predicted about the
event based on the detector’s response. Using standard terminology in
hypothesis testing theory, for our device the elements of the confusion
matrix are (see also Supplementary Table 1): when a π B-pulse has
actually been applied, we define the True Positive Ratio TPR=p0(θ =π)/
(p0(θ =π) +p1(θ =π)) = PR(π),which is the fractionof correctdetections,
and the False Negative Ratio FNR = p1(θ = π)/(p0(θ =π) + p1(θ = π)) =
NR(π), which is the fraction of inconclusive events. When the pulse is
not applied, we have the False Positive Ratio FPR=p0(θ =0)/
(p0(θ =0) + p1(θ=0)) = PR(0), which is the fraction of times we would
wrongly predict that thepulsewas applied, and its complementary True
Negative Ratio TNR= p1(θ =0)/(p0(θ =0) +p1(θ =0)) =NR(0), which are
the cases where we cannot predict anything. Finally, for the efficiency
we obtain ηc(θ =π) = 0.33 (refer to Supplementary Fig. 2 for other
values). The experimental results in Fig. 3 are well reproduced by
simulations and close enough to the ideal values.

Two consecutive B-pulses (N= 2)
Next, we use our superconducting circuit to realize the coherent
interaction-free detection of N = 2 pulses. The sequence of operations

consists of two independent B-pulses of strengths θ1 and θ2 sand-
wiched between three beam-splitter unitaries. In this case the coherent
protocol already becomes fundamentally different from the projective
one. Further, for N = 2, one can conveniently study all possible com-
binations of the pair of B-pulses whose strengths θ1, θ2∈ [0, 4π] can be
varied independently. This also allows us to study new situations, such
as the absence of one of the B-pulses.

The experimental and the simulated results for the probabilities
associated with the ground state, the first excited state and the second
excited state as functions ofθ1 and θ2 are shown in Fig. 4a–c, respectively.
The Positive Ratio PR(θ1,θ2) =p0(θ1,θ2)/(p0(θ1,θ2) +p1(θ1,θ2)) and the
Negative Ratio NR(θ1,θ2) =p1(θ1,θ2)/(p0(θ1,θ2) +p1(θ1,θ2)) as functions of
θ1 and θ2 are shown in Fig.5. Similar to the N= 1 case, the PR and NR can
be used to construct the confusionmatrix for any combination of θ1 and
θ2 values. For the efficiency we obtain ηc(θ1 =π,θ2 =π) =0.81 (refer to
Supplementary Fig. 3 for other values). The experimental and simulated
results are in very good agreement with each other, demonstrating
control of the system over the full range of the two θ-parameters.

To understand the difference between the coherent and the
projective protocol, let us look at the case θ1 = θ2 =π. The projective
protocol, if the first pulse is not absorbed, produces the state ∣0i at the
input of the second beam-splitter unitary (see Supplementary Note 2).
As a result, the second Ramsey sequence provides another round of
monitoring the pulse, though this is essentially only a repetition of the
first. In contrast, in the coherent protocol the input to the second
beam-splitter unitary is a superposition of ∣0i and ∣2i. The second
monitoring of the pulse retains the amplitude of ∣2i in a coherent way,
resulting in a higher probability of success. This unexpected effect can
be seen by a straightforward calculation for the ideal case and
θ1 = θ2 =π, which yields probabilities p0 = 0.8091, p1 = 0.0034,
p2 = 0.1875, and PR =0.99; whereas, the equivalent respective figures
for the projective case are 0.4219, 0.1406, 0.4375, and 0.75.

Fig. 3 |Histogramof events forθ =πandN = 1, and the correspondingconfusion
matrix and efficiency. (left panels) Histogram of events recorded by the detectors
D0, D1, and D2, which are modeled as projectors. Histograms resulting from the
experiments, simulations and ideally expected values are shown in blue, red and
yellow colors respectively. The results are obtained from 106 realizations of the
experiment, and for B-pulse strengths θ =0,π. The percentage outcome at D0

corresponds to successful interaction-free detection, D2 represents the number of
times the pulse is absorbed, and D1 are the inconclusive instances. (right panel)
Confusion matrix and efficiency ηc for the detection of π pulses showing the
experimental (blue), simulated (red) and ideally expected (yellow) values.

Fig. 4 | Probabilities for theN = 2 case. 2D probability maps for the a ground state
(p0),b first excited state (p1), and c second excited state (p2) as a function of B-pulse
strengths θ1 and θ2.
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Multiple consecutive B-pulses (N > 2)
Next, we use our superconducting circuit to realize the coherent
interaction-free detection ofN > 2 pulses, whereweobserve evenmore
efficient coherent accumulation of the amplitude probabilities on the
state ∣0i under successive interactions with the B-pulse and applica-
tions of Ramsey SN (See Supplementary Information).

In these experiments we use both equal-strength pulses θj = θ and
pulseswith randomly-chosen θj∈ {0,π}, j = 1,N, while the beam-splitter
unitary is a π/(N + 1) rotation around the y axis in the f∣0i,∣1ig subspace.
To recall, in the absence of the B-pulses we have ½SN �N + 1 and in the
presence of the B-pulses we have SN

QN
j = 1½BðθN + 1�jÞSN �. The results are

presented in Fig. 6. Due to the multidimensional nature of these
experiments we focus here on p0; other possible figures of merit are
presented in Supplementary Information Note 2(c).

The large-N experimental sequences have a significant time cost
with the worst case of 25 B-pulses corresponding to 4.3 μs, which is
even longer than the relaxation time Γ�1

10 = 3:4 μs (see Methods for
details). Thus, in addition to the standard three-level Lindblad master
equation49,50, in order to accuratelymodel the systemwemay include a
depolarizing channel ρðtÞ ! ð1� ϵÞρðtÞ+ ϵI3=351 (see Methods). Here
we assume that the imperfections in the 1 − 2 drive results in mixing of
the qutrit state; hence the parameter ϵ is taken as directly proportional
to the pulse amplitude, given by ϵ[θ] = 1.8 × 10−3 × θ/π. This choice of
model fits our experimental data very well as shown in Fig. 6, where
continuous lines correspond to the simulation including the depolar-
izing channel and dotted lines correspond to the simulation without
the depolarizing channel. As expected, the overall effect of depolar-
ization ismore prominent for a larger number of B-pulses and for large
θ. In all of these plots, experimental results are shown bymarkers with
experimental error bars (standard deviation about the mean by four
repetitions of the same experiment). Small deviations of the experi-
mental values from the ideal results are due to decoherence and pulse
errors. Larger values of p0 correspond to a higher probability of
interaction-free detection. We have verified numerically that with
increasing N, p0 increases, approaching 1 in an ideal case.

In the case of equal-strength pulses, for eachN, we perform a total
of M experiments, with the B-pulse strength varying linearly with the
experiment number as: θ= θj,m =mπ=M with labels: j = 1,N and
m= 1,M such that θ∈ [0,π]. The results for the overall success prob-
ability p0 are shown in Fig. 6a, for various numbers N∈ [1,25] of B-

pulses andM= 180. Simulated and experimental p0 values are shown
as surface plots in parts (i) and (ii) respectively.

Interestingly, with increasing number of B-pulses, the final p0 is
independent of the B-pulse strength (θ), and has a tendency to reach
large values. As anticipated, a plateau characterized by high values is
formed, which is the extension to smaller θ’s of the maximum seen in
theN = 1 case aroundθ = 2π. This is also clearly reflected from theplot in
Fig. 6a(iii) showing the mean value of p0 (E[p0] in red) resulting from
experiments with different B-pulse strengths versus the number of
Ramsey sequences. The ‘noB-pulse’ situation is shownwithblack square
markers and that of maximum B-pulse strength is shown with blue
triangular markers, where the increase in p0(θ =0) with N and lower
values of p0(θ =π) is due to the decoherence. It is clear from the three
curves that E[p0] tends to approach the higher limiting values, which is
attributed to the larger plateau of high p0 values with increasing N (see
Supplementary Figs. 6 and 7). As a direct consequence of the plateau
formation, theminimum value of θ that gives rise to near maximal p0 is
much smaller than π for large N. The standard deviation of the p0 dis-
tribution versus N is shown in Fig. 6a(iv). Each of these experimental
values are accompanied by simulations, demonstrating quite close
agreement. A comparison (see Supplementary Notes 2 and 3) with the
projective case - for which exact analytical results are available -
demonstrates the advantageof the coherent protocol for all values ofN.

We also study the case of randomly-chosen θj∈ {0,π}, j = 1,N, with
results shown in Fig. 6b. Panels (i), (ii) present surface maps of the
simulated and experimental p0 versus N and m, where M=400.

Experimental and simulated mean- E[p0], minimum- pðminÞ
0 , and max-

imum- pðmaxÞ
0 values obtained from this distribution are shown in panel

(iii) with markers and continuous curves respectively. The standard

deviation σ½p0�=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E½ðp0 � E½p0�Þ2�

q
of p0 versus N is shown in part (iv).

Again, we observe that themean value of p0 increases withN, while the
standard deviation of repeatedmeasurements decreases with N. Thus,
for a large N, the B-pulse strength does not matter anymore, and we
obtain a highly effective interaction-free detection. Surprisingly, the
case with random B-pulse strengths appears to outperform the case
with identical B-pulses. Comparing parts a(iii) and b(iii) of Fig. 6, the
success probability of the coherent interaction-free detection in the
worst case (green curve) for random B-pulse strengths is already high
enough, with amaximumvalue (forN = 25) of 0.83 ± 0.03 (experiment)
and 0.82 (simulation), close to the mean values E[p0] = 0.88 ± 0.03
(experimental) and E[p0] = 0.87 (simulated). On the other hand, in the
case of identical B-pulses, the mean values for N = 25 are only
E[p0] = 0.81 ± 0.01 (experiment) and E[p0] = 0.80 (simulation), even
slightly below the worst-case scenario with random pulses. Also,
especially at large N’s, the standard deviation about the mean value of
the distribution is much lower in the case of random B-pulses as
opposed to the identicalB-pulses case, which is clear upon comparison
of Fig. 6a(iv) and b(iv). Thus, an adversarial attempt to randomize the
B-pulse strengths in order to evade detection has, surprisingly, the
opposite effect, improving the interaction-free coherent detection.

In Fig. 6c we provide a histogram representation of the p0 dis-
tributions for N = 5,15,25. The distribution in red in all three cases
corresponds to θj = θ = 0 – and hence lie at the lower limit of p0 range,
while the distribution in yellow represents the case θj = θ =π and lies
close to the upper limit. The interesting part is the distribution in blue
with arbitrarily chosen B-pulse strengths θj = θ∈ [0,π], which moves
towards the right side and tends to squeeze with increasing N. The
same idea is conveyed by the increasing mean value (E[p0]) and
decreasing standard deviation with N as discussed earlier.

Finally, as another figure of merit for the protocol, we can obtain
PR(θ) and NR(θ) for B-pulses with equal strengths θj,m= θ∈ [0,π] for
each N∈ [1,25]. The detailed surface maps presenting the ideal case
(without decoherence), and the simulated and experimentally obtained
values for PR(θ) and NR(θ) at various N are shown in Supplementary

Fig. 5 | Positive and negative ratios for the N = 2 case. Simulated and experi-
mental 2D maps for the a Positive Ratio PR(θ1, θ2) and for the b Negative Ratio
NR(θ1, θ2) as a function of θ1 and θ2.
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Fig. 5. Similar to the previous cases, these can be used to define the
elements of the confusionmatrix, for example TPR= PR(π), FPR = PR(0),
etc. We find that at large N the positive ratio reaches high values for a
wide range of θ’s, altoghether forming a plateau of stable and high-
confidence interaction-free detection. Correspondingly, a wide region
of low NR(θ) values are obtained. For example, from the experimental
data, for N = 5,15, 25 the value PR(θ) = 0.90 is reached at
θ=0.54π, 0.32π, 0.18π respectively, going up to≈0.95 at θ =π. The
corresponding values of the efficiency ηc for the same N and θ combi-
nations are 0.67, 0.81 and 0.81 respectively, see also Supplemen-
tary Fig. 6.

Discussion
In our protocol quantum coherence serves as a resource, yielding a
significantly high detection success probability. The enhancement can
be understood as the coherent accumulation of amplitude prob-
abilities on the state ∣0i under successive interactions with the B-pulse
and applications of Ramsey SN (see Supplementary Note 3), by making
useof the full 3−dimensionalHilbert spaceat each step. In contrast, the
projective protocol21,22 employs the quantum Zeno effect to confine
the dynamics in the ∣0i,∣1i subspace after each interaction with the
pulse. Thus, it extracts which-way information about the presence or
absence of the pulse at each step of the protocol.

To gain more insight into the functioning of our protocol, con-
sider the case of uniform Bπ-pulses. We have verified numerically that
at large values of N the following approximate relation holds

UNðθ1 =π,:::,θN =πÞ= ½SNBðπÞ�NSN ≈
N≫1

∣0i 0h ∣+ �iσy
12

� �N
We can also provide a consistency argument for this relation: since we
are dealing with π pulses only, we have BðπÞ= ∣0i 0h ∣� iσy

12, and since
N≫ 1 we can write also SN + 1≈I3. Then, assuming the above expression,
we can estimate UN + 1ðθ1 =π,:::,θN + 1 =πÞ≈UNðθ1 =π,:::,θN =πÞBðπÞI3 =
∣0i 0h ∣+ �iσy

12

� �N + 1
. Thus, if we start from the ground state, the

dynamics tend to stabilize this state at large N, which results in

the appearance of plateaus of near-unity p0 in Fig. 6 a. This is in
some sense the closest counterpart of the approximation
cosðπ=2ðN + 1ÞÞ� �2ðN + 1Þ

≈
N≫1

1, which is crucial for establishing a large
detection in the standard projective case (see also Supplemen-
tary Note 2).

In the experimental realization of projective interaction-free
measurements, as done with bulk optics22 or waveguide circuits23,
the maximum experimental efficiencies obtained are 0.73 and 0.63
resepectively, both obtained forN = 9. For largerN’s it is observed that
the efficiency decreases due to losses. By contrast, in our case the
efficiency for N = 9 is ηc(θ =π) = 0.89 and it increases further as N gets
larger, reaching 0.96 at N = 20 (see also Supplementary Fig. 6). Our
protocol also compares favorably with other realizations ofmicrowave
photon detection, based for example on Raman processes52, or on
cavity-assisted conditional gates53,54. The dark count rate, which is the
number of counts per unit time in the absence of a pulse, can be
obtained from FPR ≈ p0(θ = 0) divided by the sensing time: we obtain
0.1 counts/μs. This can be further improved without affecting the true
positives by reducing the decoherence and the effective qubit tem-
perature at the beginning of the protocol, for example by using active
reset. The experimentally-demonstrated detection bandwidth of our
system is given by the inverse minimum duration of the B-pulses used
in the experiment; e.g., for the 56 ns pulses this corresponds to a
18MHz bandwidth.

The coherent interaction-free protocol can also be represented
geometrically on the unit 2−sphere. In theMajorana representation55, a
three-level system is represented by two points S1ðx,y,zÞ and S2ðx,y,zÞ
– called Majorana stars – on the surface of this sphere 56. In our pro-
tocol, the system is initialized in the state ∣0i, which corresponds to
both Majorana stars residing at the North Pole, Si

1,2ð0,0,0Þ. In the
absence of B-pulses, the protocol ends with one star at the North Pole
and the other at the South Pole. In the presence of B-pulses with θj =π,
we find that both stars are located in the northern hemisphere for N≥2,
and they tend to get closer and closer to theNorth Polewith increasing
N (see also Supplementary Note 6). To illustrate this, in Fig. 7a–c we

Fig. 6 | Results for the D0 outcome in the case of multiple Ramsey sequences
with B-pulses N∈ [125] of varying strengths, θj,m∈ [0,π] with j = 1,N and m
indexing the experimental realization for a givenN. aPlots for identicalB-pulses
θj,m =θ=mπ=M for a givenN: (i) Simulated and (ii) experimentally obtainedmaps.
(iii) Values of p0 at B-pulse strengths θ =0,π and mean p0 (E[p0]) versus N with
markers with error bars showing the experimental results and the corresponding
continuous lines obtained from the simulations. Red circular markers present the
mean value E[p0], black diamondmarkers correspond to the case with no B-pulses
(θ =0) and data points with blue triangularmarkers stand for the case ofmaximum
B-pulse strengths (θ =π). (iv) Standard deviation evaluated for a given N versus N.
b Plots for arbitrarily chosen θj,m∈ [0,π]: (i) Simulated and (ii) experimental data
for p0 as a function of N andm. (iii) Simulated (continuous lines) and experimental

(markers with error bars) of mean (E[p0] in red) and extremum values (p0(min) in
green and p0(max) in blue). (iv) Standarddeviationofp0 versusN. Dotted curves in
all the plots are simulationswithout the inclusionof depolarization. Error bars in all
the plots correspond to standarddeviationof themeasuredquantitieswith respect
to their respective mean values, obtained from four repetitions of the full experi-
ment. c Histogram of the experimental D0 counts for various system sizes
(N = 5, 15, 25)withB-pulses of arbitrary strengths,θ∈ [0,π] (in blue) comparedwith
those of B-pulse strengths: θ =π (in yellow) and θ =0 (no B-pulse) in red. Clearly as
the system size increases, the strengths of the B-pulses become less significant and
approach the clustering near the maximal p0, which is a signature of the highly
efficient interaction-free detection.
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present the resulting trajectories of the Majorana stars (S1 in red and
S2 in blue) for the case of no B-pulse, B-pulses with equal strengths,
and B-pulses with randomly chosen strengths respectively. Here we
took N = 25, such that each Majorana trajectory consists of 26 points;
the initial and final stars of the trajectories are labelled as Si

1,2 and Sf
1,2

respectively. The trajectories correspond to the average states
obtained from 400 repetitions of the protocol with varying B-pulse
strengths (as discussed in the previous section). The presence of both
Majorana stars in the vicinity of the North Pole on the sphere serves as
a sensitive geometrical signature of the interaction-free detection of
the B-pulses. There is a clear difference between the situation of no B-
pulse, where one Majorana star is at the North Pole (0,0,1) and the
other at the South Pole (0,0,−1), as compared to the presence of the B-
pulse, shown in Fig. 7b and c, where both S1 and S2 end up close to the
North Pole. Comparing Fig. 7b, c, we find that the z−coordinates of the
final Majorana stars in the case of equal B-pulse strengths is 0.7381,
while the minimum value of the z−coordinate reached in the case of
randomly chosen B-pulse strengths is 0.7863. Clearly, in the case of
randomly chosen B-pulse strengths the respective Majorana trajec-
tories are confined closer to the North Pole, confirming the results
from the previous section.

We point out that these results can be extended in various direc-
tions. For example, they canbe applied for the non-invasivemonitoring
of microwave currents and pulses, which is an open problem in quan-
tum simulation57. They provide a proof of concept for a photon
detector, conceptually and practically different from realizations based
on other principles, that can be further optimized. Our protocol works
alsowhen theB-pulse is a Fock state and it can be utilized to assess non-
destructively the presence of photons stored in superconducting cav-
ities (see Supplementary Note 2). This can be utilized for axion detec-
tion, where the generation of a photon is expected to be a rare event.
Here also the existing detectors have a high dark count rate; thus, one
can increase the confidence level by assessing its presence first non-
destructively and then confirming it by more conventional means.

In conclusion, we proposed a coherent interaction-free process
for the detection of microwave pulses and we realized it experimen-
tally with a superconducting quantum circuit. For the case of a single
pulse with strength θ =π, we obtain an interaction-free detection
probability of 0.26. Further, we emulated multiple Ramsey sequences
and we obtained a highly efficient interaction-free detection of the B-
pulse. We observed that for a large number of sequences a detection
probability approaching unity is obtained irrespective to the strength
of the pulses, and, surprisingly, this probability is even higherwhen the
pulses have random strength.

Methods
Experimental setup
A schematic of the setup is shown in Fig. 8. The sample is mounted
in a dilution refrigerator via a sample holder which is thermally

anchored to the mixing chamber. There are several lines that con-
nect our sample to the external circuitry: the microwave gate line
which delivers the microwave drive pulses to the transmon, a flux-
bias line which provides a constant DC magnetic field, and the
measurement line which is capacitively coupled to the readout
resonator via an input/output capacitor. The flux-bias line sends a
current near the SQUID loop, which induces a magnetic flux and
thus enables the transmon transition frequency to be tuned. To
reduce the sensitivity of the device to charge noise, the SQUID loop
is shunted by a large capacitance58–60 denoted by CΣ in Fig. 8. The
transmission line is used to probe the resonator by sending
microwave pulses or continuous signals into it.

Thedrivepulses used to realize thebeam-splitter unitaries and the
B-pulses have super-Gaussian envelopes (/ exp½�ðt=τÞ4=2�) with the

Fig. 7 | Majorana representation. Averaged Majorana trajectories followed by the
three-level system for N = 25 in the case of a no B-pulse, B-pulses with b equal
strengths, and c with randomly chosen strengths in the range 0,π½ �. Trajectories of

the Majorana stars S1 and S2 are shown in red and blue colors respectively, where
Si
1,2 marks the initial state and Sf

1,2 correspond to the final state of the three-level
system on the Majorana sphere.

Fig. 8 | Experimental setup. Schematic of the experimental setup used in this
work, including the transmon circuit’s integrationwith the dilution refrigerator and
microwave electronics.
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following time-dependence:

ΩðtÞ=Ω0 exp � 1
2

t
τ

	 
4
" #

ð1Þ

where ΩðSN Þ
0 =π=½ðN + 1Þ R τc

�τc
exp½�ðt=τÞ4=2�dt� for beam-splitters and

Ω0ðθÞ=θ=
R τc
�τc

exp½�ðt=τÞ4=2�dt for the B-pulses. Thus, the effective
pulse area is determined by

R τc
�τc

exp½�ðt=τÞ4=2�dt, where ± τc are the
start and the end points of the drive pulse (the points where the pulse
is truncated) and τ is a time constant. In our experiments τ = 14 ns and
τc = 2τ = 28 ns, which corresponds to a total pulse length of 56 ns and
an effective pulse area

R τc
�τc

exp½�ðt=τÞ4=2�dt =30:18 ns. The amplitude
Ω0 is determined from Rabi oscillations measurements varying the
amplitude of the transmondrive pulse and its frequencywhile keeping
the pulse duration fixed. The variation of the pulse amplitude is
achieved using I and Q waveform amplitudes from our arbitrary
waveform generator (AWG), which are mixed in an IQ mixer with the
LO tone generated by a continous microwave generator (AWG). We
utilize a homodyne detection scheme for determining the state of the
transmon. A microwave source (PNA) provides a continuous signal at
the LO frequency for our readout pulse as well as that for the
demodulated reflected signal from the resonator. As such, a power
splitter is employed to halve this signal, where one part is sent to the
LO port of an IQ mixer which modulates a probe pulse with readout
rectangular envelopes from the I and Q quadratures generated by the
AWG. The other part is sent to an IQ mixer which demodulates the
signal reflected back from the resonator. After demodulation the
quadratures of thismixer are amplified and subsequently digitized and
recorded via our data acquisition card (DAC).

Decoherence model and numerical simulations
In the rotating wave approximation (RWA), the transmon Hamiltonian
in the three-level truncation is

HðtÞ= _

2
Ω01ðtÞeiϕ01
�

∣0i 1h ∣+Ω01ðtÞe�iϕ01 ∣1i 0h ∣+2δ01∣1i 1h ∣
�

+
_

2
Ω12ðtÞeiϕ12
�

∣1i 2h ∣+Ω12ðtÞe�iϕ12 ∣2i 1h ∣+2ðδ01 + δ12Þ∣2i 2h ∣
� ð2Þ

where the drive amplitudes follow the form as per Eq. (1), and are
denoted as Ω01(t) and Ω12(t) for the ∣0i � ∣1i and ∣1i � ∣2i transitions
respectively, carrying the respective phase factors e± iϕ01 and e± iϕ12 50.
With the notation σkl = ∣k

�
l
�
∣, and assuming resonance δ01 = δ12 = 0, the

Hamiltonian reads

HðtÞ= _Ω01ðtÞ
2

eiϕ01σ01 +
_Ω12ðtÞ

2
eiϕ12σ12 + h:c: ð3Þ

To introduce dissipation, we use the standard Lindblad master
equation, whereD½L�ρ = LρLy � 1

2 fLyL,ρg is the Lindblad super operator
and L is the jump operator applied to the density matrix ρ. For our
three-level system we have (see e.g.61,62)

_ρ= � i
_
½H,ρ�+

Xk≠l
k,l =0,1,2

Γk!lD½σlk �ρ+
X

k =0,1,2

Γϕk
2
D½σkk �ρ,

where Γk→l is the excitation/decay rate between states ∣k
�
and ∣l

�
, and

Γϕk is the dephasing rate associated with level k. The operators
σlk = ∣l

�
k
�

∣ with k > l are lowering operators and those with k < l are
raising operators corresponding to the transition lk. The Lindblad
dephasing operators act only on the off-diagonal matrix elements,
while the relaxation operators act on both the diagonal and off-
diagonal matrix elements. However, since we operate on transitions,
the individual dephasing rates Γϕk cannot be determined directly from
experiments. Instead, we can rewrite the equation above in a form that

involves only pairs of levels50

_ρ= � i
_
½H,ρ�+ Γ2!1ρ22ðσ11 � σ22Þ+ Γ1!0ρ11ðσ00 � σ11Þ

+ Γ1!2ρ11ðσ22 � σ11Þ+ Γ0!1ρ00ðσ11 � σ00Þ

�
Xk≠l

k,l =0,1,2

γklρklσkl ,

where the relaxation rates satisfy the detailed balance condition
Γk!l = e

�_ωkl=kBTΓl!k (with l > k) at a temperature T with kB being the
Boltzmann constant and ℏωkl being the energy level spacing between
the kth and lth levels. By introducing the occupation numbers
nkl = 1=½expð�_ωkl=kBTÞ � 1�, the rates Γk→l can be expressed in terms
of the zero-temperature decay rates Γlk (with l > k) as Γk→l = nklΓlk (l > k)
and Γl→k = (nkl + 1)Γlk (l > k). It is clear from this decoherencemodel that
the relaxation rates Γk→l for k < l are significant only at higher
temperatures of several tens of mK, which lead to transitions from
lower to higher energy levels. The decay rates for the off-diagonal
matrix elements are γ10 = γ01 = ðΓ1!0 + Γ0!1Þ=2 + Γϕ10, γ21 = γ12 =
ðΓ1!2 + Γ2!1Þ=2 + Γϕ21, and γ20 = γ02 = ðΓ1!0 + Γ2!1 + Γ0!1 + Γ1!2Þ=2 +
Γϕ20. Herewe define the dephasing rates associatedwith each transition
as Γϕkl = Γ

ϕ
lk = ðΓ

ϕ
k + Γϕl Þ=2. Note that the off-diagonal decay of the matrix

elements ρkl due to dephasing can be understood as resulting from
IklD½σz

kl �ρIkl = σz
klρσ

z
kl � IklρIkl , which is the familiar qubit dephasing

expression projected onto the f∣k�,∣l�g subspace, with σz
kl = σkk �

σll = ∣k
�
k
�

∣� ∣l
�
l
�
∣ and Ikl = σkk + σll = ∣k

�
k
�

∣+ ∣l
�
l
�
∣.

Experimental parameters and sample specifications
For the N = 1 and N = 2 cases, experiments have been performed on a
sample with ∣0i � ∣1i and ∣1i � ∣2i transition frequencies ω01/
(2π) = 5.01 GHz and ω12/(2π) = 4.65 GHz. The simulations make use of
the general form of the Lindblad master equation for the quantum
state evolution with relaxation and dephasing rates obtained from
standard characterization measurements: Γ10 = 0.72MHz,
Γ21 = 1.55MHz, Γϕ10 =0:4MHz, Γϕ21 =0:6MHz, and Γϕ02 = 1 MHz. The
duration of the beam-splitter pulse is 56ns (see also Eq. (1)) and the
amplitude of the pulse is directly proportional to the angle of rotation
(in a given subspace). TheB-pulses however have a fixed duration of 56
ns until θ = 3.38π, beyond which the upper limit of the output power
from our arbitrary waveform generator (AWG) is reached. To tackle
this issue, the pulse duration is gradually increased from 56 ns to 61 ns
in steps of 1 ns (as θ varies from 3.38π to 4π), such that the desired
pulse-area is attainedwith lowerpulse amplitudes.The transmon starts
in thermal equilibriumat aneffective temperature of 50mK (measured
independently, see63) such that the initial probability of occupation of
the ground state, first excited state and second excited state is
p0 = 0.9917 = 99.17%, p1 = 0.0082 =0.82%, and p2 = 0.0001 = 0.1%.

For experiments involving a largenumber of pulses (N > 2)weuse a
samplewithω01/(2π) = 7.20GHz andω12/(2π) = 6.85GHz. The relaxation
and dephasing rates obtained from independent measurements are
Γ10 = 0.29MHz, Γ21 = 1.15MHz, Γϕ10 =0:18MHz, Γϕ21 = 1:82MHz, and
Γϕ02 = 1:70MHz. All the beam-splitter pulses are 56 ns andB-pulses are of
duration 112 ns with various different amplitudes. For the case of
identical B-pulses, θ is increased linearly from 0 to π in 180 steps and in
each case p0 is measured for N∈ [1, 25]. To obtain the error bars, each
experiment is repeated four times. In the case of random B-pulses,
random strengths are chosen arbitrarily from a uniform distribution of
randomnumbers from0 toπ. Error bars result from the four repetitions
of the same experiment. The corresponding surface maps, histograms
andmean and standard deviation values are presented anddiscussed in
the main text. For further details on the errors due to pulse imperfec-
tions, see Supplementary Note 5.

For very long experiments, it is known that we can accumulate
errors resulting in excess populations on the higher energy levels. The
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standard description for this effect is via an additional depolarizing
channel51. For a three-level system the depolarizing channel can be
written in the operator-sum representation64, which is a completely
positive trace-preserving map, such that the final state is given by

ρf =
X
ν

KνρK
y
ν , with

X
ν

Ky
νKν = I3: ð4Þ

The Kraus operators Kν’s are given in terms of Gell-Mann matrices:
K1 =

ffiffiffiffiffiffiffiffi
ϵ=6

p
λ1, K2 =

ffiffiffiffiffiffiffiffi
ϵ=6

p
λ2, K3 =

ffiffiffiffiffiffiffiffi
ϵ=6

p
λ4, K4 =

ffiffiffiffiffiffiffiffi
ϵ=6

p
λ5, K5 =

ffiffiffiffiffiffiffiffi
ϵ=6

p
λ6,

K6 =
ffiffiffiffiffiffiffiffi
ϵ=6

p
λ7, K7 =

ffiffiffi
ϵ

p
=3λ3, K8 =

ffiffiffi
ϵ

p
=6ð

ffiffiffi
3

p
λ8 � λ3Þ,

K9 =
ffiffiffi
ϵ

p
=6ð

ffiffiffi
3

p
λ8 + λ3Þ, and K10 =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 8ϵ=9

p
I3. Here, λ1ð2Þ = σ

xðyÞ
01 ,

λ4ð5Þ = σ
xðyÞ
02 , λ6ð7Þ = σ

xðyÞ
12 , λ3 = σ

z
01, and λ8 = ðσz

02 + σ
z
12Þ=

ffiffiffi
3

p
. The final state

following Eq. (4) is

ρf =
ϵI3
3

+ ð1� ϵÞρ : ð5Þ

In other words the system is replaced with the completely mixed state
I3=3 with probability ϵ – otherwise it is unaffected, with probability
1 − ϵ. We consider only the depolarization caused by the B-pulse, with a
value ϵ = 1.8 × 10−3 for aπpulse applied on the ∣1i � ∣2i transition; this is
obtained by a best-fit of the θ =π data. For arbitrary θ it is natural to
consider a linear interpolation ϵ[θ] = 1.8 × 10−3 × θ/π.

Data availability
Experimental and simulated data generated during this study are
included in this published article (and its supplementary information
files). The experimental data that support the findings of this study can
also be found in the GitHub repository65.

Code availability
The codes for simulations that support thefindings of this study canbe
found in the GitHub repository65.
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