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Disjoining pressure was discovered by Derjaguin in 1930’s, which describes the
difference between the pressure of a strongly confined fluid and the corre-
sponding one in a bulk phase. It has been revealed recently that the disjoining
pressure is at the origin of distinct differential and integral surface tensions for
strongly confined fluids. Here we show how the twin concept, disjoining che-
mical potential, arises in a reminiscent way although it comes out eighty years
later. This twin concept advances our understanding of nanoscale thermo-
dynamics. Ensemble-dependence (or environment-dependence) is one hall-
mark of thermodynamics of small systems. We show that integral surface
tension is ensemble-dependent while differential surface tension is not.
Moreover, two generalized Gibbs-Duhem equations involving integral surface
tensions are derived, as well as two additional adsorption equations relating
surface tensions to adsorption-induced strains. All the results obtained in this
work further evidence that an approach alternative of Hill's nanothermody-

namics is possible, by extending Gibbs surface thermodynamics instead of
resorting to Hill’s replica trick. Moreover, we find a compression-expansion
hysteresis without any underlying phase transition.

Thermodynamics provides a robust framework applicable not only for
fundamental sciences but also for technological innovations. It is quite
like a jigsaw puzzle, a few missing pieces prevent figuring out the whole
picture. For thermodynamics of macroscopic systems, the main pieces
are now in place, giving essentially a whole picture. Terrell L. Hill pro-
posed a first thermodynamic approach for dealing with small systems™?,
named now as nanothermodynamics®, which is attracting much
renewed attention with the advent of nanoscience and nanotechnol-
ogy. Its foundation and various fundamental aspects are currently
under active scrutiny*”®. Hill's nanothermodynamics is based on a
replica trick and a new thermodynamic function, subdivision potential,
which is conjugated with replica number. However, it has never been
measured experimentally, this constitutes a major obstacle for the
experimental validation of Hill's theory. Moreover, the abstract char-
acter of the subdivision potential prevents perceiving directly some
consequences due to size smallness. For example, Hill insisted rightly
on the environment-dependence (or ensemble-dependence) and the

necessity to distinguish two types of intensive thermodynamic vari-
ables, i.e., differential and integral ones, for describing small systems.
However, it remains elusive to relate the ensemble-dependent sub-
division potentials to any experimental observables. The environment-
dependence may have various implications. Does it mean that some
thermodynamic potentials are no longer applicable for small systems,
or, they can yield different values for some deduced quantities? For
example, is the chemical potential calculated from Helmholtz free
energy identical to that from Gibbs free energy? For thermodynamics
of macroscopic systems, different thermodynamic potentials can be
transformed from each other with Legendre transforms. Do these
transforms still hold? Even if they do, which type of intensive variables
should be used for the Legendre transforms, differential or integral
ones? In this work, all these issues will be investigated in details.

One salient feature of a small system is its dominant or even
overwhelming surface contribution to thermodynamic potentials, thus
accounting adequately for it plays a primordial role. We showed
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recently that when surface region invades the whole space in a
nanoscale system, Gibbs surface thermodynamics has to be extended
to account for distinct differential and integral surface tensions”. The
origin of different differential and integral surface tensions, found with
a thermodynamic formulation based on grand potential”®, can be
traced to Derjaguin’s disjoining pressure. In this work, we reveal
another concealed face of the integral surface tension, intimately
connected to disjoining chemical potential (a twin concept of dis-
joining pressure). This finding adds one missing piece to the jigsaw
puzzle of nanoscale thermodynamics and advances our understanding
of the whole picture.

Despite its discovery in 1930’s by Derjaguin and its experimental
measurements since 1950’s (see, e.g. refs. 20-22 and the references
therein), disjoining pressure does not seem to have entered into the
basic knowledge of thermodynamics at an equal footing of the other
thermodynamic functions, such as pressure, chemical potential or
surface tension. From statistical-mechanics, it is established that an
intensive thermodynamic variable of a system embedded in a reser-
voir, e.g., pressure, has the same value as that of the reservoir, if the
conjugated extensive variable, e.g., volume, is allowed to fluctuate. In a
grand canonical ensemble, the chemical potential of the considered
system is equal to that of the reservoir since the conjugated variable,
particle number, is allowed to fluctuate. If the considered system is a
macroscopic one, its pressure is also equal to that of the reservoir
although its volume is fixed in the grand canonical ensemble. Derja-
guin evidenced first that if the size of a system is reduced sufficiently in
one direction, the pressure of the system in this direction ceases to be
equal to that of the reservoir. He also coined the term disjoining
pressure for the pressure difference between the system and the
reservoir. Only very recently, is it revealed that the existence of two
distinct surface tensions, i.e., differential and integral ones, is inti-
mately related to the disjoining prerssure'®. Derjaguin’s disjoining
pressure is the only known disjoining thermodynamic function up to
now. The disjoining chemical potential to be revealed in the present
work is the second one. Disjoining thermodynamics functions arise
when it is impossible to delineate clearly a surface region from the rest
of a system. They account for the intertwined volume and surface
contributions to thermodynamic potentials. The prototypes for such a
situation can be thin slice-shape systems or fluids confined in a narrow
slit pore. Here, we limit our investigation to systems bounded between
two flat surfaces (i.e., no contribution of surface curvatures). Never-
theless, disjoining chemical potential can arise also in more general
situations, e.g. a fluid confined between a solid sphere closely
approached to a flat solid surface (experimental situation for mea-
surements with an atomic force microscope).

Our current knowledge about hysteresis is largely based on the
experimental observations and theoretical investigations of phase
transitions. One can hardly imagine any hysteresis without an under-
lying phase transition. This article proposes a compression-expansion
hysteresis without any underlying phase transition.

Results

Disjoining chemical potential: the twin of disjoining pressure
Disjoining pressure can arise in the thermodynamic formulation based
on grand potential with 7, V, u, A as independent variables (T: tem-
perature; V: volume; u: chemical potential; A: total surface area). In this
case, the temperature and chemical potential of the system are
respectively the same as those of the reservoir thanks to the exchange
of thermal energy and particles between the system and the reservoir.
However, the pressures of the system and the reservoir can be differ-
ent under some conditions since the volume is not allowed to fluc-
tuate. Disjoining pressure arises when the size of the system is
sufficiently reduced in one direction, e.g., a system of thin slice
shape. If we replace u and V by their respective conjugated variables,

i.e, N and p, no disjoining pressure is possible due to the volume
adjustment to keep the same pressure in the considered small system
and its reservoir. But, what happens in such a pTN-ensemble under the
similar circumstances when a disjoining pressure arises in a grand
canonical ensemble? One can plausibly imagine that a disjoining che-
mical potential can arise in the absence of particle exchange with the
reservoir. We show below this indeed happens. For a pTN-ensemble,
Gibbs free energy is the thermodynamic potential and described by
the following fundamental equation,

dG= —SdT +Vdp+udN+ydA, )

where the differential chemical potential, , differential surface ten-
sion, y, volume, V, and entropy, S, are defined respectively by

At this point, it is useful to recall the definition of differential and
integral intensive thermodynamic functions (terminology coined by
Hill'%). A differential intensive function is given by the derivative of a
thermodynamic potential with respect to an extensive variable. For
example, the derivative of G with respect to N gives the differential
chemical potential. For macroscopic systems, it is well-known that the
quotient, GN~!, gives also chemical potential and it is equal to that
given by the derivative. For small systemes, it is necessary to distinguish
such two types of intensive quantities since they are no longer equal.
Following Hill, we keep the same symbols for the differential
thermodynamic quantities as those used for the thermodynamics of
macroscopic systems while a hat is added for the integral intensive
thermodynamic quantities, defined as the quotient between two
extensive variables, e.g., fi=GN~! while the differential chemical
potential is defined by Eq. (2). Although Hill's denotation is used, we
do not resort to his replica trick, neither to his nanothermodynamics.
Despite some similarity between our and Hill's definitions of
differential intensive variables, they are not identical since neither
subdivision potential nor replica number appears in our formulation
based on the usual surface thermodynamics as differential intensive
variables are concerned. When the surface contribution becomes
dominant or overwhelming, every extensive thermodynamic function
scales with surface area. Our previous study” showed that for a fixed
slit-pore width, the volume and the grand potential scale indeed with
surface area. For the pTN-ensemble considered here, we have,

G(T,p,AN,AA)=AG(T,p,N, A), (6)
thus
G(T,p,N, A)=uN +yA, @)
and the following Gibbs-Duhem equation holds,

SAT — Vdp +Ndu+ Ady=0. ®)
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From Eq. (7), we obtain immediately the following result for inte-
gral chemical potential,

Gp.TNA _ A

s A 9
L N Yy ©)

We also obtain straightforwardly the following relation between
differential and integral chemical potentials,

. 0ﬂ>
=p+N|-— .
w=inN (o . (10)

Equation (10) is reminiscent of the relation between differential
and integral pressures or that between differential and integral surface
tensions'. When N scales with A and the second term on the right-
hand-side (RHS) of Eq. (9) is nonnegligible, we have fi # u. This is one
characteristic distinguishing the thermodynamics for small or macro-
scopic systems. Without resorting to Hill’s replica trick, we show here
how differential and integral chemical potentials become different.

If every thermodynamic potential is equally valid for describing
small systems, we anticipate that a disjoining chemical potential (i.e.,
@=p — pbuk = 0) can arise in a pTN-ensemble reminiscently as the
disjoining pressure does in a grand canonical ensemble. In this case, we
rewrite Eq. (7) in terms of a bulk contribution and a surface one as
follows,

G(T,p,N, A)=p"“(T,pN +@N +yA=p"“(T,p)N +ygA, (1)
where p?“k(T, p) is the chemical potential of the same system in the
bulk and y, is an integral surface tension defined by,

N N
yG:y+wZ, (12)

The index G indicates this integral surface tension is defined from
Gibbs free energy. It will be shown that although differential surface
tension, y, is ensemble-independent (thus without any index), the
integral surface tension is ensemble-dependent. From Eq. (11), we
derive also readily the following relation between y and y,,

aG) {a(fli/c)} - {0)70}
== = |6 = A|=X6 ,
4 <6A ron L OA oo YO 0Al N

which is similar to the analogue relation found previously in a grand
canonical ensemble®, i.e.,

13)

60) {a(APo)} - {6170}
=== = = Al=—+ , 14
<a"4 Tuv aA Tuv yQ aA Tuv ( )

where Q is grand potential. y, (index Q distinguishing it from y;) is the
integral surface tension defined by,
T, p, V, Ay=—p"“(T, mV + o A (15)
In Eq. (15), p?k(T 1) is the pressure of the corresponding bulk
system at the same T and p. Equation (12) shows that y; depends on
NA! (surface density). This reflects precisely the impossible delinea-
tion of a clear surface region in the whole system. We see here y;#y,
when @ # 0, in a reminiscent way as what happens in a grand canonical
ensemble, i.e., o #y, when M=0 (I: disjoining pressure)”. So, dis-
joining chemical potential is a twin concept of disjoining pressure
although it comes out now more than eighty years later. Taking
account of the fact that u and y satisfy the Gibbs-Duhem equation given

in Eq. (8) and taking the derivative on the both sides of Eq. (12) with
respect to the surface density, ¢ =N.47}, (the hat emphasizing it is an
integral intensive variable), we obtain,

ai/c]
— =W 16
|:a(p T.p ( )
Substituting Eq. (16) back into Eq. (12), we obtain,
o ai/a]
V=VYc — 40{ - . 17
G a(p o ( )

Although this relation is compatible with Eq. (13), it provides a
more practical description since y; is a function of T, p and ¢, but does
not depend on N and A separately.

The well-known Gibbs-Duhem equation holds for differential
intensive variables (see Eq. 8). Now, we show a generalized Gibbs-
Duhem equation for the integral surface tension, y; can be derived
also. Subtracting the bulk Gibbs-Duhem equation with the same N at
the same p and T from Eq. (8) and using Eq. (12) to express y in term of
Y and @, we obtain,

(S - S”””‘)dT - (V - V”“”‘)dpwad(p + Ady; =0, for p=p** m=0.
(18)

In a similar way, we can derive the following Gibbs-Duhem
equation for g,

(s _ ghulk ) dT+ (N _ Nbulk ) dp+ ATld? + Adjg =0, for p= 2% 1120,
19)

where 7 = V.A7! and the following relation between y and y, was used"”,
(20)

) Vv ;
=y-N-=y—T17.
Va=y—N==y

From Eq. (18), we derive readily the following equation for y,

oV .
<ﬁ> A, 1)
P )1y
where
. V= Vbulk
Y=y (22)
A A

We name A as integral adsorption strain, which is the thickness
difference between the inhomogeneous system and its bulk counter-
part with same N, A, T and p. Due to its close analogy to the generalized
Gibbs adsorption equation derived in ref. 19, we call Eq. (21) also a
generalized Gibbs adsorption equation although it relates y to the
adsorption strain, A.

If we define the differential adsorption strain, A, by,

_|0A

A=A—¢@ [%] T'p. (23)
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which is an analogue of Eq. (17). From Eq. (22), we have,

Az V— Vbulk l |:<a_c> - (acbulk> :|
A A\Op) 7 na o )y
) (30),, (")
- + [ =L —
<6p e \0P)14 T ),
(%) ()
op T op T

Equation (7) is used when going to the third equality in Eq. (24).
Substituting Eq. (24) into Eq. (23) and noting that y and u satisfy the
Gibbs-Duhem equation given in Eq. (8) and u** does not depend on ¢,
we obtain the following generalized adsorption equation for the dif-
ferential surface tension,

(@> A
)14

All the above results rely on the assumption that Gibbs free energy
describes small systems as well as grand potential. Caution must be
taken here because of a dualism behind this assumption. It seems to
affirm ensemble-equivalence, but we will show it holds only for dif-
ferential intensive variables (i.e., same in all the ensembles). However,
integral intensive variables are ensemble-dependent, i.e., different in
different ensembles.

(24)

1l
©

25

Illustration with exact statistical-mechanics results

Using exact statistical-mechanics results, we proceed to check the
validity of all the formal thermodynamic results presented above.
Confined fluids are chosen for such an illustration since they have
many behaviors different from macroscopic ones (see, e.g. refs. 23-30,
not intending to be an exhaustive bibliography of this vast domain),
and provide also an excellent ground for testing nanothermodynamics
and for incubating new concepts and new ideas for nanoscale
thermodynamics®%'**', We consider a fluid confined in a slit pore with
a fluctuating width, z,,. The fluid interacts with each pore wall through
a square-well potential, i.e.,

Viw(z:) = 9(z:) +@(z,, — 2;), (26)
o, i

o(z;)=q - 0s<z<d, (27)
0, z>

where z; is the ith fluid particle’s component of the position vector
along the direction perpendicular to the pore walls. The left wall is fixed
at z=0 and the right fluctuating one at z =z, serves also as a piston for
the pTN-ensemble (see Fig. 1). The value of ¢ can be positive (attractive
fluid-wall interaction) or negative (repulsive fluid-wall interaction). The
fluid-fluid interaction is neglected, i.e., an ideal gas. The smallness
concerns just the system size in the direction perpendicular to the
confining walls. The pore width, i.e., average piston position (z,,), can
be very small while the surface size, i.e., v/A4 can be much larger than
(zy), (A: surface area of one wall). The exact results of statistical-
mechanics can be obtained analytically for this model.

Only the main results are presented in this text and computational
details are given in Supplementary Information (SI). The exact result
for Gibbs free energy is,

NIn(BpA®) — d ABp(ef - 1),
Ninfet _ gen — 92D < (z,)<2d
NIn(BpA®) — 2N, 0<(z,)<d

BG= (28)

—

Vslit el 0 L e T
* pore * P, .Res?rvmt
0..N.A ...NR. [ o ®

>

d

Fig. 1| Schematic presentation of the considered system. N fluid particles (black
dots) are confined in a slit pore connected to a pressure reservoir of N particles
(blue dots) of the same fluid with a pressure of Pg, both at the same temperature.
The pore wall of surface area, A, on the right can slide frictionlessly and serves as a
piston also, thus the pore width z,, (distance between the two pore walls) fluc-
tuates. The fluid particles in the pink zones interact with the pore walls through a
square-well potential of a range d.

where A is the thermal wavelength, 8= (k; T)’1 (kg: Boltzmann con-
stant), and A =2A. The first line on the RHS of Eq. (28) is the result for
weakly or normally confined situations, i.e., average pore width in the
range (z,,)>2d, the second line for strongly confined situations with
d<(z,)<2d and the third line for extremely confined situation with
0<(z,)<d.Itis straightforward to check that Eq. (28) reduces to the
bulk ideal gas result, i.e., BG™¥ =NIn(BpA>), for €=0 or T — co.
Despite the simple expression given by Eq. (28), Gibbs free energy for
the considered model is a quite complicated function. In fact, Eq. (28)
gives not only results for thermodynamically stable states but also for
some metastable states. The results for G in the case of a repulsive
fluid-wall interaction at T = O.9525|£|k5’1 (ef£=0.35) are presented in
Fig. 2. On each branch, we find thermodynamically stable states (black
parts) but also some metastable states (orange parts with higher Gibbs
free energy than the stable states). So, the Gibbs free energy is not a
single-valued function and in some region, it can have even three
values for a given pressure (see the region between p., and p, in
Fig. 2). The two crossing points, p.; and p, are cusps, i.e., the first
derivative at these points is discontinuous, which gives, in conse-
quence two discontinuous jumps of pore width. We will see this when
discussing the compression-expansion isotherm.

The compression-expansion isotherm, i.e., p as a function of (z,,)
at a fixed T, is given by,

Gy (w)22

BpAd . — 1 -, d<{z,)<2d

N P ((z0)) = (zw)/d+z((;iﬂj)) (zw) . (29)
m, 0<(z,)<d

First of all, it is reassuring to see that Eq. (29) reduces to the
equation of state of a bulk ideal gas for £=0,i.e.,p :kBTN(A<zw>)’1
Figure 3 gives an illustration for 7 = O.9525|.€|k,5f1 (ef£=0.35). The two
discontinuous jumps of pore width at p.; and p, correspond precisely
to the discontinuous derivative of Gibbs free energy at the two
crossing points in Fig. 2, which are cusps. It is very interesting to note
that drawing a horizontal line corresponding to p; (or to p,) in Fig. 3
(yellow dashed lines) provides a kind of Maxwell construction. It can be
shown analytically that the turquoise and pink zones have the equal
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Fig. 2 | Gibbs free energy as a function of pressure of an ideal gas confined in a
slit pore. Repulsive square-well gas-wall potential (¢ < 0) at a reduced temperature,
T= 049525|s|k571 (ef£=0.35). The large-pore branch (the left one) and the
intermediate-pore branch (the middle one) cross at p,, the intermediate-pore
branch and the small-pore branch (the right one) cross at p.,. The black parts
represent thermodynamically stable states while the orange parts correspond to
metastable states.

area (see Supplementary Discussion 3 for more details). So, the results
presented in Figs. 2 and 3 seem to indicate an underlying phase tran-
sition although an ideal gas is considered here.

Despite the striking similarity of the results of Figs. 2 and 3 to those
for two successive first-order phase transitions, we will show now there
is no underlying phase transition for the considered system. From Eq.
(28), we obtain respectively the differential chemical potential,

In (,Bp/F’) , 2d<(z,)
0(BG) ok’
Bu= N In 525 — Be d<(z,)<2d, (30)
T.p,A
In (BpA3) —2Bs, 0<(z,)<d
and the integral chemical potential,
In (ﬁp/ﬁ) _ dbp(e) 2d<(z,)
~_ BG _ 3 dppA(efe-1
B =N lnff&g—ﬁs—%, d<(z,)<2d. (3
In (,Bp/l3) —2Bs, 0<(z,)<d

Equations (30) and (31) show distinct differential and integral chemical
potentials for the large-pore and intermediate-pore ranges while for the
small-pore range u = f1. Equation (30) shows for the weakly and normally
confined situations, the confined and bulk fluids have the same chemical
potential, i.e., B = Bub"k = In(BPA>) while a disjoining chemical poten-
tial is found in the strongly and extremely confined situations, i.e.,

o, 2d<(z,)
po=B(u - p*)={ —pe—In(2-e¥), ds(z,)s2d.  (32)
—2f¢,, 0<(z,)=d

This corroborates our initial guess that a disjoining chemical
potential can arise in a pTN-ensemble. Moreover, it is to note that @ is
only a function of T but independent of p. The results for the differ-
ential chemical potential given by Eq. (30) are presented in Fig. 4. From
Fig. 4, we see immediately that the chemical potential changes

o

w

IS

Pressure, BpAdN~1
w

Pc2

N

1 Pc1

05 1.0 15 20 25 3.0
Average pore width, <z,>d~1

Fig. 3 | Compression-expansion isotherm of an ideal gas confined in a slit pore.
Repulsive square-well gas-wall potential (¢ <0) at a reduced temperature,

T= 0.9525|.9|k3’I (ef£ =0.35). The large-pore branch is the right one giving stable
states on the black part and metastable states on the orange part (above p). The
intermediate-pore branch is the middle one giving stable states on the black part
and metastable states on the two orange parts (below p,; or above p.,). The small-
pore branch is the left one giving stable states on the black part and metastable
states on the orange part (below p.,). The pink zone (formed by the curve corre-
sponding to over-compressed metastable states and the horizontal line p,) has the
equal area as the turquoise zone (formed by the curve corresponding to over-
expanded metastable states and the horizontal line p,). The other pink and tur-
quoise zones formed with p, have also the equal area.

discontinuously at p.; and p,. The first jump at p is precisely the
disjoining chemical potential for the strongly confined situation (i.e.,
states on the middle black curve). The sum of the two jumps gives the
disjoining chemical potential for the extremely confined situation (i.e.,
states on the black part of the highest branch). Now, it becomes clear
that none of the horizontal yellow lines in Fig. 3 corresponds to an
underlying phase transition since the two end points do not have the
same chemical potential. So, the removal of the metastable states from
the results given in Figs. 2-4 can be only qualified as a quasi Maxwell
construction since it does not lead to equal chemical potential while
the original one for first-order phase transitions does. Nevertheless,
this quasi Maxwell construction allows for separating thermodynami-
cally stable states from the metastable ones. Moreover, a first-order
phase transition can only take place below some critical temperature
while the discontinuous jumps shown in Fig. 3 subsist at any
temperature T <oo. With the increase of the temperature, the
amplitude of the discontinuous jumps diminishes. But, they disappear
completely only when T — oo, in this limit the three branches in Fig. 3
reduce to a smooth curve and the result of the bulk ideal gas is
recovered. This is another reason why the discontinuous jumps seen in
Fig. 3 should not be interpreted as a phase transition.

It is well-known that the metastable states associated with a first-
order phase transition lead to hysteresis in the compression-expansion
isotherm. Figure 3 shows that metastable states are also found near the
discontinuous jumps. Although they do not correspond to any
underlying phase transition, we can wonder whether they lead also to
some hysteresis, e.g., over-compressed states during a compression
process or over-expanded states during an expansion process. To
answer this question, we performed some pTN-ensemble Monte-Carlo
simulations (computational conditions and details are given below in
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Fig. 4 | Differential chemical potential as a function of pressure of an ideal gas
confined in a slit pore. Repulsive square-well gas-wall potential (£ < 0) at a reduced
temperature, 7= 0‘9525|£|k3’I (ePe=0.35). The large-pore branch is the lowest one
giving thermodynamically stable states on the black part and metastable states on

the orange part (above p,). The intermediate-pore branch is the middle one giving
thermodynamically stable states on the black part and metastable states on the two
orange parts (below p, or above p,). The small-pore branch is the highest one giving
stable states on the black part and metastable states on the orange part (below p.,).

Methods section). The simulation results presented in Fig. 5 show that
the over-compressed and over-expanded metastable states can be
indeed observed. When the pressure of the reservoir is fixed at p., and
the simulation is started with a pore width in the range d<(z,,)<2d,
the piston does not jump to the pore-width range 0<(z,,) <d and the
obtained result is given by the red dot at the right end point of the
horizontal line p = p,. At the same pressure, if the simulation is started
in the pore-width range 0 < (z,,) <d, no piston jump is observed either
and the obtained result is given by the green dot at the left end point of
the horizontal line. No spontaneous jumps are due to the high free
energy barrier to be overcome for such jumps. Such barriers make it
possible to observe also over-compressed states, e.g., the other red
point in Fig. 5 and over-expanded states, e.g., the other green point
in Fig. 5.
The differential surface tension is given by,

—dpp(e¥ —1), 2ds(z,)
ﬁV{%f?)L o WD d<(z)<2d. (33)
" Ao, 0<(z,)=d

When p in Eq. (33) is replaced by u with the help of Eq. (30), we
recover the result for y obtained with grand potential in Ref. 19. This
evidences the ensemble-independence of differential surface tension,
thus justifies its denotation without index indicating the used
thermodynamic potential to define it. Equations (30) and (33) show
also u and y depend only on T and p but not on p=NA"! for the
considered model. The results for the differential surface tension given
by Eq. (33) are presented in Fig. 6. In the range of small pore width
0<(z,)<d, the differential surface tension vanishes since the
confined ideal gas becomes a homogeneous one.

We also used the mechanical definition to calculate surface ten-
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Fig. 5 | Isobaric-isothermal Monte-Carlo simulation results. Evidence for the
hysteresis in the compression-expansion isotherm for an ideal gas confined in a slit
pore (computational conditions and details are given below in Methods section).
Repulsive square-well gas-wall potential (¢ <0) at a reduced temperature,

T= O.9525|£|k3’1 (€f =0.35). pTN-ensemble Monte-Carlo simulation results: red
dots (obtained in a compression process), green dots (obtained in an expansion
process); Exact analytical result given by Eq. (29): lines (the same results as those
shown in Fig. 3).

where py(2), py(2) are respectively the normal and transverse com-
ponents of pressure tensor and the factor 1/2 accounts for the two
interfaces. The normal component of the pressure tensor is constant
everywhere and equal to p to assure the mechanical equilibrium (see SI
for details). The mechanical definition gives the differential surface
tension as in a u7V-ensemble®.
Integral surface tension is given by,
—dpp(ef -1), 2d<(z,)
ﬁ(G _ ﬂbulkN)

Bic= y = _L’;(_e:;:l)+5”7’v, d<(z,)y<2d. (35)
o, 0<(z,)<d

Equations (33) and (35) show for weakly and normally confined
situations, y;=y, while y;#y for strongly and extremely confined
fluids. Now, we show for strongly confined situation, the integral sur-
face tension calculated in pTN-ensemble is not equal to that from a
uTN-ensemble, i.e., ¥ # V. Expressing N and p in terms of u and V on
the second line of Eq. (35) (see section 1.2.4 of Supplementary Note 1.2
for more details), we obtain,

) _vePma o\ [da (2 —ef)
BreTmV, A= —— 15— (eﬁ - 1) [7(1 —bm) —Bo= |
d<(z,)<2d.
(36)

This is indeed different from the result obtained with a grand
potential, i.e.,

. . . Su
sion (see SI for details), i.e., Bro(T,u,V, A= — %% (eﬁs - 1) {1 + (d_;l - 1> eﬁs} ,d<(z,)<2d.
1 L
pMeh=2 | dz[py(2) - pr(2)], (34) (37)
2/ 0
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Fig. 6 | Differential surface tension as a function of pressure of an ideal gas
confined in a slit pore. Repulsive square-well gas-wall potential (¢<0) at a reduced
temperature, T = 09525|s|k3’1 (e£ =0.35). The large-pore branch is the left one
with the thermodynamically stable states on the black part and metastable states
on the orange part (p > p,,). The intermediate-pore branch is the middle one with
the thermodynamically stable states on the black part and metastable states on the
two orange parts (p <p or p > p,,). The small-pore branch is the right one with the
thermodynamically stable states on the black part and metastable state on the
orange part (p <p.,).

Thus, the ensemble-dependence of integral surface tensions is
evidenced. Nevertheless, y, and y are related through the following
relation (see section 1.2.4 of Supplementary Note 1.2 for the check of
its validity),

Vo=V — (@@+117). (38)

Here, we make a special warning for the calculation of surface
tension by molecular simulations. Various methods have been devel-
oped, some based on its integral definition (e.g., extracting surface
contribution from grand potential or integrating Gibbs adsorption
equation) and other ones resorting to its differential definition (e.g.,
mechanical definition). They all give the same result for weakly or
normally confined situations. However, for strongly and extremely
confined situations, it is indispensable to know that integral and dif-
ferential surface tensions are different to avoid any confusion and to
interpret correctly the obtained results.

The integral adsorption-induced strain is given by,

—d(ef -1), 2d<(z,)
A=¢ 48D g<(z,)<2d. (39)
0 0<(z,)=d

Since A does not depend on ¢, we obtain immediately that A =A. In
fact, this equality is due to the independence of disjoining chemical
potential on pressure. Subtracting bulk Gibbs-Duhem equation from
Eq. (8), we obtain,

(s-s”“’k)dr— <V— v”“’k>dp+Ndw+Ady:0, (40)
which gives immediately,
o), 0(5),
) =A-@|—) =A. 41
<6p T ?\op T @D
The second equality on the RHS of Eq. (41) is obtained when
6w>
~—) =0. (42)
(ap T

Comparing Eq. (41) with Eq. (25) shows immediately A=A. Since we
have not succeeded in proving Eq. (42) in general, we consider it as a
fortuitous result for the considered model. From Egs. (35) and (39),
we can check readily that the adsorption equation for y; given in
Eq. (21) holds.

Discussion
More than eighty years after the discovery of disjoining pressure, we
reveal that disjoining chemical potential can also arise for thin slice-
shape systems. Disjoining pressure links differential surface tension to
the integral surface tension defined with grand potential. In parallel,
disjoining chemical potential links differential surface tension to the
integral surface tension defined with Gibbs free energy. As environ-
ment dependence is concerned, intensive thermodynamic variables
can be classified into two categories. The differential intensive vari-
ables are ensemble-independent while the integral intensive variables
are ensemble-dependent. For example, integral pressure and disjoin-
ing pressure arise in a grand canonical ensemble while integral che-
mical potential and disjoining chemical potential arise in a pTN-
ensemble but not in a grand canonical ensemble. Acquaintance of this
dualism of environment dependence is indispensable for under-
standing the behaviors of small systems and for interpreting correctly
the observations from experiments or simulations for such systems.
For example, only when the concepts of differential and integral sur-
face tensions and the ensemble dependence of the latter are taken into
full account, can one understand the possible different results
obtained from various simulations based on different definitions of
surface tension. The results presented in this article allow for relating
these results to each other and also for checking their thermodynamic
consistency. Moreover, only differential intensive variables can be
used for Legendre transforms to change correctly one thermodynamic
potential to another.

Despite its apparent simplicity, the model used for illustration,
i.e.,, an ideal gas confined in a slit pore, gives some complicated
behavior. The exact analytical statistical-mechanics results involve
both thermodynamically stable and metastable states. The dis-
continuous jumps in the compression-expansion isotherm cannot be
attributed to any underlying phase transition since the two end points
of such jumps do not have the same chemical potential. Moreover, the
discontinuous jumps subsist at any temperature T <oo while a first-
order phase transition has a critical point at a finite temperature. The
metastable states are observable in pTN-ensemble Monte-Carlo simu-
lations, which lead to hysteresis in the compression-expansion iso-
therm. So, such a hysteresis alone can no longer be taken as the
signature of a phase transition and this complicates the investigation
of phase transitions in small systems. It becomes mandatory to check
the equality of p and that of p between the two coexisting phases.
Integral surface tension, both y, and y,, are in principle experimen-
tally measurable. The generalized adsorption equations derived
recently’”” and in the present work relate them respectively to integral
adsorption and adsorption-strain. The adsorption isotherms can be
obtained in routine laboratory measurements We expect our present
work will give some impetus for elaborating experimental measure-
ments of adsorption-strain with deformable porous materials. Further
investigations with more realistic models by molecular simulations will
contribute to the general validation of our findings.

Methods

Analytical statistical-mechanics calculations

The general thermodynamics formalism might appear abstract. A
concrete illustration helps substantiating concepts like disjoining
chemical potential, ensemble-dependence of integral surface tensions.
For such an illustration, some exact statistical-mechanics calculations
are carried out analytically for a well-defined simple model by
neglecting interaction between fluid particles. Such a simplification
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does not affect the generality of the illustration since the very exis-
tence of disjoining chemical potential, the ensemble-dependence of
the integral surface tensions and the validity of the proposed
adsorption equations are all clearly revealed. So, the chosen model
fulfills perfectly its role for illustration. Moreover, the obtained analytic
results enforce its demonstrative power. Interparticle interaction gives
certainly an additional contribution to both differential and integral
surface tensions, but it cannot cancel the main effect responsible for
the two distinct surface tensions, which is due to particle-wall inter-
action. We believe the interaction between fluid particles even
enhances the fluid-mediated force between pore walls. Moreover, the
interparticle interaction should not affect the existence of the
observed compression-expansion hysteresis since it is mainly due to
particle-wall interaction. Since all our formal results are derived from
thermodynamics, they hold for any system whatever are the interac-
tions between its components.

Isobaric-isothermal Monte-Carlo simulation

The standard pTN-ensemble Monte-Carlo method® can be readily
adapted for the model considered here. The MC simulations are per-
formed under the following computational conditions: (1) reduced
temperature: T =0.9525|elk;"; (2) number of particles: N=432; (3)
square-shape pore wall of side length equal to 12d; (4) number of MC
cycles for preparing the system to equilibrium: 4500; (5) number of
production MC cycles to obtain the simulation results given in Fig. 5:
9000. The statistical errors of the Monte-Carlo simulations do not
exceed 0.5% (error bar smaller than the dot size in Fig. 5).

Data availability

The author declares that the data supporting the findings of this study
are available in the paper and its Supplementary Information files. All
relevant data are available from the corresponding author on request.

Code availability

The isobaric-isothermal Monte-Carlo simulation code used to obtain
the simulation results presented in Fig. 5 is available from the corre-
sponding author on request.
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