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Inferring optical response from other correlated optical response is highly

demanded for vast applications such as biological imaging, material analysis,
and optical characterization. This is distinguished from widely-studied for-
ward and inverse designs, as it is boiled down to another different category,
namely, spectra-to-spectra design. Whereas forward and inverse designs have
been substantially explored across various physical scenarios, the spectra-to-
spectra design remains elusive and challenging as it involves intractable many-
to-many correspondences. Here, we first dabble in this uncharted area and
propose a generation-elimination framework that can self-orient to the best
output candidate. Such a framework has a strong built-in stochastically sam-
pling capability that automatically generate diverse nominations and eliminate
inferior nominations. As an example, we study terahertz metasurfaces to
correlate the reflection spectra from low to high frequencies, where the
inaccessible spectra are precisely forecasted without consulting structural
information, reaching an accuracy of 98.77%. Moreover, an innovative
dimensionality reduction approach is executed to visualize the distribution of
the abstract correlated spectra data encoded in latent spaces. These results
provide explicable perspectives for deep learning to parse complex physical
processes, rather than “brute-force” black box, and facilitate versatile appli-

cations involving cross-wavelength information correlation.

Remarkable progress has been made in recent years in the devel-
opment of intelligent metamaterials that involve deep learning to
mutate the design and working mode of metamaterials'™. As artifi-
cially engineered structures, metamaterials have emerged as a key
player in manipulating electromagnetic (EM) waves with unpar-
alleled optical properties. In particular, their planar equivalence,
metasurfaces, have recently gained wide popularity owing to the
negligible thickness, better integration, and lower insertion loss®.
These breakthroughs have motivated scientists to revisit estab-
lished physical concepts and facilitated a myriad of exciting appli-
cations that cannot be replicated with natural materials®®. In these

studies, a pivotal step is to design a meta-atom structure and spa-
tiotemporal metasurface layout for specific requirements’®.
Although the degrees of freedom in metasurface design are tre-
mendous and flexible, conventional bottom-up design strategy can
hardly be generalized into concrete guidelines. Conventional
metasurface designs mostly rely on site-specific physical models,
such as equivalent circuit model®, and lengthy full-wave numerical
simulations, such as the finite-difference time domain'. For a given
EM response, researchers often need to finely tune the geometries
and iteratively search for an optimal answer in a prescribed manner.
This procedure necessitates repeated manual labor and expensive
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computing resources, and the design result is often hampered by
the existing design templates and limited physical intuition.

Data-driven methods based on deep learning allow a computa-
tional model to learn representations of data with multiple levels of
abstraction and thus carry out tasks without explicit programmed and
procedural instructions. Besides its mainstream applications in
classification”, translation'””®, drug discovery, and neuroscience™',
deep learning has recently started to interact with metamaterials. Such
interaction promises to significantly accelerate the design of photonic
structures and circumvent low-efficiency drawbacks in conventional
design strategy""®. Intelligent metasurface design can be generally
divided into two classes: forward®?° and inverse design®. Inverse
design is opposite to forward design, meaning the direct generation of
the metasurface candidates for the user-defined optical response. Yet,
inverse design is not simply reciprocal to forward design due to the
non-uniqueness issue. To date, we have witnessed both forward and
backward designs have been well studied with different network
structures, with the common goal of building up a bidirectional
“expressway” between the design parameters and optical response >,

However, there is another class of metasurface design that has
been ignored, i.e., the inference of optical response from other corre-
lated optical response. This is instrumental in a wide range of applica-
tions, for example, to extract the desired images, spectra, and material
features from other easily accessible information with the advantages of
low cost and easy measurement®. To distinguish it from forward and
inverse designs, we term it the third-class metasurface design. Achiev-
ing third-class metasurface design faces a formidable challenge because
it involves complex many-to-many mapping, rather than simply one-to-
one and one-to-many mapping®**. Many-to-many mapping means that
there are multiple correct answers for one given input and vice versa. In
doing so, conventional deep learning algorithms will become conflicted
on how to adjust learnable weights and the convergence cannot be
guaranteed””, Besides, the inherent bias in conventional one-to-many
network cannot be evaluated and mitigated in virtue of the structural
information anymore. The direct connection of two standard one-to-
many networks will cause the magnification of the error. Thus, it is
imperative to develop a powerful and general network architecture and
facilitate the third-class metasurface design.

In this work, we for the first time dabble in this uncharted area and
propose a generation-elimination framework to automatically gen-
erate many possible output candidates and then retain the optimal.
Such framework consists of two cascaded networks, namely, genera-
tion and elimination networks. For a given input, the generation net-
work is capable of producing diverse candidates by sampling over its
latent space based on a variational auto-encoder (VAE) structure®.
Then, the elimination network eliminates all inferior candidates
through the merging of two latent spaces; the operation process is
understandable as a hierarchical bifurcating tree, which builds up a
two-way mutual selection between two spaces and eliminates the
inherent error to the greastest extent. We take the terahertz meta-
surface as an example to demonstrate the inference of reflection
spectra from low to high frequencies. After the neural networks have
been trained, the retained output shows a precise match with the
ground truth. Compared with the existing practices of forward and
inverse designs, our generation-elimination mechanism provides a
general and efficient gateway to find out the optimal solution in
complex and non-unique correspondences. Such ability isimportantin
tackling many problems involving many-to-many mapping that is
commonly encountered in metasurface applications, such as invisi-
bility cloak®*, optical computing®, and wireless communication®®,

Results

Concept of the third-class metasurface design

The bidirectional non-uniqueness predicament is prevalent in meta-
surface and photonic design. A representative example is to infer the

optical response from the low-frequency to the high-frequency band.
Such inference is meaningful for avoiding expensive high-frequency
detections, recovering high-frequency information after Fourier
transform, and reducing meshed design space and simulation time.
For example, in communication and Raman spectroscopy, in con-
junction with the low-frequency correlation, the noise in the high-
frequency region can be largely wiped off***°. Similarly, in the spectral
analysis of proteins that contain high-frequency noise, the weaknesses
in smoothing and peak identification in convention methods can be
overcome by virtue of low-frequency component*. And as a more
concrete example, the low-resolution images obtained from the syn-
thetic aperture radar (SAR) system could be transitioned to the high-
definition one with negligible processing time for some real-time
applications*’. However, the realization of this spectral correlation is
difficult and cannot be easily duplicated from conventional forward
and inverse designs due to the complex many-to-many mapping.
Currently existing designs intrinsically solve one-to-one or one-to-
many mapping issues, eliding the nature of physical interpretability
and the solution diversity.

Our third-class design strategy is delineated in Fig. 1. As a repre-
sentative and generalizable example, we consider an elliptical-shaped
metasurface, where the interested frequency band ranges from f; to f5.
A magnifying glass is leveraged to schematically represent our VAE-
based sub-networks and its latent space. The generation “magnifier” is
trained to encode low (f; to f>) and high (f; to f3) frequency bands into
the latent space using basic gradient update and back-propagation
algorithm. The optimal candidates labeled from 1 to k are generated
(the blue spectra in Fig. 1) by sampling over its latent space when given
the input spectra (the red spectra in Fig. 1), without consulting struc-
tural information. A similar operation is also applied for another VAE-
based sub-network, i.e., elimination “magnifier”. Compared with con-
ventional forward/inverse design, our third-class metasurface design
heralds a novel class of metasurface design and generalizes the pre-
vailing paradigms.

Network architecture

Figure 2a schematically depicts the network architecture that contains
two cascaded networks, namely, generation network and elimination
network. As its name implies, the generation network serves as a
producer to manufacture diverse candidates, and the elimination
network acts as an inspector to pick out the optimal one. Both net-
works are composed of an encoder, a latent space, and a decoder.
When two cascaded networks have been trained independently, only
their decoders will be preserved and combined by a hierarchical
bifurcating tree. As shown in Fig. 2b, the bidirectional mapping and
two-way selection are built up between low-frequency and high-
frequency spaces, and the inferior candidates can be excluded by
comparing the Euclidean distance between the label input and sec-
ondary candidates in the low-frequency space. The detailed layer-level
information is referred in Fig. 2c. For simplicity, only the generation
network is drawn, and the elimination network is easily reproduced by
swapping the locations of low and high frequencies. The reflection
coefficient during the high-frequency band from 60 to 100 THz is
discretized into 668 data points. Owning to the geometrical symmetry
of the ellipse pattern, only three reflection coefficients, Ry, Ry and Ry,
are considered, constituting a 2004-dimensional input (output) vec-
tor. Notice that in interpreting the structure of the generation network,
both input and output refer to the same high-frequency component
(the output x’ can be deemed as the reconstruction of the input x); this
is consistent with the working mechanism of auto-encoder and VAE.
Meanwhile, the “input” we mentioned in Fig. 1 corresponds to the
“label” (y) in both Fig. 2a, c. It serves as another input element as
indicated by the blue boxes. The interested region of the label starts
from 40 to 60 THz and is discretized into 333 data points, constituting
a 999-dimensional label vector. It is the label that transforms an
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Fig. 1| Illustrative procedure of metasurface spectral correlation. Despite a
variety of network architectures and physical scenarios, the common practices
behind the existing metasurface designs bascially regard the reciprocal transfor-
mation of physical structures and spectra as forward (one-to-one) or inverse (one-
to-many) mapping process, as shown in the lower right. In our proposal, taking the
inference of optical response from low-frequency to the high-frequency band as an
example, we first explore the third-class metasurface design, i.e., spectra-to-spectra
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design. This is much challenging and non-trivial due to the bidirectional non-
uniqueness predicament. To facilitate the understanding, we leverage a magnifying
glass to schematically represent the VAE-based generation network and its latent
space. Without consulting any structure information, the input spectra combined
with stochastically sampled latent variables will produce diverse output candidates,
which waits to be further picked in the elimination network.

unsupervised model VAE (Bayesian model’>*’) into a supervised model
conditional VAE (conditional Bayesian model**).

As indicated in Fig. 2c, there are three types of variables in our
VAE-based sub-network: input or output variable x (high spectra),
label variable y (low spectra), and latent variable z (the prior prob-
ability py(z) is modeled by standard Gaussian distribution
pe(2) ~ A°(0,1)). The graphic mathematical relationship of these
three variables is discussed in Supplementary Fig. S1. For the
training phase, first, a feature extraction module composed of 4
fully connected layers is used to compress the input x into a lower
dimension. Then, the input feature is concatenated with the label
information y and passes through another three concatenation
layers. The mid-part of the sub-network embodies how we create
the latent space in Fig. 2a, where multivariate Gaussian-based dis-
tribution g,,(z|x,y) is introduced to approximate the true posterior
distribution of one-to-many mapping py(z|x,y). Since we employ
Gaussian to perform variational approximation, the variational
parameter @ (the family of distributions) would be the mean and
variance of the latent variables for each data point ¢, =(ﬂx,.,0)2q)~
In our scene, considering the time cost and efficiency maximization,
only two sets of Gaussian distribution variables, (u;,0;) and
(1,,0,), are generated from the network neurons of the preceding
layer, spawning a 2D latent space. To offer a clear-cut similarity
between the approximate posterior q,(z|x,y) and the true posterior
Do(zIx,y), we define a Kullback-Leibler divergence term
KL[g,(zIxY)lIpg(z|x,p)] to assess the information lost between the
probability distribution and the approximated one. The ultimate
goal is to seek out the optimal variational parameter ¢ to minimize
the above term. Due to the existence of intractable peaky evidence
term py(x|y), the divergence is hard-to-reach via direct computa-
tion; see Supplementary Note 1. Hopefully, in virtue of ELBO (i.e.,
the evidence lower bound, Eq. (54)), it could be transformed into an

alternative objective function, defined as:

Levar®.y:0,0) =KL[q,z1XY) | Po(zI Y] = g 21y (108 Po(XIZY)] (1)

where the first term is KL divergence loss, and the second term is an
expected reconstruction loss. The detailed formulas of the objective
function are left in Supplementary Note 1.

Two latent Gaussian variables are then sampled from the latent
space and concatenated with the label information y once again.
After going through a reconstruction module consisting of five fully
connected layers, they are finally decoded into the reconstructed
output x’. The distance between x and x’ is calculated as a negative
maximum log-likelihood in the second term of Eq. (1). During the
inference phase with user-defined or testing labels, we randomly
sample two Gaussian variables from .4°(0,/), performing with the
identical concatenating and decoding processes to generate realistic
output candidates. For further illustration, the whole latent space is
composed of countless standard Gaussian distributions with spatial
continuity after training. The label seeks out a specific standard
Gaussian distribution, and then the variables are randomly sampled
from the selected Gaussian distribution and decoded into candi-
dates, constituting the solution domain in Fig. 2b.

Take it into a nutshell, when training the sub-network conditioned
on labels, the input and output are required to be consistent while
retrieval diversity needs to be guaranteed. In other words, the recon-
struction loss and KL divergence loss are always in opposition to each
other until convergence, that is, a one-to-many mapping relationship is
established. After that, the random sampled variables combined with
the testing label can retrieve plenty of candidates in the infer-
ence phase.
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Fig. 2 | Network architecture. a A macro perspective to look at the architecture of
the proposed network consisting of two cascaded networks, namely, generation
network and elimination network, each of which is composed of an encoder, the
latent space, and a decoder. b The interconnection between two networks. For a
given input (low frequency), the generation network can generate various candi-
dates (high frequency), and the elimination network will reversely map each can-
didate into the original space. The optimal candidate is picked out by calculating
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the Euclidean distance between the input and secondary candidates. ¢ The layer-
level illustration of the generation network. The feature extraction module com-
bined with three concatenation layers composes the encoder, while the recon-
struction module combined with Concat4 composes the decoder. Sampled
variables from the two sets of Gaussian distributions (i.e., variational posterior)
constitute the latent space.

Visualizing latent space with auto-encoders

To visualize the distribution of latent space 1 in Fig. 2c and verify its
capability in encoding input/output data, we deploy auto-encoder
approach to compress the high-dimensional spectra data into con-
tinuous one-dimensional data. Distinct from conventional methods
that represent discrete categories with one-hot vectors (e.g., geometry
categories in metasurface design or digital labels in handwriting
recognition), our continuous spectra data are more abstract and
unrepresentable. In doing so, two auto-encoders are employed to learn
the compressed and distributed spectra representations (i.e., encod-
ings), which are simplified to e; (input data) and e, (output data) ran-
ging from O to 1; see the detailed auto-encoder structure in
Supplementary Note 2.

Figure 3a shows the 2D distribution of 600 encoded training data
featured and colored by 40-60 THz spectra representation. Whenever
e, is assigned, a Gaussian distribution will be extracted (Supplementary
Fig. S4), which accords with our pre-defined standard Gaussian prior
distribution pg(z) ~.4°(0,/). Figure 3b shows the corresponding low-

frequency input spectra (e; =0.4), and 11 points are circled from the
extracted latent Gaussian distribution in Fig. 3a. For each point, if we
concatenate these 2D latent variables with label information (i.e., the
input spectra in Fig. 3b) and execute the reconstruction module
(analogous to the inference phase), their corresponding high-
frequency spectra will be decoded, as showcased in Fig. 3c. More
broadly, any variable z sampled from standard Gaussian distribution
combined with label information can be decoded into a nominated
solution, not merely 11 training data points.

In addition, by feeding both spectra into the sub-network,
the latent variables are expected to encode the information on
60-100 THz at the same time. Figure 3d shows the selfsame 2D
latent distribution of encoded training data yet featured by
60-100 THz spectra representation e,. All points are clearly
separated into several clusters, suggesting that our VAE-based
sub-network is able to automatically distinguish different high-
frequency spectral curves, without providing the corresponding
spectra representation. For example, point 1 and point 2 with
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Fig. 3 | Feature extraction and latent space visualization. a 2D distribution of
600 encoded training data featured and colored by 40-60 THz input spectra
representation. The 999-dimensional inputs (i.e., labels) are compressed into
1-dimensional spectra representations (e;) with the help of the auto-encoder, whose
value ranges from O (pale yellow) to 1 (dark violet). 11 points are circled from the
extracted latent Gaussian distribution with e;=0.4. b The corresponding low-
frequency input spectra when e, = 0.4. ¢ The ground-truth spectra of 11 points and
their metasurface designs. For each point, the 60-100 THz output spectra are
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retrieved by concatenating the 2D latent variable with the 999-dimensional input
(i.e., label information) and then going through the reconstruction module. d The
same 2D distribution of 600 encoded training data featured and colored by
60-100 THz output spectra representation. The 2004-dimensional outputs are
compressed into 1-dimensional spectra representations (e,) with another trained
auto-encoder. All points are clearly separated into different clusters, where the
points possessing similar e, values tend to have similar spectrum curves (such as,
point 1 and point 2) and vice versa.

similar e, values will have nearly the same spectral curves (as
shown in Fig. 3c), whereas the spectrum curves of point 1 and
point 7 are quite divergent because their e, values are different.
This not only validates the effectiveness in dimensionality
reduction by auto-encoder, but also proves that the latent vari-
ables with only two dimensions can conditionally encode input
and output spectra into a compact but informative space.

Nominated results from the generation network

To confirm the superiority of our generation network, we com-
pare our method with others (Fig. 4). Three samples are blindly
selected from the shuffled testing dataset and their input spectra
from 40 to 60 THz are plotted in Fig. 4a. We first evaluate the
performance of conventional fully connected network. By treat-
ing third-class metasurface design as a biunique problem and just
using several fully connected layers, conventional fully connected
network (FCN) arouses distinct inconsistencies between the
ground truth (the solid lines) and predicted spectra curves (the
dashed lines), as shown in Fig. 4b, exposing its shortcoming of
ignoring the non-convergence nature in the third-class metasur-
face design; see Supplementary Note 2 for more details. On the
contrary, our generation network produces diverse and more
precise candidates in Fig. 4c. By sampling latent variables from
the prior standard Gaussian distribution, we obtain retrieved
candidates colored with different transparencies in dashed lines,
all of which are nominated results waiting to be further filtered in
the elimination network. Here, for the sake of brevity, we draw
only three sets of candidate solutions, yet at least one of which is
in good agreement with the ground truth. It verifies that our
generation network is superior in solving such non-convergence
problems.

Optimal results from elimination network

An elimination network is indispensable by virtue of two aspects. First,
the generation network embodies a one-to-many mapping from low to
high-frequency band. Accordingly, an inverse one-to-many mapping of
optical response from high to low-frequency band is required. In other
words, every optimal 60-100 THz nomination will generate various
40-60 THz secondary candidates, constituting a data structure ana-
logous to the tree diagram in Fig. 5a. Second, the KL divergence termin
Eq. 1 reveals that there is a deviation between the true latent dis-
tribution and standard Gaussian prior distribution. It means that the
latent variables, though sampled from the acceptable region, are not
guaranteed to retrieve highly precise nominations. As delineated in
Fig. 2a, the elimination network has a similar structure to the genera-
tion network. The only difference is that the label variable y (input or
output variable x) is assigned with the high-frequency (low-frequency)
spectra. It is worth emphasizing that two sub-networks share the same
training dataset, without any glance at the testing dataset during the
training phase.

Furthermore, we exploit a tree diagram to clarify how we
combine the generation “magnifier” and elimination “magnifier” to
build up the bidirectional mapping between two spectra spaces in
Fig. 2b and obtain the ideal solution. As depicted in Fig. 5a, several
father nodes discovered by the generation “magnifier” are linked to
the input root node. Then, each father node gives birth to some
secondary candidates termed as leaf nodes by using the elimination
network. The core is that the father node with the most orthodox
leaf node will be chosen as the final output, and “the most orthodox”
is defined as the minimum distance between the root node and the
leaf node, or alternately say, the minimum Euclidean distance
between the input and secondary candidates in Fig. 2b. The pro-
cedure is somehow similar to the “cycle consistency” criterion in the
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Fig. 4 | Result comparison with different design strategies. a The input spectra
of three randomly selected samples from the testing dataset, where three reflection
coefficients, Ry, Ry, and Ry, are plotted for each sample. b The inconsistent results
when conventional fully connected network is used to handle the non-convergence
spectra-to-spectra problem. The solid and dashed lines represent the ground truth
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and predicted results from the fully connected network, respectively. ¢ The results
with our VAE-based generation network. The dashed lines represent different
candidates generated by sampling over the latent space, and at least one candidate
is matched well with the solid line.

unsupervised model CycleGAN*, which also minimizes the distance
between the original data and the cycle-transferred data in order to
preserve content consistency while performing image style trans-
fer. It requires the data from each domain to possess inherent
shared characteristics (i.e., style). By contrast, we use “cycle
consistency” for the precise matching of data pairs at a microscopic
level of complex many-to-many mapping. The value of the minimal
distance will also indicate the rationality of the obtained optimal
solution for any random input. Figure 5b shows the final solutions of
spectra-to-spectra prediction. With the same input in Fig. 4a, the
final solution is closely matched with the ground truth in all cases.
The satisfactory results imply that the elimination network is com-
petent for picking out the parent node by producing the optimal
leaf node.

To quantify the outstanding performance of our framework, we
quantitatively define three criteria as follows. (1) MSE: the mean square
error between the predicted spectra and ground-truth spectra. (2)
Average accuracy (1 — e,,,) x 100%, where e, is defined as the average
relative error between the predicted spectra and ground-truth spectra,
that is, 230, 1y; — yil/v;, where y;(¥) represents the ith data point of

the ground-truth (predicted) spectra, and n is the number of spectral
points. (3) Similarity: the correlation coefficient between two vectors/
curves, defined as,

Z?:l(yi —.)7) X —Y)
V0= P %\ 0 - Y

Similarity = x100% @)

where y(y') represents the mean of the ground-truth (predicted)
spectra over all points y;(y}). Figure 5c displays the summary statistics
of three quantitative criteria on the elliptical dataset when trained with
the baseline FCN model and our framework, separately. For the MSE
loss, the baseline FCN is nearly one order of magnitude larger than our
framework, indicating the failure of convergence. Besides, the average
accuracy and the similarity give more intuitive comparisons between
the predicted spectra curves and the ground truth. Both criteria
exhibit much higher accuracies when our framework is adopted. See
Supplementary Note 5 for results on two additional datasets. All of
these guarantee the generality and versatility of the proposed
framework.
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Fig. 5 | Mimicking the generation-elimination mechanism with a bifurcating

tree. a A tree diagram used to illustrate the generation-elimination mechanism and
the birth of the best candidate. The father node whose leaf node has the minimum
distance from the root node is chosen as the final output via four steps. b The final
solutions output by the elimination network, whose inputs are given in Fig. 4a. The
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solid and dashed lines represent the ground-truth and filtered results by the
elimination network, respectively. ¢ The quantitative comparisons of three criteria
on the elliptical dataset when trained with the baseline FCN model and our fra-
mework, separately.

Discussion

To conclude, we put forward another class of metasurface design and
demonstrate its great importance in spectra-to-spectra inference. A
novel generation-elimination framework is proposed to cope with the
complicated many-to-many mapping dilemma; this is unruly in con-
ventional deep learning algorithms and unrepeatable from widely-
studied forward and inverse templates. In our scheme, the stochasti-
cally sampled latent variable combined with the input spectra affords
the leverage to generate diverse nominations and retain the best one
through VAE-based networks, benefiting a lot of applications involving
complex physical processes. Furthermore, we come up with an effec-
tive approach called auto-encoder to execute dimensionality reduc-
tion on continuous and abstract data nonlinearly, which can be
adopted in a multitude of data-dependent yet difficult-to-handle
visualization scenarios. In addition to characterizing high-frequency
spectra, the proposed generation-elimination framework could be
readily extended to other research domains of photonic design or
even facilitate studies in computer science where conditional varia-
tional auto-encoder (CVAE®) originates, providing a universal and
effective method for fields that are also confronted with bidirectional
non-uniqueness predicament. Looking forward, with the nature of
physical interpretability elegantly investigated and preserved by the
neural networks, we can further facilitate real-world applications, such
as illusive cloaking>®*¢, imaging"’, and wireless communications®**%**,

Methods

Data collection

In total, 800 elliptical-shaped metasurface patterns are created in
Python by sampling over three parameters, i.e., major axis, minor axis,
and rotation angle (ranging from O to 90 because of its symmetrical
property and cross-polarized reflection). To prove the generality of
our model, other geometries (cross, h-shape, split-ring, arc, sector and

rectangle, etc.) are also collected by sampling over their parameters;
see Supplementary Figs. S6 and S7 and Supplementary Table S5 for
intuitional and quantified results of two geometrical patterns. The
relevant pattern-generating algorithms and the detailed illustrative
procedure are included in Supplementary Note 6. The collected pat-
terns are then transformed into 64 x 64 binary images and matrixes,
prepared to be sent into numerical simulations, where “1” stands for
gold and “0” stands for air. Instead of using fixed parameterization, we
treat metasurfaces as 2D pixel-wise images. In this way, arbitrary
design shapes can be properly represented, avoiding the limitations of
some existing practices that are only able to represent fixed structures
with few geometrical parameters.

Numerical simulations

In the numerical simulation, we import these binary matrixes into the
commercial software package CST Microwave Studio and con-
tinuously generate the reflection spectra data using the MATLAB-CST
co-simulation method. The metasurface with a period of 2um is
modeled as a sandwich structure, where the middle spacer is treated as
a lossless dielectric with dielectric constant ¢,=4 and thickness
ts=100 nm, and the thickness of the top resonator and the bottom
ground plane is fixed as tm =50 nm. The reflection spectra of interest
are set in the mid-infrared region from 40 to 100 THz and uniformly
discretized into 1001 magnitude data points for each reflection coef-
ficient, constituting a 3003-dimensional vector. The input spectrum,
ranging from 40 to 60 THz, is a 999-dimensional vector, while the
output spectrum is a 2004-dimensional vector ranging from 60 to
100 THz.

Training of generation and elimination network
The simulated data are shuffled, and 75% are blindly selected as the
training set, and the remaining 25% are used for validation and testing.
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Both sub-networks are trained using Python version 3.7.11 and Ten-
sorFlow framework version 2.7.0 (Google Inc.) on a local computer
(Intel(R) 6-Core CPU i5 @3.7 GHz with 8GB DDR4, running a macOS
operating system). It takes nearly an hour for each network to con-
verge after running 10,000 epochs using a batch size of 100 when
running on elliptical-shaped metasurfaces. In the future, transfer
learning®** could be considered among different geometric pattern
groups, and unlabeled spectra data could be utilized in a semi-
supervised learning strategy*’.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Data presented in this publication is available on Figshare with the
following identifier (https://doi.org/10.6084/m9.figshare.23601057).

Code availability
The codes used in the current study are available from the corre-
sponding authors upon request.
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