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Spectral matching of MS? fragmentation spectra has become a popular

method for characterizing natural products libraries but identification remains
challenging due to differences in MS? fragmentation properties between
instruments and the low coverage of current spectral reference libraries. To
address this bottleneck we present Structural similarity Network Annotation
Platform for Mass Spectrometry (SNAP-MS) which matches chemical similarity

grouping in the Natural Products Atlas to grouping of mass spectrometry
features from molecular networking. This approach assigns compound
families to molecular networking subnetworks without the need for experi-
mental or calculated reference spectra. We demonstrate SNAP-MS can accu-
rately annotate subnetworks built from both reference spectra and an in-house
microbial extract library, and correctly predict compound families from
published molecular networks acquired on a range of MS instrumentation.
Compound family annotations for the microbial extract library are validated
by co-injection of standards or isolation and spectroscopic analysis. SNAP-MS
is freely available at www.npatlas.org/discover/snapms.

The identification of molecules within complex mixtures is a major
bottleneck in natural products research and untargeted metabolomics
studies. Mass spectrometry has emerged as the de facto tool for the
high-throughput characterization of metabolites because of its sensi-
tivity compared to other methods. However, only limited structural
information is contained in tandem mass spectrometry (MS?) data.
Identifications can sometimes be made by comparing MS? spectra to
spectral reference libraries, but the coverage of MS? reference spectra
for natural products remains low'™. In silico methods for calculating
MS? spectra can alleviate this issue, but still struggle to accurately
predict MS? spectra for many classes of natural products*’. These
issues persist, despite continuing improvements to prediction
techniques®’, the recent development of new scoring algorithms to
rank matches between experimental and calculated MS? spectra®, and
the development of tools, such as Network Annotation Prediction

(NAP) aimed at reranking the candidates provided by in silico
predictions’. Additionally, MS? spectral networking can be used to
generate molecular networks, which group features based on simila-
rities in MS? spectra and can allow for propagation of annotations to
unknown molecules when annotations are possible, but often return
lists of potential candidates that must be manually examined by end
users'® 2. Thus, while MS? spectral networking can be used to group
molecules by structural similarity, it is often not yet possible to identify
these compound families.

A second often overlooked challenge for analyte identification by
mass spectrometry is the diversity of data types available from ‘high-
resolution” mass spectrometers. Variations in acquisition conditions
(e.g., source temperature, analyte concentration, cone voltage, mobile
phase), experimental parameters (e.g., instrument polarity, data-
dependent vs. data-independent MS? fragmentation) and instrument
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configuration (e.g., qTOF vs. Orbitrap) all combine to introduce sig-
nificant variations in MS? spectra for the same analyte analyzed under
different conditions®”. In addition, some instruments are not even
capable of acquiring MS? data, precluding the use of spectral matching.
Recently our laboratory led the development of the Natural Products
Atlas database to create a comprehensive collection of all published
microbial natural products™. Interestingly, examination of the dis-
tribution and co-occurrence of molecular formulae within the Natural
Products Atlas has revealed that natural products are not distributed
randomly in chemical space, but instead are grouped closely around
specific scaffolds®™. Structural variation in each scaffold is therefore a
unique fingerprint for compound class. We hypothesize that intra-
family formula distributions can be used for the de novo identification
of subnetworks defined by MS? spectral networking from tools such as
molecular networking.

In this paper we present Structural similarity Network Annotation
Platform for Mass Spectrometry (SNAP-MS), a tool for annotation of
MS? spectral networking subnetworks based on formula distributions
in microbial natural products libraries. Recognizing that many of the
tools to be discussed in this study utilize similar language with
nuanced meanings, we have provided a detailed glossary of terms to
assist readers (Supplementary Table 1). This strategy exploits the
observation that formula distributions are diagnostic of compound
families to annotate groupings of mass spectral features in molecular
networks directly from MS' data, without the need for experimental or
calculated MS? reference libraries. First, we discuss the distributions of
molecular formulae among compound families in the Natural Products
Atlas. Second, we identify a compound similarity scoring method that
mimics groupings derived from MS? spectral networking. Third, we
present the underlying algorithms that drive compound family iden-
tification in SNAP-MS and evaluate performance using a molecular
network built from pure compound reference spectra. Fourthly, we
show that SNAP-MS can correctly annotate compound families from
both in-house and published molecular networks. Analysis of a 925-
member in-house microbial extract fraction library yielded annota-
tions for 11 compound families, seven of which were confirmed by
orthogonal spectroscopic methods. Separately, analysis of six pub-
lished molecular networking subnetworks yielded annotations that
matched the published compound classes in all cases. Overall, SNAP-
MS predicted the correct compound class in 31 of the 35 annotated
subnetworks; a success rate of 89%. Finally, we extend the SNAP-MS
methodology to plant and invertebrate natural products chemistry
using the COCONUT database', and compare the performance of
SNAP-MS to Network Annotation Propagation, another open access
annotation tool for annotation prediction. Together these results
illustrate the value of SNAP-MS for the structural annotation of large
untargeted metabolomics datasets without the need for experimen-
tally acquired spectral libraries.

Results

SNAP-MS exploits the observations that natural products chemical
diversity is grouped around core scaffolds for many compound
families, and that formula distributions within these compound
families are almost always unique. Using this information, we hypo-
thesized that formula distributions could be used to annotate
groupings formed by MS? spectral networking in the absence of other
analytical data (MS" fragmentation, clogP, NMR spectra etc.) by
relating formula distribution to a compound family. To test this
hypothesis, we first examined the distributions of chemical formulae
between compound families in the Natural Products Atlas. Next, we
identified a chemoinformatic compound clustering method that
closely mirrored the subnetworks obtained from MS? spectral net-
working (molecular networking). Finally, we developed a set of
algorithms to apply this method to subnetworks from molecular
networking graphs.

Molecular formula distributions are diagnostic for compound
family

Using the Natural Products Atlas database (v2020_06) as a source of
chemical structures, we examined the occurrence, distribution and
grouping of molecular formulae in microbial natural products. The
goal of this analysis was to test the hypothesis that intra-family formula
distributions are diagnostic identifiers for natural product compound
families. Within the 29,006 compounds in the dataset there were
12,666 unique molecular formulae, including 8349 formulae that
appeared only once (Supplementary Fig. 1). We observed that the most
common molecular formulae exclusively contain the elements carbon,
hydrogen, and oxygen, with C;sH»,05 being the most common formula
(151 instances), followed by C;5sH,403 (127 instances). This is perhaps
not surprising, given that several of the major biosynthetic classes
(e.g., polyketides, saccharides, terpenes) are constructed from build-
ing blocks that contain exclusively these three elements. In fact, the
most common formulae that contain elements in addition to carbon,
hydrogen, and oxygen (C,3H3;NO, and C,4H3sNO,) are present in just
15 instances.

Grouping these molecules into compound families using the
standard clustering method from the Natural Products Atlas (Morgan
fingerprinting (radius = 2) and Dice similarity scoring (0.75 cutoff))
yielded 8381 compound families (https://doi.org/10.5281/zenodo.
3981180), 1901 when excluding those with fewer than three mem-
bers (Supplementary Fig. 2). Excluding formulae that appear only once
in the Natural Products Atlas, we tested the hypothesis that formula
distributions are indicative of compound family by counting the
occurrence of each molecular formula, each pair of molecular for-
mulae, and each set of three molecular formulae across compound
families (Fig. 1, for a full analysis, including single formulae, see Sup-
plementary Fig. 3). Of the remaining 4317 unique molecular formulae,
36% are present in only one compound family (Fig. 1a). In contrast to
the moderate discriminatory power of individual formulae, sets of
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Fig. 1| Intra-family distributions of molecular formulae. The log-transformed
occurrence (bar charts) or proportion (pie charts) of a, b a single molecular for-
mula, ¢, d a pair of molecular formulae, or e, f a set of three molecular formulae
appearing in one or more compound families in the Natural Products Atlas.
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Fig. 2 | Alignment of cheminformatic chemical fingerprint similarity scoring
with MS? spectral networking. Alignment between structural similarity networks
generated using a MACCS fingerprinting with Dice scoring or b Morgan finger-
printing (Radius = 2) with Dice scoring, with a molecular network created from
GNPS public spectral library GNPS-NIH-NATURALPRODUCTSLIBRARY. True posi-
tives are edges that exist between nodes in the molecular network while true
negatives are edges which do not exist between nodes in the molecular network.
Vertical dotted lines show the location where false connections equal 0.5%. ¢ A
subnetwork from the resulting GNPS network built from the NIH spectral libraries.
d A structural similarity network built using the molecules present in panel

c illustrating that the absence of selected edges does not substantively impact the
interconnectivity of nodes within the graph, Morgan fingerprinting (Radius = 2) and
minimum dice score of 0.71.

formulae were found to be highly diagnostic for compound family.
Specifically, both pairs and sets of three molecular formulae were
found to be present in single compound families in >95% and >97% of
cases, respectively (Fig. 1c-f). Even the most common sets of three
formulae belong to few compound families, despite the fact that each
formula corresponds to many candidate molecules. For example,
Cy0H1004, C31H1204, and Cy H1,05 correspond to 33, 39, and 39 mole-
cules each, yet this formula combination occurs in only five compound
families. These results demonstrate that formula distributions are
indicative of compound family, even for very common formulae. Of
particular note, there are almost no examples of sets of three formulae
that appear in more than one compound family (<3%), making these
sets highly diagnostic for compound structural class.

Cheminformatic compound clustering aligns with compound
clustering based on molecular networking

To correctly identify compound families using structural similarity, the
compound families produced by cheminformatic chemical finger-
printing must align closely with the groupings from MS? spectral net-
working. To select the optimal theoretical clustering method, we
compared subnetworks generated by molecular networking of
1267 spectra from known standards (Methods) against compound
families generated using a panel of common chemical fingerprinting
and similarity scoring methods using a range of similarity score cutoffs
(Methods). Because incorrect connections between compound families
(false positives) have a much greater impact on overall network struc-
ture than missing connections within families (false negatives) we
required a clustering method that delivered the highest possible true
positive rate with a very low false positive rate (<0.5%). To assess the
overall influence of clustering method on network structure we plotted

the percentages of both true negative and true positive connections
against similarity score cutoff (Fig. 2a, b). At a false positive rate of 0.5%
MACCS keys clustering showed the lowest alignment with molecular
networking. This combination of methods required a very high Dice
similarity score (0.94) to reduce the false positive rate below 0.5%. At
this cutoff only 58% of the expected true positive connections between
structures were present, leading to the creation of a highly fragmented
network with many small clusters that were not consistent with the MS-
based network (Fig. 2a). By contrast, Morgan fingerprinting with a radius
of 2, 4 or 6 using either Tanimoto or Dice scoring produced compound
families with excellent alignment to molecular networking (Fig. 2b). We
selected Morgan fingerprinting (radius = 2) and Dice similarity scoring
(0.71 cutoff) as the cheminformatic compound clustering method with
the best alignment to subnetworks generated by molecular networking
(Fig. 2¢, d). These results demonstrate that compound families gener-
ated by cheminformatic compound clustering align well with groupings
derived from MS-based molecular networking. Based on this result we
developed a scoring platform, SNAP-MS, for the de novo identification
of molecular networking subnetworks using formula distributions.

Compound family identification using SNAP-MS

The SNAP-MS workflow annotates molecular networking subnetworks
using the following four steps: import cluster MS data, extract candi-
date matches for each cluster mass from the reference database, group
candidate matches using the compound clustering tool, and finally
filter and prioritize results groups based on subnetwork coverage
(Fig. 3). To illustrate this workflow, we examined one subnetwork
containing five masses from our marine bacteria library (Fig. 3a).
Searching each mass against the Natural Products Atlas database
considering a panel of possible counterions ([M+H]", [M + Nal*, [M-
H,0 +HJ") yielded a total of 17 candidate molecules (Fig. 3b). Candi-
date molecules were grouped into compound families using the
similarity metric and cutoff described above, resulting in 11 compound
families. These results were then filtered to remove small families (<2
members), leaving only one candidate compound family (6 members).
The central premise of SNAP-MS is that, because formula distributions
are diagnostic of compound family, the correct assignment will be the
family with the highest number of matches to masses from the original
MS? cluster. Therefore, even though each mass generates a large pool
of candidate structures, most candidates will be eliminated because
they are not structurally related to other candidates. In this example,
SNAP-MS clustered 17 candidate molecules into 11 compound families.
Because some compound families contain large numbers of isobaric
regio- and stereoisomers it is not appropriate to rank compound
families by cluster size. Instead, ranking is based on how many masses
from the original subnetwork are accounted for by molecules within
each candidate compound family. In this case, one compound family
occupied the top-ranked position with structures that matched three
masses in the original subnetwork (Fig. 3c), suggesting that this sub-
network contains members of the trichostatin compound family.
Subsequent isolation and characterization of trichostatin A by NMR
spectroscopy confirmed the annotation, validating the SNAP-MS
approach for compound family annotation (Fig. 3d).

SNAP-MS correctly annotates compound networks for pure
compound reference spectra

To assess the accuracy of SNAP-MS we first analyzed subnetworks from
a molecular network built from the GNPS public spectral libraries NIH
Natural Products Library 1 and NIH Natural Products Library 2 (Meth-
ods). We selected these reference libraries because they were publicly
available, contained MS? data for individual pure compounds, and
overlapped with compounds in the Natural Products Atlas (Fig. 4). The
9182 reference spectra were submitted to GNPS for molecular net-
working analysis, and the resulting network filtered to remove sub-
networks that contained fewer than three compounds from the
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Fig. 3 | SNAP-MS workflow. The compound family annotation of a subnetwork
showing a the input subnetwork, b candidate structures retrieved from the Natural
Products Atlas for each mass from panel a. Node edge color indicates original mass

match, c the resulting top ranked compound family after structural similarity
scoring and filtering containing members of the trichostatin compound family, and
d confirmation of the assignment by isolation and 'H NMR analysis of trichostatin A.

Natural Products Atlas. The resulting subset contained 22 subnetworks
with a total of 306 nodes, of which 139 corresponded to molecules
present in Natural Products Atlas (Fig. 4). SNAP-MS analysis provided
compound family identifications for all but two of these subnetworks.
The correct answer was ranked first 17 times, ranked second once, and
incorrectly predicted twice. However, review of the subnetworks that
were incorrectly assigned revealed that they contained compounds
from structurally dissimilar compound families (Supplementary
Fig. 4). This result highlights the influence that MS? input data quality
has on grouping methods such as molecular networking, particularly
for annotation tools such as SNAP-MS that rely on these groupings to
make compound family predictions. Excluding the mis-assembled
subnetworks, SNAP-MS returned the correct compound family in 18 of
20 cases: a success rate of 90%.

Figure 4 demonstrates that SNAP-MS can correctly identify com-
pound families from MS? spectral networking even when the input data
contains nodes that are not part of the reference database, and that

these identifications do not require experimental reference spectra.
For example, the subnetwork analyzed in section B contains 15 mem-
bers of the diphenyl ether family. Six of these compounds are present
in the Natural Products Atlas dataset (green nodes) with a further nine
not currently included (grey nodes). Mass matching against the Nat-
ural Products Atlas returned candidate molecules for all nodes, with an
average of 3.1 candidates per node. However, as expected, structural
similarity among incorrect candidates was low, and these molecules
did not form compound families with broad subnetwork coverage.
Overall, the 30 initial candidate molecules formed just four compound
families and of these only one, the correct one, accounted for more
than two of the subnetwork nodes.

Identification of compound families from marine bacterial
extracts

To evaluate the performance of this method for complex mixtures we
next analyzed a molecular network built from 925 samples from our in-
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Fig. 4 | Evaluation of SNAP-MS using a molecular network built from reference
spectra. a Subnetworks from a molecular network were created from GNPS public
spectral libraries NIH Natural Products Library 1 and NIH Natural Products Library 2.
Nodes corresponding to compounds present in the Natural Products Atlas colored

green. b-e Predicted compound families for select subnetworks. Molecules present
in the original molecular networking subnetwork are indicated with square nodes.
The top ranked answers from SNAP-MS are indicated with a bold border.

o

Fig. 5 | Bacterial molecular network with SNAP-MS annotations. a Molecular
network for 925 marine bacteria prefractions, filtered to remove solvent and media
blanks and subnetworks with fewer than four nodes. Nodes annotated by GNPS
spectral libraries are outlined in red. Subnetworks annotated by SNAP-MS are

<4

AL TR
e AR L3

HERS | :
b

colored blue. b-i SNAP-MS compound family annotations for select subnetworks.
Nodes with bold outlines are from the top-ranked compound families. For full
spectral characterization of each compound family see Supplementary

Figures 5-11.

house marine bacteria extract library (Supplementary Note 1, Meth-
ods). Annotating subnetworks from complex mixtures is significantly
more challenging than subnetworks from pure compound libraries
because, unlike the network in Fig. 4 where each compound is repre-
sented by nodes of common adducts, subnetworks from extract
libraries can include multiple nodes for a single molecule (e.g.,
adducts, fragments, multiply charged species) that increase the

number of candidate structures. After filtering to remove artifacts and
media components (Methods) the molecular network contained
34 subnetworks containing four or more nodes (Fig. 5). SNAP-MS
annotation afforded compound family annotations for 11 of these
subnetworks, more than half of which were not annotated using GNPS
reference libraries. Overall, six subnetworks were annotated only by
SNAP-MS, five by both SNAP-MS and GNPS, and four only by GNPS.
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Fig. 6 | SNAP-MS analysis on published GNPS subnetworks. Reproductions of
subnetworks from recently published data and their corresponding compound
family annotations generated by SNAP-MS for a GameXPeptides b cyclic

lipopeptides ¢ xefoampeptides d noursamycins e, f angucyclines. Figure adapted
from refs. *"7 with permission. Node colors derive from color codings in original
publications.

Encouragingly, all five of the subnetworks annotated by both plat-
forms gave complimentary annotations in each case (Fig. 5b-d, f, i). To
validate the predictions made by SNAP-MS we investigated example
fractions from each subnetwork using a combination of isolation/ NMR
analysis, MS? data, and co-injections (Supplementary Note 2). Of these,
seven contained sufficient material for unambiguous structure iden-
tification, leading to confirmation of the predictions for the desfer-
rioxamines (Fig. 5b, Supplementary Fig. 5), surugamides (Fig. 5c,
Supplementary Fig. 6), enterocins (Fig. 5d, Supplementary Fig. 8),
CDAs (Fig. 5e, Supplementary Fig. 9), nonactins (Fig. 5f, Supplementary
Fig. 11), mycosubtilins (Fig. 5g, Supplementary Fig. 7), and amicou-
macins (Fig. Sh, Supplementary Fig. 10). In two cases we could not
obtain sufficient material for unambiguous assignments, while in a
further two cases inspection of the original MS data indicated that the
molecular networking subclusters were comprised exclusively of
fragments of larger parent molecules, preventing accurate annotation
by SNAP-MS. For a full description of verified subnetworks and asso-
ciated physical data see Supplementary Information (Supplementary
Figs. 5-11).

Finally, we reviewed the data for the four cases that were only
annotated by GNPS. Two of these corresponded to compound families
with no precedent as bacterial metabolites; likely false positives from
the GNPS MS? spectral matching algorithm. The other two cases cor-
responded to putatively new analogues of natural products predicted
using the analog search parameter in GNPS. SNAP-MS requires a
reference database of known chemical structures, precluding predic-
tions for subnetworks that only contain novel chemical structures.
Therefore, combination of the GNPS and SNAP-MS annotation tools
offers a powerful complement to characterize both the known and
unknown molecular space of extract libraries.

Identification of compound families from published molecular
networking data

It is well recognized that both instrument hardware configuration and
experiment parameters can significantly affect the composition of MS?

spectra®. In principle, differences in MS? spectra could change the
composition of subnetworks, reducing the effectiveness of the SNAP-
MS platform for compound family annotation. To test the SNAP-MS
platform under a range of acquisition conditions we analyzed six
subnetworks from recent publications describing compound identifi-
cation using molecular networking (Fig. 6). These included subnet-
works containing GameXPeptides” (Fig. 6a), cyclic lipopeptides™
(Fig. 6b), xefoampeptides" (Fig. 6¢), noursamycins' (Fig. 6d), and two
subnetworks found to contain angucyclines? (Fig. 6e, f). Gratifyingly,
the top ranked compound family from SNAP-MS matched the pub-
lished compound family in all six cases. Importantly, the identities of
all six of these compound families were proven using orthogonal
analytical methods by the original authors, confirming these assign-
ments. Another important point is that four of the compound families
in these subnetworks were previously known. Therefore, in these cases
the SNAP-MS platform is not merely matching masses to newly pub-
lished structures in the Natural Products Atlas database, but rather
would have correctly predicted the compound families if used at the
time of the original studies.

Evaluation of algorithm performance with the COCONUT refer-
ence database

One limitation of the Natural Products Atlas is that it is restricted to
microbially-derived natural products, precluding annotation of mole-
cules from other sources. In addition, it is a relatively small database
(29,006 compounds), raising the concern that annotation success of
SNAP-MS is driven by the limited number of candidate compounds for
each mass in the reference database rather than the prioritization
method itself. To address these issues we repeated the analysis of NIH
Natural Products Libraries 1 and 2 using the COCONUT natural pro-
ducts database (Supplementary Table 2); a freely available natural
products database containing over 400,000 compounds from all
source organism types'®. A total of 184 subnetworks were annotated by
SNAP-MS, of which 164 were classified as correct annotations (89%
accuracy). In addition, 110 subnetworks did not receive annotations, of
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which just 16 were considered true negatives (i.e., the subnetwork did
not contain at least three compounds with different molecular for-
mulae that are present in the COCONUT database). The remaining
94 subnetworks for which SNAP-MS did not return an annotation were
mostly due to the results graphs being too large to provide useful
annotations, which is a standard filtering option in the SNAP-MS
workflow. From these results we conclude that SNAP-MS provides
comparable true positive rates between the Natural Products Atlas and
COCONUT reference databases (90% vs. 89%), but that the false
negative rate increased significantly with the larger COCONUT refer-
ence database. For users this means that the number of subnetworks
for which annotations are provided may be lower when using the lar-
ger reference database, but that the accuracy for subnetworks that do
receive annotations will be similar using either approach.

Comparison of annotation accuracy between SNAP-MS and
Network Annotation Propagation
Among the open-source tools that provide annotations of mass spec-
trometry data, Network Annotation Propagation (NAP)’ is the most
similar in function to SNAP-MS. In ‘consensus’ mode NAP annotates
subnetworks from spectral networking using two consecutive steps.
Firstly MS” spectra from each node are compared against a reference
database of predicted MS? spectra using MetFrag” to create a list of
candidate matches for each node. In the second step the order of these
candidate matches is then refined using the MetFusion tool to prior-
itize matches within the subnetwork with higher chemical similarities
to one another. The results from the SNAP-MS and NAP are therefore
different, with SNAP-MS providing compound family predictions at the
subnetwork level based on mass filtering and structural similarities,
while NAP provides predictions at the node level, based on MS? spec-
tral matching and refinement with compound structure similarities.
Analysis of NIH Natural Products Libraries 1 and 2 using NAP with
the COCONUT database returned annotations for 3,006 nodes, com-
prising 294 subnetworks (Supplementary Note 3). 66% of nodes con-
tained the correct structure within the top 10 candidate annotations,
57% within the top 5 and 30% as the top answer. At the subnetwork
level we assessed annotation accuracy by considering the percentage
of nodes in the subnetwork for which the correct structure was within
the top candidates. We considered two different scenarios for top
candidate selection; either the top 10 annotations, or only annotations
from that list with high consensus scores to the top annotation (=0.9)
(Supplementary Table 3). Under the least stringent measure (correct
answer in the top 10 annotations for at least 33% of nodes in the sub-
network) NAP returned 229 true positives and 63 false positives. By
contrast, under the most stringent measure (correct answer similar to
top annotation for at least 50% of nodes in the subnetwork) NAP
returned 183 true positives and 109 false positives. While NAP was
successful at capturing the correct structure within the list of candi-
dates in many cases, it was rarely true that the correct structure (or a
closely related congener) was ranked as the top annotation con-
sistently within subnetworks, making it difficult for end users to
determine which compound family a given subnetwork derives from.
As discussed above, analysis of NIH Natural Products Libraries 1
and 2 with SNAP-MS using the COCONUT reference database returned
164 true positive annotations, and 20 false positives but did not pro-
vide annotations for 110 subnetworks. Therefore, while NAP provides
annotations for a larger number of subnetworks (184 vs. 292), SNAP-
MS provides higher accuracy for annotated subnetworks (89% vs.
63%), particularly under the more stringent criteria that are repre-
sentative of real-world applications of these tools.

SNAP-MS is available as an open-access online tool

SNAP-MS is freely available to the research community via the Nat-
ural Products Atlas website (https://www.npatlas.org/discover/
snapms/) (Supplementary Figs. 12, 13). The webpage includes a

simple drag-and-drop interface that accepts either a GNPS network
file or a list of m/z features. Therefore, users can either annotate full
molecular networks, or submit lists of related masses derived from
other processing platforms (e.g., XCMS?? or MZmine®). The refer-
ence database can be defined from the Natural Products Atlas data-
base at any taxonomic rank. For example, it is possible to filter by
phylum (e.g., Cyanobacteria) or genus (e.g., Streptomyces) as
appropriate for the sample set under investigation. This is important
as reference database selection has a significant impact on annota-
tion accuracy (Discussion). Alternatively, users may select the
COCONUT reference database, which contains 406,920 natural
products from a wide range of source organism types (plants,
microorganisms, marine invertebrates etc.). Finally, users have the
option to change default parameters (e.g., m/z ppm error) before
submitting the job. The output files for SNAP-MS are a Cytoscape®
file containing a collection of rank-ordered compound families for
every annotated subnetwork and a folder containing GraphML files
for each collection of rank ordered compound families.

Discussion

Compound grouping by MS? spectral networking is now widely
employed in natural products research. However, identification of
these subnetworks remains challenging because of the limited avail-
ability of authentic reference spectra. For example, of the 29,006
compounds in the Natural Products Atlas only 1243 currently have
links to reference spectrain GNPS. Tools such as DEREPLICATOR + that
predict MS? spectra can improve annotation rates but are biased
towards compound classes such as peptides that have reliable and
predictable gas phase fragmentation mechanisms®. SNAP-MS anno-
tations are independent of compound class and require no external
data beyond inclusion of reference compound structures in the Nat-
ural Products Atlas.

Selecting the appropriate reference database is an important
consideration for the SNAP-MS method. Previous studies have
demonstrated that structural overlap between source organism types
(e.g., marine macroalgae vs. cyanobacteria) is low”. The inclusion of
reference compounds not related to the source organism(s) under
investigation increases the number of candidate compounds for each
mass in the subnetwork and raises the possibility of erroneous com-
pound family assignments. For example, the analysis against our
marine bacterial library discussed above employed a reference library
containing two relevant phyla (Actinobacteria and Firmicutes; 7175
total compounds) to yield 11 subnetwork predictions. Rerunning the
analysis with a reference library containing all bacterial compounds
(11,264 total compounds) returns one additional prediction (Supple-
mentary Fig. 14). However, this prediction was for a compound family
that is widely distributed among cyanobacteria but has never been
found in Actinobacteria or Firmicutes; likely a false-positive annota-
tion. Similarly, replacing the Natural Products Atlas reference database
with the much larger COCONUT database reduced the number of
subnetworks for which confident annotations could be provided.
SNAP-MS is the only tool for annotating molecular networks that
permits filtering by taxonomic rank. It is strongly recommended that,
where possible, users make use of this feature to improve prediction
accuracy.

It is important to stress that this approach provides compound
family annotations for subnetworks, not definitive identifications of
individual nodes. The platform identifies compound families contain-
ing appropriate molecular formulae but does not consider structural
features of individual members or the MS? data for individual nodes.
Because many compound families include isobaric members and many
natural products samples include novel compounds it is not possible
to use this approach for individual compound identification, or to
identify ‘singleton’ masses that are not part of larger subnetworks.
Instead, SNAP-MS is designed to ‘dereplicate’ subnetworks containing
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known compound families to inform and accelerate downstream iso-
lation and identification work.

A number of other tools exist for predicting compound classes
from MS? spectra'?>?’*%, Of these, the CANOPUS tool® that is part of the
SIRIUS data analysis package® is quickly becoming adopted by mem-
bers of the natural products community. CANOPUS predicts ChemOnt
ontological classifications for unknown analytes by extracting mole-
cular features from experimental MS” spectra and comparing these
feature fingerprints to those of over 4 million known compounds that
have been annotated by ClassyFire®. All entries in the Natural Products
Atlas have also been annotated using ClassyFire, providing an oppor-
tunity to directly compare the annotation information offered by both
platforms.

Although CANOPUS contains 2497 ClassyFire classes, many of
these are not relevant to natural products and only 223 are present in
the Natural Products Atlas. By contrast, the Natural Products Atlas
contains 1901 compound families (excluding families with fewer than
three members) based on structure similarity grouping. Among these
families, 1211 contain consistent ClassyFire class assignments, with the
remaining 690 containing multiple ClassyFire classes. Therefore,
SNAP-MS provides a valuable complement to the data obtained from
the CANOPUS package by offering fine-scale family annotations that
subdivide the broader ontological classifications provided by
CANOPUS.

Despite the success of the SNAP-MS approach, a number of
potential future directions exist that would further improve the
accuracy of the methods. Integration of tools such as SIRIUS* that can
accurately derive molecular formulae from MS data would improve
cluster annotations by eliminating the need to search the Natural
Products Atlas for a range of possible adducts ([M + H]*, [M + Na]" etc.)
for each mass, reducing the number of candidate molecules for each
subnetwork. It is tempting to suggest that comparison of MS? spectra
for each node against predicted MS? spectra for candidate annotations
could be used to further improve annotation ranking. To test this
hypothesis we generated cosine scores between experimental and
predicted MS? spectra for selected subnetworks from this study
(Supplementary Note 4). In most cases, cosine scores were moderate
to weak, with DDA MS? spectra outperforming DIA spectra. In most
cases cosine scores did not improve annotation accuracy, suggesting
that further development in MS? spectral prediction is needed before
this approach becomes practical for large-scale library annotation.

Optimizing the chemical clustering method for alignment with
newer MS clustering tools such as Spec2Vec™ is another attractive
development that would reduce situations where compound families
become incorrectly fragmented into smaller subnetworks due to poor
MS? spectral networking. This would have the added advantage of
reducing the frequency of ‘super-clusters’ made up of several different
compound families that have been incorrectly connected due to poor
spectral networking. Use of tools such as ion identity molecular
networking® would also improve accuracy by reducing the complexity
of subnetworks being annotated, and preventing erroneous annota-
tions of subnetworks composed of many fragments of the same
compound. Finally, further improvements to the Natural Products
Atlas including addition of missing compounds from the historical
literature and inclusion of all instances of discovery, rather than just
the original isolation would improve reference database coverage,
with a consequent improvement in annotation accuracy.

In conclusion, SNAP-MS offers a unique mechanism for the
annotation of compound families from MS-based feature grouping
approaches such as molecular networking. The method was successful
at annotating subnetworks possessing greater that three nodes from
pure compound reference libraries (coverage of 59% using the
COCONUT database and 77% for NPAtlas database relevant subnet-
works), in-house extract libraries (coverage of 26%), and published
molecular networks, with an overall accuracy of 89% (194 correct top-

ranked results out of 219 annotated subnetworks). SNAP-MS is avail-
able as an open access online tool for the automated dereplication of
molecular network graphs or lists of related m/z features, making it
appropriate for integration to a wide range of different microbial
natural product discovery workflows.

Methods

Molecular networking

The current study was conducted using three LC-MS datasets. The first,
named “NIH Natural Products Library Round 1” contains 1,267 spectra
and is providled on GNPS" (https:/gnps-external.ucsd.edu/
gnpslibrary/GNPS-NIH-NATURALPRODUCTSLIBRARY json), the sec-
ond, named “NIH Natural Products Library Round 2” contains
7,915 spectra and is provided on GNPS (https://gnps-external.ucsd.
edu/gnpslibrary/GNPS-NIH-NATURALPRODUCTSLIBRARY_ROUND2_
POSITIVE.json), and the third, the actinobacterial dataset, derived from
in-house mass spectrometry data (https://massive.ucsd.edu,
MSV000089680).

A molecular network was created from the first dataset using the
online workflow (https://ccms-ucsd.github.io/GNPSDocumentation/)
on the GNPS website (http://gnps.ucsd.edu). The data were filtered by
removing all MS/MS fragment ions within +/- 17 Da of the precursor
m/z. MS/MS spectra were window filtered by choosing only the top 6
fragment ions in the +/- 50 Da window throughout the spectrum. The
precursor ion mass tolerance was set to 2.0 Da and a MS/MS fragment
ion tolerance of 0.5 Da. A network was then created where edges were
filtered to have a cosine score above 0.7 and more than 6 matched
peaks. Further, edges between two nodes were kept in the network if
and only if each of the nodes appeared in each other’s respective top
10 most similar nodes. Finally, the maximum size of a molecular family
was set to 100, and the lowest scoring edges were removed from
molecular families until the molecular family size was below this
threshold. The spectra in the network were then searched against
GNPS spectral libraries. The library spectra were filtered in the same
manner as the input data. All matches kept between network spectra
and library spectra were required to have a score above 0.7 and at least
6 matched peaks. A molecular network was built using a combination
of the spectra from both the NIH Natural Products Library Round 1 and
Round 2 using the same workflow described above. A molecular net-
work was generated for the actinobacterial dataset using the same
parameters, except that mass tolerances were set to 0.02 Da for pre-
cursor ions and 0.02 Da for fragment ions.

The three molecular networks are available via GNPS at https://
gnps.ucsd.edu//ProteoSAFe/status.jsp?task=868a61e685cb401385
flc24bcOedbe62 (NIH 1), https://gnps.ucsd.edu/ProteoSAFe/status.
jsp?task=d909a4dccc2747218f9a290d05e7841a (NIH 1 and 2), and
https://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=2c39751a7882460
9a0fdadad989003b6 (actinobacterial library).

Structural similarity score selection

For SNAP-MS to correctly identify the compound families generated by
MS-based molecular networking there must be agreement between
the composition of compound families generated by cheminformatic
chemical fingerprinting and by MS-based molecular networking. To
select an appropriate chemical fingerprinting method, we built struc-
tural similarity networks in which nodes represent molecules that are
connected by edges if they were above a set similarity score cutoff.
Structural similarity networks were built using the molecules present
in the “NIH Natural Products Library Round 1” LC-MS dataset and edges
were created using Morgan’s, Molecular ACCess System (MACCS) or
atom-pair fingerprinting with either Sgrensen-Dice coefficient or
Tanimoto coefficient at scores covering the range of 0.01 to 1.00. Each
structural similarity network was compared to the MS-based molecular
network built using the “NIH Natural Products Library Round 1” to
determine the percentage of correctly created and correctly excluded
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edges. The most appropriate structural similarity networking method
was selected by choosing the method with the highest percentage of
correctly created edges when 99.5% of edges were correctly excluded.
We set the 99.5% threshold to minimize the creation of large com-
pound family ‘super-clusters’ that would provide little to no useful
information for annotation.

Structural similarity Network Annotation Platform for Mass
Spectrometry (SNAP-MS) workflow

SNAP-MS accepts input data in the form of comma-separated values
(CSV) with a list of parent masses or as a GraphML network file,
available from the GNPS results pages. Given a GNPS network file that
contains a number of subnetworks, each subnetwork is converted into
a separate mass list and filtered based on selected parameters (mini-
mum/maximum GNPS cluster size). From this point on, each input
follows the same workflow. For a given mass list, masses are binned
into compound groups within a user-defined ppm window, with a
single representative mass from each compound group being used
going forward. Each representative mass is searched against the
selected database using user-selected taxonomic grouping (NPAtlas),
adducts and fragments, and the defined ppm window. Users are
encouraged to use the taxonomic rank filtering option to remove
candidate compound families with no relevance to the sample set (e.g.,
fungal compounds for cyanobacterial samples). Structural similarities
are calculated for all candidate structures between compound groups
using Morgan fingerprinting (radius = 2) and Dice similarity scoring
(0.71 cutoff) to create compound families. Compound families are fil-
tered to remove those families which have fewer members than the
user-defined “minimum NP Atlas annotation cluster size”. Occasionally
the results graphs contain very large numbers of nodes, limiting their
use for compound family identification and significantly impacting the
performance of both the webserver and the Cytoscape desktop soft-
ware. Graphs are therefore filtered by Maximum Node Count (default =
2000) and Maximum Edge Count (default = 10,000) to remove these
very large graphs. Both of these variables can be adjusted in the
parameters section of the webpage. Filtered results are returned as a
network file in which each mass list has its own results graph. Candi-
date structures are presented as nodes, with edges between nodes if
the two structures share a Dice similarity score above the defined
threshold. This results file can be downloaded as either a zipped folder
of individual graphML networks, or a single Cytoscape session file
(.cys) which can be visualized using the network analysis software
Cytoscape* (http://cytoscape.org/). SNAP-MS is available at www.
npatlas.org/discover/snapms. Full documentation for the platform can
be found at https://liningtonlab.github.io/snapms_documentation/.

Generating compound family predictions

Compound family predictions were generated for the combined NIH
Natural products Library dataset, the marine bacterial dataset, and the
six subnetworks from published datasets’*° using the SNAP-MS plat-
form. Appropriate parameters for each SNAP-MS analysis were selec-
ted based on the dataset used and can be found in the supplementary
information (Supplementary Table 4).

Validation of compound family identifications

Compound family predictions made by SNAP-MS in the actinobacterial
dataset were validated through a combination of isolation and NMR
analysis, or co-injections against reference standards. The predictions
of the desferrioxamine and surugamide compound families were
confirmed by isolation of desferrioxamine E and surugamide A from
prefractions RLUS-2153C and RLUS-2144D, respectively (Supplemen-
tary Figs. 5 and 6) The predictions of the amicoumacin and myco-
subtilin/iturin compound families were confirmed by isolation of Al-77-
B and mycosubtilin D from prefractions RLUS-2079C and RLUS-2090B,
respectively (Supplementary Figs. 10 and 7). The predictions for the

enterocin and CDA compound families were confirmed through co-
injection of prefractions RLUS-2153D and RLUS-2052C with reference
standards (Supplementary Figs. 8 and 9). Finally, the prediction for the
nactins compound family was confirmed by the isolation of a nactin
analogue from prefraction RLUS-2210D (Supplementary Fig. 11).
Experimental details are available in Supplementary Note 2.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

The three molecular networks generated in this study have been
deposited in the GNPS database are available at https://gnps.ucsd.
edu//ProteoSAFe/status.jsp?task=868a61e685cb401385f1c24bcOed
be62 (NIH 1), https:;//gnps.ucsd.edu/ProteoSAFe/status.jsp?task=
d909a4dccc2747218f9a290d05e7841a (NIH 1 and 2), and https://
gnps.ucsd.edu/ProteoSAFe/status.jsp?task=2c39751a78824609a0fda
dad989003b6 (actinobacterial library). The two MS reference libraries
used in this study are “NIH Natural Products Library Round 1” con-
taining 1,267 spectra available on GNPS (https://gnps-external.ucsd.
edu/gnpslibrary/GNPS-NIH-NATURALPRODUCTSLIBRARY.json), and
“NIH Natural Products Library Round 2” containing 7,915 spectra and
available on GNPS (https://gnps-external.ucsd.edu/gnpslibrary/GNPS-
NIH-NATURALPRODUCTSLIBRARY_ROUND2_POSITIVE.json), The
actinobacterial mass spectrometry dataset has been deposited in the
massIVE database (https://massive.ucsd.edu) under accession code
MSV000089680. The Natural Product Atlas database used in this
study was v2020_06 and is available from Zenodo (www.zenodo.org)
under https://doi.org/10.5281/zenodo0.6783958. The COCONUT data-
base used in this study was version January 2022 (https://coconut.
naturalproducts.net/download).

Code availability

SNAP-MS is freely available at www.npatlas.org/discover/snapms. All
code for the SNAP-MS platform is available on GitHub (https://github.
com/liningtonlab/snapms) under an MIT license. Documentation for
the platform is available at https://liningtonlab.github.io/snapms_
documentation/. Version 1.2.0 is archived at Zenodo under https://
doi.org/10.5281/zen0do0.7396660.
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