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Accelerated discovery of multi-elemental
reverse water-gas shift catalysts using
extrapolative machine learning approach

Gang Wang1,7, Shinya Mine 1,7, Duotian Chen1,7, Yuan Jing1, Kah Wei Ting1,
Taichi Yamaguchi1, Motoshi Takao1, Zen Maeno2, Ichigaku Takigawa 3,4,5 ,
Koichi Matsushita6, Ken-ichi Shimizu 1 & Takashi Toyao 1

Designing novel catalysts is key to solving many energy and environmental
challenges. Despite the promise that data science approaches, including
machine learning (ML), can accelerate the development of catalysts, truly
novel catalysts have rarely been discovered through ML approaches because
of one of its most common limitations and criticisms—the assumed inability to
extrapolate and identify extraordinary materials. Herein, we demonstrate an
extrapolative ML approach to develop new multi-elemental reverse water-gas
shift catalysts. Using 45 catalysts as the initial data points and performing 44
cycles of the closed loop discovery system (ML prediction + experiment), we
experimentally tested a total of 300 catalysts and identified more than 100
catalysts with superior activity compared to those of the previously reported
high-performance catalysts. The composition of the optimal catalyst dis-
covered was Pt(3)/Rb(1)-Ba(1)-Mo(0.6)-Nb(0.2)/TiO2. Notably, niobium (Nb)
was not included in the original dataset, and the catalyst composition identi-
fied was not predictable even by human experts.

The discovery of novel catalysts is essential for accelerating the tran-
sition to a sustainable future1,2. Despite the significant progress in the
development of highly efficient catalysts, heterogeneous catalysis
remains largely an empirical science owing to the complexity of the
underlying surface chemistry3,4. Currently, there is a lack of data and
design guidelines for heterogeneous catalysis because the computa-
tional cost of obtaining accurate theoretical models for such complex
systems is currently prohibitively high while high-throughput experi-
mental methods that have been applied successfully in related fields
have not yet been thoroughly explored5–8. Most of the important cat-
alysts were discovered by chance or through trial-and-error processes

extending over several years; the discovery of truly novel catalysts is
still challenging9.

The recent revolution in data science is expected to accelerate the
development of newcatalysts significantly, andhence, impact catalysis
research10–14. Machine learning (ML) will play a central role in
this paradigm shift. The application of ML-based approaches to
catalysis15–21 and broader fields of chemistry and materials science has
attracted considerable attention22–27. Although proof-of-concept
examples of reduction in time and cost of catalyst development have
been demonstrated using ML-based approaches, most of the ML-
based research is directed toward the resolution of benchmark
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problems,while truly novel compounds andmaterials have rarely been
discovered28,29. This is due to one of the most common limitations of
ML—the assumed inability of the models to extrapolate and identify
extraordinarymaterials beyond those present in the training dataset30.
In materials and catalysis informatics, we often desire to use ML
models to discover an entirely new class ofmaterials and catalysts with
unprecedented combinations of elements. In this context, our group
has developed a new ML approach wherein elemental features are
used as input representations rather than inputting the catalyst com-
positions directly31,32. Namely, each catalyst is represented as a set of
elemental descriptors such as electronegativities and melting points,
which are scaled by the element content, followed by aggregation into
a single feature vector by a permutation-invariant readout operation
(elementwise sort pooling, referred to as sorted weighted elemental
descriptor (SWED))31,32. This ML method can guide catalyst design and
discovery in areas where there is limited overlap of catalyst composi-
tions and even for elements that were previously never included in a
given dataset, thereby enabling extrapolative and ambitious predic-
tion beyond the training data. Other studies have also validated the
possibility of such extrapolative prediction using relevant feature
engineering/selection approaches33. Despite the theoretical evidence
on the possibilities of finding novel catalysts and exceptional materials
through extrapolative prediction, the use of ML to identify truly new
and exceptional materials has remained elusive34.

In this study, we have applied the extrapolative ML approach to
develop new multi-elemental catalysts based on supported Pt as an
active metal and TiO2 as a support for the low-temperature reverse
water-gas shift (RWGS) reaction. This reaction was chosen because its
product, CO, is an important intermediate in various well-established
catalytic processes for manufacturing value-added chemicals; that is,
the RWGS reaction enables highly flexible utilization of CO2

35,36.

Results
ML-assisted discovery of RWGS catalysts
We explored M elements of up to five types for Pt(3)/M1(X1)-M2(X2)-
M3(X3)-M4(X4)-M5(X5)/TiO2 RWGS catalysts (3wt% Pt, TiO2 = P25). For
M, elements with atomic number 3 (Li) through 83 (Bi), except for Be,
B, C, N, O, P, S, As, Se, Tc, Te, Pm, Ta, Hg, Tl, halogens, noble gases, and
platinum group metals, were used as catalyst components (50 ele-
ments in total). Each M element had a unique loading amount (X) for
each catalyst. Thus, the total number of catalyst candidates easily
exceeded 1011 even though only integer values of up to 5wt% were
considered as the loading amount of M (50C5 × 55 ≈ 800 billion). We
have tested three types of ML approaches, each of which differs in the
input representations of the catalysts: (i) a naiveMLmodel, which uses
only elemental compositions; (ii) an exploitativeMLmodel, which uses
both elemental compositions and elemental properties; and (iii) an
explorative ML model, which uses only elemental properties. For the
input representation of the elemental compositions, each catalyst was
represented as a vector of the compositional fractions for all the 50
elements under consideration. On the other hand, for the input
representation of the elemental properties, vectors of 8 selected ele-
mental descriptors for each element, scaled by its composition frac-
tion, were aggregated into a single feature vector by sum pooling.
Therefore, the naive, exploitative, and explorative ML models had 50,
58, and 8 descriptor dimensions, respectively. The initial dataset
consisting of 45 data points was constructed using the catalysts
reported in our previous experimental study37 and some catalysts
fabricated in the present study (See the data directory in the GitHub
repository https://github.com/shinya-mine); this dataset was set as
“Iteration” =0. We then trained the explorative ML model based on
Extra-Trees regression (ETR)38 with the initial dataset (45 data points),
calculated the expected improvement (EI) for all the test points in the
catalyst composition grid, selected several prominent catalyst candi-
dates considering the EI values and catalyst variety, synthesized the

catalysts using the sequential impregnation method, performed the
RWGS reaction, and updated the dataset to close the loop (Supple-
mentary Fig. 1). We continued this process for 44 loops to test 300
catalysts, as shown in Fig. 1. The explorative MLmodel was used in the
initial effort to explore many elements, and because the model
achieved the highest prediction accuracy among the threeMLmodels.
The exploitative ML model was used after the prediction accuracy
reached a certain level (after 30 iterations). Although the naive ML
model was not used for the catalyst discovery process in this study, its
prediction results are given for comparison, because fractional
representation in a one-hot encoding manner is known to perform as
well as or better than many other featurization techniques when large
datasets are used ref. 29.

Through experimental testing of 255 ML-predicted new catalysts
corresponding to 44 cycles of the closed loop discovery system (ML
prediction + experiment), we found more than 100 catalysts that
showed higher activity than the previously reported high-performance
catalyst (Pt(3)/Mo(10)/TiO2)

37 (Fig. 1). In the early stages, the prediction
accuracy of the ML model was not high; thus, finding good catalysts
was difficult. However, as the amount of data increased and the pre-
diction accuracy improved, we were able to identify good catalysts.
This is widely known as the exploration–exploitation trade-off in ML,
where we need to balance between “exploration” to obtain more data
on uncertain parts and “exploitation” to rely on the already obtained
data. Comparing the radar charts of the elemental descriptors for the
best catalysts at each iteration (Fig. 1B) shows how the properties of
each catalyst composition changed with successive iterations.
Although our dataset is still small (300 data points) and the best pre-
diction accuracy attained after 44 cycles (R2 = 0.81) is not significantly
high, the proposed design is iterative, i.e., a sequential experimental
design. Thus, the focus is more on how to utilize the available data
(even if the dataset is small in the statistical sense) to plan subsequent
experiments and achieve better catalyst discovery. We believe that the
prediction accuracies (up to R2 = 0.81) achieved by a standard cross
validation (CV) procedure (see the ML method section for details)
would be sufficient to statistically sense promising directions for fur-
ther research. It is also noteworthy that the obtained prediction
accuracy (R2 = 0.81) is somewhathigher than those attained inmostML
studies using experimental data on heterogeneous catalysis and rele-
vant material science topics, wherein the prediction accuracy is typi-
cally below R2 = 0.8, even when experimental conditions are used as
descriptors28,31,32,39–42. The composition of the best catalyst discovered
by this approach was Pt(3)/Rb(1)-Ba(1)-Mo(0.6)-Nb(0.2)/TiO2, and it
exhibited the highest CO formation rate per unit catalyst mass (mmol
min−1 gcat

−1) at temperatures below 250 °C compared with the pre-
viously reported catalysts, while retaining 100% CO selectivity (Sup-
plementary Table 4). Commercial water-gas shift catalysts43 such as
Cu/ZnO/Al2O3 (HiFUEL® W220) and FeCrCuOx (HiFUEL® W210) were
tested and found to be ineffective in this low temperature range
(Supplementary Table 5). Control studies confirmed that all the com-
ponents are necessary to obtain the highest CO formation rate. All the
CO formation rates were tested at least three times, and the average
values are shown in Supplementary Fig. 7, along with error bars
representing the data range. Notably, Nb was not included in the ori-
ginal dataset (Fig. 2), and the identified catalyst composition could
hardly be predicted even by human experts. The compositions of the
second, third, and fourth best catalysts are Pt(3)/Mo(0.8)-Ba(0.7)-
Na(0.4)-Ce(0.2)/TiO2, Pt(3)/Rb(1)-Ba(1)-Mo(0.6)-Eu(0.4)/TiO2, and
Pt(3)/Tb(2)-Sm(1.5)-Ce(1.2)-Re(1.2)-Mo(0.6)/TiO2, respectively. Note
that we tested the performance of these top-four catalysts and the
catalysts highlighted in the radar charts in Fig. 1 at least three times,
and the reported values are the averages of these tests.

The extrapolative search is driven by our coarse-grained
abstraction of the feature representations (i.e., the descriptors of cat-
alysts) rather than the MLmodel architecture. Typically, each element
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of a catalyst represents an individual coordinate in a search space;
thus, the catalyst composition is represented in a one-hot encoding
manner, for example,Mo 10 or Rb 1 Ba 1Mo0.6Nb0.2. By contrast, we
used the feature representations describing each catalyst by elemental
descriptors31,32, i.e., not directly representing elements as distinct
symbols but representing themas continuous quantities characterized
by a user-chosen set of elemental properties, such as electronegativity
and density (as seen in Fig. 1B). We believe that interpolating the tar-
geted properties over this abstracted representation can lead to some
out-of-training discovery, which we refer to as “extrapolative;” this
includes catalysts containing elements never used in the training
dataset. In addition, in this study, we used eight descriptors, and the
descriptors have eight dimensions, resulting in lower dimensionality
than the direct input representation that has 50 dimensions (50 ele-
ments). This low dimensionality for the explorative model may have
contributed to its success by narrowing the search space.

For ML models, we primarily used tree-ensemble models that are
equivalent to a histogram over data-dependent partitions. The tree-
ensemblemodels make conservative predictions in the out-of-training
regions (it is a histogram approximation, and any predicted values are
the local averages of the training samples, even in the out-of-training
regions). In that sense, our approach is based on highly safe/con-
servative predictions; nevertheless, it successfully found some cata-
lysts containing elements not in the training data, which is worth

emphasizing. Namely, our ML method can extrapolate from the per-
spective ofmaterials science as it can identify new elements bymoving
across the periodic table, while it interpolates from a data science
perspective within the elemental descriptor representations. The
essential operation of ML prediction is grounded in the interpolation
of the given data points; thus, no ML model architecture can directly
make extrapolative predictions without further encoding any physics
or data-independent hypotheses.

Note that we observe overfitting to the training data and a non-
negligible gap between the training and test errors, as shown in Sup-
plementary Figs. 11 and 15. This phenomenon, known as “benign/
harmless overfitting,” is a topic of ongoing discussion in the field of
ML44–46. In principle, ETR works as a pseudo-piecewise-linear inter-
polation, and in cases where the number of data points is limited,
interpolating noisy training data can provide more informative pre-
dictions than attempting to separate the noise from the data in such
underspecified cases with small samples, as shown in Supplemen-
tary Fig. 4.

Figure 2A, B shows histogramsof the component elements for our
dataset which is composed of 300 experimental data with unique
catalyst compositions including 50 elements. ElementsMo, Ba, andNb
appearedmost frequently. The effectof the loading amountof someof
the frequently appearing elements includingMo, Ba,Nb, Re, Rb, andCs
is shown in Supplementary Fig. 9. Catalysts having relatively low
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Pt(3)/Mo(10)/TiO2 Pt(3)/Ba(2)-Mo(1.5)-Tm(1.5)-
Eu(0.5)-Dy(0.5)/TiO2

Pt(3)/Ho(2)-Mo(1.5)-Ba(1.5)-
Cs(0.5)-Nd(0.5)/TiO2

Pt(3)/Mo(1.5)-Ba(1.5)-
Tb(1.5)-Ho(1)-Cs(0.5)/TiO2

Pt(3)/Gd(2)-Rb(1)-
Nb(1)-Mo(1)/TiO2

Pt(3)/Mo(0.6)-Re(0.4)-
Al(0.1)/TiO2

Pt(3)/Nb(0.5)-Mo(0.4)-
V(0.1)-Sr(0.1)-Re(0.1)/TiO2

Pt(3)/Rb(1)-Ba(1)-
Mo(0.6)-Nb(0.2)/TiO2

×2

×2

(A) (B)

×2

Fig. 1 | ML-assisted exploration of RWGS catalysts. AML-assisted exploration of
RWGS catalysts using the explorative and exploitative ML methods based on ETR.
Catalystswith elements notpresent in theoriginal dataset are shownwithdiamond-
shaped symbolswhile catalystswith elements in the original dataset are shownwith
gray-colored and circle-shaped symbols. The solid red line shows the best CO
formation rate at each iteration, and for comparison, the dashed navy and dash-

dotted green lines show the CO formation rates for Pt(3)/Mo(10)/TiO2 and Cu/ZnO/
Al2O3 catalysts, respectively. The R2 values were calculated using the cross valida-
tion (CV) method described in the ML methods section on the dataset at each
iteration before experimental validation. B Radar charts of the elemental descrip-
tors for thebest catalysts at each iteration. Descriptor values relative to the (i) Pt(3)/
Mo(10)/TiO2 catalyst are shown.

Article https://doi.org/10.1038/s41467-023-41341-3

Nature Communications |         (2023) 14:5861 3



loading amounts of additive oxides (below 2wt%) tend to show high
CO formation rates.

Statistical analysis using ML
AlthoughML is often employed as a blackboxwithout anyprior insight
intowhat themodel has actually learned, supervisedMLmodels canbe
used to identify important chemical moieties influencing the predic-
tion, even without any explicit knowledge of its underlying
principles47. Extrapolative ML can reveal not only the effective catalyst
compositions but also the required elemental features and electronic
properties for the precise designing of ideal catalysts. Feature-
importance score and SHapley Additive exPlanations (SHAP)48,49 ana-
lyses were used to understand the importance of the descriptors for
ML prediction, as shown in Fig. 3A, B, respectively. Elemental proper-
ties such as group, electronegativity (EN), and density were identified
as important factors. SHAP can be used to visualize the dependence of
the model output (e.g. CO formation rate) on the value of each
descriptor31. For example, relatively low values (red color in Fig. 3B) for
the feature “group” are correlated to a high CO formation rate (SHAP
value). The feature-importance score and SHAP analyses were also
performed using the exploitative elemental descriptor representation
because thismethodconsiders the elemental compositiondirectly and

facilitates the understanding of the contribution of the elements in the
given data (Supplementary Fig. 16). For the catalyst composition, Mo,
Tb, Na, and Ba were identified as important descriptors. The SHAP
values were analyzed using waterfall plots for the two representative
catalysts (Pt(3)/Rb(1)-Ba(1)-Mo(0.6)-Nb(0.2)/TiO2 and Pt(3)/Mo(10)/
TiO2), as shown in Fig. 3C, D. The waterfall plot analysis reveals the
descriptors that are responsible for the increase or decrease from the
average value of the dataset (2.28) relative to the predicted value for
eachcatalyst. EN, group, andoxide bandgap (BG) valueswere found to
strongly contribute to thehigh activity of our best catalyst (Pt(3)/Rb(1)-
Ba(1)-Mo(0.6)-Nb(0.2)/TiO2). Note that the summary plot shown in
Fig. 3B describes overall predictions for all the datapoints used (300
datapoints here) whereas the waterfall plots (Fig. 3C, D) are designed
to display explanations for individual predictions for each catalyst48,49.
This difference in methodology is reflected in the differences in
ranking of important descriptors in each analysis method. Therefore,
the summary plot is useful for obtaining information on the catalyst
design guidelines for the RWGS reaction in general, whereas the
waterfall plots provide more useful information on the reasons for the
high (or low) activity shown by an individual catalyst. The waterfall
plots for some additional catalysts are also included in Supplementary
Figs. 13, 14, 17 and 18.

Fig. 2 | VisualizationofRWGScatalyst datasets. A,BHistograms for each additive
oxide component categorized by the RWGS activity; the elements in the original
(left) and final (right) datasets are shown in the periodic tables. The maximum
values on the Y axis for (A) represent the sum of the number of data points while

that for (B) represent percentage of the RWGS activity category. C Number of
component elements as additive oxides. D Frequency of RWGS catalysts showing
different activities.
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Catalyst characterization
With the best catalyst composition in hand, we then performed
structural analysis (Fig. 4, Supplementary Figs. 19–27, Supplementary
Tables 6 and 7) and mechanistic studies (Fig. 5, Table 1, and Supple-
mentary Figs. 28–33). This is important because investigations of
extraordinary materials can provide new scientific insights. The X-ray
diffraction pattern of Pt(3)/Rb(1)-Ba(1)-Mo(0.6)-Nb(0.2)/TiO2 was
essentially the same as that of pristine TiO2 (P25) and showed peaks
corresponding to both anatase and rutile phases (Supplementary
Fig. 19). To investigate the morphologies and particle sizes of the
introduced Mo and Pt species, high-angle annular dark-field scanning
transmission electron microscopy (HAADF-STEM) was performed for
TiO2 (P25), Rb(1)-Ba(1)-Mo(0.6)-Nb(0.2)/TiO2, and Pt(3)/Rb(1)-Ba(1)-
Mo(0.6)-Nb(0.2)/TiO2 (Fig. 4A). The oxide additive species was found
to be highly dispersed over the TiO2 surface. In addition, the Pt
nanoparticles in Pt(3)/Rb(1)-Ba(1)-Mo(0.6)-Nb(0.2)/TiO2 were highly
dispersed, with an average Pt particle diameter of 1.8 nm (Supple-
mentary Fig. 22). Comparison with the previously identified Pt(3)/
Mo(10)/TiO2 active catalyst (particle size of 2.6 nm)37 revealed that the
average particle size of the supported Pt was smaller in Pt(3)/Rb(1)-
Ba(1)-Mo(0.6)-Nb(0.2)/TiO2.

X-ray absorption spectroscopy (XAS) was conducted to identify
the chemical states of the introduced species in the RWGS catalyst
(Fig. 3B and Supplementary Fig. 24). The Pt L3-edge X-ray absorption
near-edge structure (XANES) of the reduced Pt(3)/Rb(1)-Ba(1)-Mo(0.6)-
Nb(0.2)/TiO2 catalyst was identical to that of the Pt foil used as the
reference. Extended X-ray absorption fine structure analysis shows the
presence of Pt–Pt bond with coordination number of 5.6 at 2.75 Å
(Supplementary Table 7). The observed distance is slightly shorter
than that of the Pt–Pt bond observed in bulk Pt metal (2.76 Å),

revealing the formation of nanoparticles50 that were also found by
STEM. Mo K-edge XANES showed that the shape and edge position of
the unreduced Pt(3)/Rb(1)-Ba(1)-Mo(0.6)-Nb(0.2)/TiO2 catalyst were
identical to those of the reference MoO3. For the reduced Pt(3)/Rb(1)-
Ba(1)-Mo(0.6)-Nb(0.2)/TiO2 sample, the absorption edge shifted
toward lower energies, indicating the reduction of the Mo species
upon pretreatment with H2. X-ray photoelectron spectroscopy (XPS)
measurements were conducted to identify the oxidation states of Mo
(Fig. 4C). Peaks corresponding to Mo4+ were predominantly observed,
in addition to small peaks of Mo6+ and Mo2+. The other additives,
including Rb, Ba, and Nb, did not change their oxidation states and
existed in the form of Rb2O, BaO, and Nb2O5, respectively, after the
reduction pretreatment with H2 (Supplementary Fig. 26).

In situ CO adsorption IR spectroscopy experiments were con-
ducted to examine the electronic state of the Pt species on a series of
supported Pt catalysts to understand the effects of the introduced
additives (Fig. 4D). All the spectra showed a peak at 2071–2077 cm-1,
corresponding to the CO bound to the on-top sites of the metallic Pt
surface. The center of the CO adsorption peak shifted to higher
wavenumbers, following the order Pt(3)/TiO2, Pt(3)/Rb(1)-Ba(1)-
Mo(0.6)/TiO2, Pt(3)/Mo(0.6)/TiO2 and Pt(3)/Rb(1)-Ba(1)-Mo(0.6)-
Nb(0.2)/TiO2. Therefore, the introduction of additives favors the for-
mation of more electron-deficient metallic Pt0 species, compared to
pristine Pt(3)/TiO2, and is expected to improve the resistance to CO
poisoning during the RWGS reaction. The same trend was also
observed by XPS (Supplementary Fig. 27).

Mechanistic studies
Kinetic studies were conducted on the optimal catalyst (Pt(3)/Rb(1)-
Ba(1)-Mo(0.6)-Nb(0.2)/TiO2). The apparent activation energy (Ea), as

Fig. 3 |ML-assisted statistical analysis.A Feature-importance scores and (B) SHAP
values of the descriptors (summary plot) used to predict CO formation rates of all
the 300 catalysts in our final dataset (red and blue for SHAP analysis correspond to
high and low features, respectively). Features are in the descending order of the
sum of their absolute SHAP values. Dots are displaced vertically to reflect the
density of data points at a given SHAP value. Breakdown of SHAP values aswaterfall

plots for (C) the original best catalyst Pt(3)/Mo(10)/TiO2 and (D) the current best
Pt(3)/Rb(1)-Ba(1)-Mo(0.6)-Nb(0.2)/TiO2 to determine the feature values that are
responsible for the increase or decrease from the base. Positive and negative
contributions of each feature are shown in red and blue, respectively. Explorative
elemental descriptor representation was used.
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calculated from the Arrhenius plot, was 45.6 kJmol-1 (Table 1 and
Supplementary Fig. 28). Similarly, the Ea values of Pt(3)/Rb(1)-Ba(1)-
Mo(0.6)/TiO2, Pt(3)/Mo(0.6)/TiO2, and Pt(3)/TiO2 were 48.7, 52.8, and
58.4 kJmol-1, respectively. The apparent reactionorderswith respect to
H2, CO2, and CO were calculated to understand the effect of the
introduced additives. The apparent reaction orders for both CO2 and
H2 in the case of the catalyst with oxide additives decreased as com-
paredwith those for pristine Pt(3)/TiO2, indicatingweaker dependence
on their concentrations. In addition, the reaction order with respect to
CO was the smallest for Pt(3)/Rb(1)-Ba(1)-Mo(0.6)/TiO2, indicating less
inhibitory effect of CO for the best catalyst. This result is consistent
with the results of the in situ IR and XPS experiments. These combined
results indicate that the introduction of Nb renders Pt more electron-
deficient and induces high tolerance toCOpoisoning, leading to a high
catalytic activity. The CO2-TPD analysis of the catalysts without Pt
(Supplementary Fig. 29) suggested that the introduced additives could
facilitate the adsorption of CO2 owing to the introduced base metal
oxides, particularly Rb and Ba, thereby promoting the reaction
efficiently.

The RWGS reaction is known to proceed mainly via the (i)
redox mechanism and (ii) associative mechanism51. In the former,
oxygen vacancies are formed on the surface of the support oxide
by H2, while CO2 reoxidizes the partially reduced oxide to fill the
formed oxygen vacancies52, resulting in the formation of CO. In
the latter mechanism, CO is produced through the decomposition
of the surface-reactive intermediates such as formates and
carbonates51.

To elucidate the reaction mechanism, operando XANES mea-
surements were conducted under CO2, H2, and CO2 +H2 flow at 250 °C
(Fig. 5). The Mo K-edge XANES spectra of Pt(3)/Rb(1)-Ba(1)-Mo(0.6)-
Nb(0.2)/TiO2 show that the absorption edge shifts to higher energies
after the introduction of CO2, while CO was simultaneously detected
by GC. The results clearly demonstrated that CO2 acted as an oxidant
to oxidize the Mo species. Notably, CO was formed even upon the
introduction of H2, suggesting that the reaction also proceeded
through the associative mechanism. For the Pt L3-edge (Supplemen-
tary Fig. 30), the white line intensity became slightly stronger under
CO2 flow, suggesting that metallic Pt was also oxidized by CO2. Note
that this change can be solely because of the adsorption of the CO
formed, as it is well-known that the Pt L3-edge XANES intensity and
shape is altered by the adsorption of CO53. The K-edge XANES spectra
of Ti, Ba, Rb, and Nb were also obtained employing a protocol similar
to thatdescribed above (Supplementary Fig. 30). The edgepositions in
all these XANES spectra hardly changed following the introduction of
CO2, indicating that no redox reactions of TiO2, BaO, Rb2O, and Nb2O5

occurred during the RWGS reaction.
Operando IR spectroscopy was also performed to investigate the

adsorbed surface species that are likely to be involved in the RWGS
reaction (Fig. 5B). Bands in the range 1700–1200 cm-1, which can be
assigned to the surface-adsorbed species such as carbonate and
formate51, appeared immediately after the introduction of CO2.
Simultaneous formation of CO in the gas phase was also observed
using an IR gas cell at the outlet. Bands at 2100–1950 cm−1, which can
be assigned to the adsorbed CO, were also observed. The amount of

Pt(3)/Rb(1)-Ba(1)-Mo(0.6)-Nb(0.2)/TiO2Rb(1)-Ba(1)-Mo(0.6)-Nb(0.2)/TiO2TiO2

(A)

(B) (C) (D)

Fig. 4 | Structural analysis of the ML-identified RWGS catalyst. A HAADF-STEM
images of TiO2, Rb(1)-Ba(1)-Mo(0.6)-Nb(0.2)/TiO2, and Pt(3)/Rb(1)-Ba(1)-Mo(0.6)-
Nb(0.2)/TiO2. B Mo K-edge XANES of unreduced and reduced Pt(3)/Rb(1)-Ba(1)-
Mo(0.6)-Nb(0.2)/TiO2 and reference compounds. C XPS spectra of the supported

Pt catalysts after the H2 reduction pretreatment at 300 °C without exposure to air.
D IR spectra of CO adsorbed on the supported Pt catalysts, recorded at 250 °C after
the H2 reduction pretreatment at 300 °C. The sample was exposed to a flow of 1%
CO/He (100mLmin−1) for 5min and purged with He for 5min.

Article https://doi.org/10.1038/s41467-023-41341-3

Nature Communications |         (2023) 14:5861 6



these surface species over the best catalyst was higher than those over
Pt(3)/Mo(0.6)/TiO2 and Pt(3)/TiO2, yet lower than that over Pt(3)/
Rb(1)-Ba(1)-Mo(0.6)/TiO2 without Nb (Supplementary Fig. 31). The
evolution of the bands in the νCH region (2800–2960 cm−1) also sup-
ports the formation of formate species under the flow of CO2 and H2.

These results indicate that the Ba and Rb species act as base compo-
nents to generate the surface-adsorbed species that lead to the for-
mation of CO. To confirm this, H2 was introduced to the Pt(3)/Rb(1)-
Ba(1)-Mo(0.6)-Nb(0.2)/TiO2 catalyst with such adsorbed species, as
shown in Fig. 5B and Supplementary Fig. 33. Note that for this purpose,
a lower temperature (200 °C) was employed to clearly observe the
adsorbate peaks. Intensities of the bands between 1700 and 1200 cm−1

decreased upon the introduction ofH2, and simultaneous formation of
CO in the gas phase was observed. These operando XAS and IR results
indicated that Mo acted as a redox species while Rb and Ba acted as
bases to promote the RWGS reaction. Nb was not directly involved in
the reaction; it rather modified the electronic structure of Pt, ensuring
high CO tolerance. These multiple functions realized by the combi-
nation of the oxide additives identified are vital for achieving high
catalytic performance.

Catalyst durability
Finally, a durability test was conducted (Fig. 6). For the optimal Pt(3)/
Rb(1)-Ba(1)-Mo(0.6)-Nb(0.2)/TiO2 catalyst, the CO yield after 1 h time-
on-streamwas observed as 8.0%with the corresponding CO formation
rate of 3.34mmolmin−1 g−1. Note that 100% CO selectivity was retained
throughout the durability test. Although the CO yield decreased

Table 1 | Apparent reaction orders and activation energy (Ea)
for the RWGS reaction over Pt(3)/Rb(1)-Ba(1)-Mo(0.6)-
Nb(0.2)/TiO2, Pt(3)/Rb(1)-Ba(1)-Mo(0.6)/TiO2, Pt(3)/Mo(0.6)/
TiO2, and Pt(3)/TiO2 catalyst

Catalyst CO2
a H2

b CO c Ea (kJ mol−1)

Pt(3)/Rb(1)-Ba(1)-Mo(0.6)-
Nb(0.2)/TiO2

0.47 0.48 -0.80 45.6

Pt(3)/Rb(1)-Ba(1)-
Mo(0.6)/TiO2

0.39 0.42 −1.12 48.7

Pt(3)/Mo(0.6)/TiO2 0.48 0.52 −1.01 52.8

Pt(3)/TiO2 0.53 0.57 −1.37 58.4
aCatalyst (10mg), 0.706atm H2, total flow rate of CO2, H2 and N2 is 85mLmin−1, 250 °C.
bCatalyst (10mg), 0.235 atm CO2, total flow rate of CO2, H2 and N2 is 85mLmin−1, 250 °C.
cCatalyst (10mg), CO2/H2 = 1/3, total flow rate of CO2, H2, N2 and CO (1.0-2.5mLmin−1) is
85mLmin−1, 250 °C.

He purge CO2/He H2/He RWGS

×0.05

(A)

(B)
He purge CO2/He He purge H2/He RWGS

Fig. 5 |Operando spectroscopic studies. AOperandoMoK-edge XANES spectra of
Pt(3)/Rb(1)-Ba(1)-Mo(0.6)-Nb(0.2)/TiO2 obtained under a sequential flow of 25%
CO2/He, 75% H2/He, and 25% CO2 + 75% H2 at 250 °C (left). Changes in the X-ray
energy (at μ =0.6 eV) and CO concentration in the gas phase (right).BOperando IR

measurements for the Pt(3)/Rb(1)-Ba(1)-Mo(0.6)-Nb(0.2)/TiO2 catalyst conducted
under a sequential flow of CO2, He, H2, and 25% CO2 + 75% H2 at 200 °C (left).
Variations in the intensities of the peaks related to the surface-adsorbed species
and concentration of CO in the effluent gas upon the introduction of CO2 (right).
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gradually over time, the CO formation rate after 300 h time-on-stream
was still 2.52mmolmin−1 g−1. For comparison, the catalytic stabilities of
Pt(3)/Rb(1)-Ba(1)-Mo(0.6)/TiO2, Pt(3)/Mo(0.6)/TiO2, Pt(3)/TiO2, Pt(3)/
Mo(10)/TiO2 (reported previously by our group)37 and a commercial
Cu/ZnO/Al2O3 catalyst were also evaluated under the same reaction
conditions. The CO yields obtained over these reference supported Pt
catalysts were all lower than that on Pt(3)/Rb(1)-Ba(1)-Mo(0.6)-Nb(0.2)/
TiO2 throughout the durability test timeperiod. Although the Cu/ZnO/
Al2O3 catalyst exhibited relatively good stability for RWGS reaction
under our conditions, its activity is much lower than that of the sup-
ported Pt catalysts. We also compared the degree of the activity loss
for each catalyst (rCO, t/rCO,initial). It is observed that the optimal Pt(3)/
Rb(1)-Ba(1)-Mo(0.6)-Nb(0.2)/TiO2 is comparable toCu/ZnO/Al2O3 even
for this criterion. Therefore, the optimal Pt(3)/Rb(1)-Ba(1)-Mo(0.6)-
Nb(0.2)/TiO2 predicted by ML method is an outstanding state-of-the-
art catalyst for the low-temperature (250 °C) RWGS reaction.

Discussion
In summary, using the extrapolative ML method, we discovered over
100 catalysts that produced higher activity than the previously
reported best catalyst (Pt(3)/Mo(10)/TiO2). The composition of the
optimal discovered catalyst was Pt(3)/Rb(1)-Ba(1)-Mo(0.6)-Nb(0.2)/
TiO2. This unique composition could not be predicted by human
experts in catalysis; therefore, computational methods, such as ML,
would be required todesign effective catalysts. Notably, Nbwasabsent
in the original dataset, highlighting the effectiveness of our extra-
polative ML model. We also used ML analysis to identify the physical
and chemical properties that governed the catalytic activity. Our ML
model revealed the effective catalyst compositions as well as the ele-
mental features and electronic properties required for catalytic activ-
ity. Experimental mechanistic studies using in situ/operando
techniques were also performed to explore the role of each catalyst
component and the reaction mechanism. The obtained results indi-
cated that Mo acted as a redox species, whereas Rb and Ba acted as
bases to promote the RWGS reaction. By contrast, Nb did not directly
participate in the reaction but instead altered the electronic structure
of Pt, increasing the CO tolerance. Our study presents a new approach
for discovering novel catalysts and materials that show extraordinary
performance. Although we focused on investigating the effect of the
catalyst composition only on the catalytic performance to limit the

search space without changing the experimental conditions, we are
aware that the preparation processes can significantly influence the
structure of catalysts, which, in turn, can result in variations in the
catalytic performance. Further studies are needed to explore the effect
of altering the experimental conditions by using ML, even though that
will necessitate a considerably large number of experiments. In addi-
tion, full optimizationof catalysts is desired becauseweonly dealtwith
exploring the additive oxide of the catalysts. Supported metals and
supports instead of Pt and TiO2 should also be explored. For this, we
can use the same feature engineering strategy by harnessing the
intrinsic properties of supportedmetals and supports. For instance,we
canuse “support descriptors” such as specific surface areas, bandgaps,
and acidity (which can be measured experimentally) for the support
materials. In the future, we expect our study to facilitate the devel-
opment of novel catalysts.

Methods
Chemicals
Chemicals and materials were purchased from commercial suppliers
and used without further purification. TiO2 (P25) having both anatase
and rutile phases was obtained from Evonik (formerly Degussa). TiO2

STR-100N having rutile phase was provided by Sakai Chemical Indus-
try, while TiO2 ST-01 with anatase phase was obtained from Ishihara
Sangyo. The carbon and γ-Al2O3 (Puralox) supports were commercially
obtained from Kishida Chemical and Sasol, respectively. ZrO2 (JRC-5)
was supplied by theCatalysis Society of Japan. SiO2 (CariACTQ-10)was
purchased from Fuji Silysia Chemical Company Ltd. Nb2O5 was pre-
pared by calcination of niobic acid (Nb2O5 ∙ nH2O, HY-340) supplied
from CBMM (Companhia Brasileira de Metalurgia e Mineração) at 500
°C for 3 h. CeO2 (Type-A) support was provided by Daiichi Kigenso
Kagaku Kogyo Co., Ltd. The industrial CuZnAl catalyst known as a
copper-based low-temperature water-gas shift catalyst (HiFUEL®
W220; CuO = 52wt%, ZnO = 30wt%, Al2O3 = 17wt%) and the FeCrCuOx

catalyst known as an iron–chrome-based high-temperature water-gas
shift catalyst (HiFUEL® W210; Fe2O3 = 82.7wt%, Cr2O3 = 7wt%, CuO=
5wt%) were purchased from Alfa Aesar.

Preparation of the catalysts
Pt(3)/M1(X1)-M2(X2)-M3(X3)-M4(X4)-M5(X5)/TiO2 (3wt% Pt, TiO2 = P25,
Xx is the loading amount of Mx) was prepared using the sequential

Fig. 6 | Long-term stability. Durability test for the supported Pt and commercial Cu/ZnO/Al2O3 catalysts at the RWGS reaction conditions of 10mg catalyst, 10mLmin−1

CO2, 30mLmin−1 H2, and 5mLmin−1 N2 (internal standard for GC analysis), 250 °C and 1 atm.
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impregnationmethod. Elements M having atomic numbers from 3 (Li)
to 83 (Bi), except for Be, B, C, N, O, P, S, As, Se, Tc, Te, Pm, Ta, Hg, Tl,
halogens, noble gases, and platinum group metals, were used as cat-
alyst components in this work. For the source and purity of the che-
micals, please see Supplementary Table 1. First, the single or multiple
additive components supported TiO2 (M1(X1)-M2(X2)-M3(X3)-M4(X4)-
M5(X5)/TiO2) was prepared by the impregnation method. In the pro-
cess, a mixture of related amount of TiO2 support and corresponding
sources ofM elements was charged in a 100mL glass vessel containing
an appropriate amount of deionized water and stirred for 15min with
200 rpm agitation at room temperature. The mixture was evaporated
to dryness at 50 °C, dried at 110 °C for 12 h, and calcinated at 500 °C in
air for 3 h to give M1(X1)-M2(X2)-M3(X3)-M4(X4)-M5(X5)/TiO2. The
formed M1(X1)-M2(X2)-M3(X3)-M4(X4)-M5(X5)/TiO2 was then impreg-
nated in an aqueous HNO3 solution of Pt(NH3)2(NO3)2 under magnetic
stirring. The mixture was evaporated to dryness at 50 °C and further
dried in air at 110 °C for 12 h to give PtO2/M1(X1)-M2(X2)-M3(X3)-M4(X4)-
M5(X5)/TiO2 (unreduced sample). The catalyst used for the RWGS
reaction was prepared by reduction of PtO2/M1(X1)-M2(X2)-M3(X3)-
M4(X4)-M5(X5)/TiO2 in a quartz tube under a flow of H2 (40mLmin-1)
at 300 °C for 0.5 h to give Pt(3)/M1(X1)-M2(X2)-M3(X3)-M4(X4)-
M5(X5)/TiO2.

Other supported catalysts were prepared by the same method
described above by using M1(X1)-M2(X2)-M3(X3)-M4(X4)-M5(X5)/TiO2 or
M1(X1)-M2(X2)-M3(X3)-M4(X4)-M5(X5)/Support and other metal sources
including aqueous solutions of NH4ReO4, RuCl3, IrCl3·nH2O, AgNO3

and aqueous HNO3 solutions of Rh(NO3)3 and Pd(NH3)2(NO3)2.

Catalysts characterization
High-angle annular dark-field scanning transmission electron micro-
scopy (HAADF-STEM) and energy dispersive X-ray spectroscopy (EDX)
analysis were performed using an FEI Titan G2 microscope. Samples
were prepared by dropping an ethanol solution containing the catalyst
on carbon-supported Cu grids. XPS characterization was carried out
on a JEOL JPS-9010MCspectrometer usingMgKα (1253.6 eV) radiation.
Binding energies were calibrated based on the C1s peak energy
(285.0 eV). The samples were examined after the H2 reduction pre-
treatment using a transfer vessel in order to avoid exposure to air. XPS
spectra were analyzed by convolution of Gaussian and Lorentzian
functions with a Shirley background.

In situ/ operando IR spectrawere recordedon a JASCOFT/IR-4600
equipped with a mercury-cadmium-telluride detector and a quartz IR
cell connected to a conventional flow system (100mLmin−1). The
sample was pressed into a 40mg self-supporting wafer and mounted
in the quartz IR cell with CaF2 windows. Spectra were acquired by
accumulating 20 scans at a resolution of 4 cm−1. The reference spec-
trum of the catalyst wafer in He flow taken at the measurement tem-
perature was subtracted from each spectrum.

Pt L3-edge, Rb K-edge, Mo K-edge, Ba K-edge, and Ti K-edge XAS
measurements were performed in a transmission mode, while Nb
K-edge XAS were performed in a fluorescence mode at the BL14B2 of
SPring-8 at the Japan Synchrotron Radiation Research Institute (Pro-
posal No. 2021B1840 and 2022A1736). A Si(311) double crystal mono-
chromator was used for the Pt L3-edge, Rb K-edge, Nb K-edge, Mo K-
edge, and Ba K-edge XAS measurements, while a Si(111) double crystal
monochromator was used for the Ti K-edge XAS measurements. For
operando XAS measurements, a high-sampling-rate TCD GC (490
Micro GC; Agilent Technologies Inc.) was used for the quantitative
analysis of CO and CH4. A mass spectrometer (BELMass; MicrotracBEL
Corp.) was also used to monitor the eluent gas. Samples in pellet form
(∅7mm) were introduced into a cell equipped with Kapton film win-
dows and gas lines connecting to the GC. Pretreatment of the samples
involved heating under a flow of H2 (300mLmin−1) at 300 °C for
30min. Subsequently, 25% CO2/He (400mLmin−1), 75% H2/He
(400mLmin−1), and CO2 (100mLmin−1) + H2 (300mLmin−1) were

introduced into the cell with intervals of He purge between the gas
introduction steps. Note that boron nitride was used to make a pellet
sample when the required amount is <40mg. Spectra of reference
compounds were recorded at room temperature in air. The obtained
XAS spectra were analyzed using the Athena and Artemis software ver.
0.9.25 included in the Demeter package54.

Catalytic reverse water-gas shift reactions
RWGS reactions were carried out in a fixed bed continuous flow
reactor under atmospheric pressure. A straight quartz tube with an
inner diameter of 4mmwas used. The catalyst (typically 10mg) was
pretreated under H2 flow (40mLmin−1) at 300 °C for 30min prior to
each activity test. Catalytic activity was measured at the tempera-
ture of 250 °C under the following composition of feed gas:
20mLmin−1 CO2, 60mLmin−1 H2, and 5mLmin−1 N2 added as an
internal standard for quantitative analysis. The gas flows were
controlled by mass flow controllers. The effluent gas phase was
allowed to pass through an ice-bath unit to remove the water vapor
and then analyzed online using a gas chromatograph (Agilent 490
Micro GC) equipped with Molsieve 5 Å and PoraPLOT Q columns
and TCD detector.

ML methods
As elemental descriptors, we selected the following eight parameters:
electronegativity (EN) according to the Allred-Rochow’s definition,
melting point (m.p.), enthalpy of formation (ΔHfus), density, the group
of the periodic table, BG in the most stable oxide from, oxidation
number in the most stable oxide form, and adsorption energy (Eads) of
CO2 on the metallic surface.

We used ETR38 as an ML model. Widely used implementations
of scikit-learn (version 0.23.2)55 were employed for all ML models.
For hyperparameter tuning, we tested a reasonable range of can-
didate values in an exhaustive way (grid search) shown in Supple-
mentary Table 2, chose the best hyperparameter by 5-fold CV on the
training set, and used themodel for calculating the predicted values
for the test set (the hyperparameters not explicitly indicated in the
table were set to the scikit-learn defaults). Namely, to avoid data
leakage, we strictly followed a standard practice of “nested”CV, also
known as double CV, to estimate the prediction accuracies; we used
5-fold CV for the internal CV, and used Monte Carlo CV (also known
as repeated random subsampling CV) with 100-times of random
leave-20%-out trials for the external CV to increase the statistical
reliability for validating the test prediction accuracies with fixing
the number of training data.

Wehaveused three typesofMLapproaches thatdiffer in the input
representations of catalysts; (i) naive ML model that uses only ele-
mental compositions, (ii) exploitative ML model that uses both ele-
mental compositions and elemental properties, and (iii) explorativeML
model that uses only elemental properties. For the input representa-
tions of elemental compositions, each catalyst was represented as a
vector of compositional fractions of each element for all 50 elements
under consideration, i.e., ðc1, c2, c3, � � � ,c50Þ where ci is the composi-
tional fraction of the i-th element. For the input representation of
elemental properties, each catalyst is represented as the sum of vec-
tors of each elemental descriptor scaled by its compositional fraction,
i.e., for a catalyst Pt(3)/M1(X1)-M2(X2)-M3(X3)-M4(X4)-M5(X5)/TiO2,

X 1 vecðM1Þ+X2 vecðM2Þ+X3 vecðM3Þ+X4 vecðM4Þ+X5 vecðM5Þ, ð1Þ

where vecðMiÞ is the elemental descriptor vector for elementMi, which
is also called the composition-based feature vector in the literature33.
The former representation generates 50-dimensional features and
tends to be very sparse and statistically uninformative when the
training dataset is not large but contains many elements. Moreover, it
is incapable of handling elements that are absent or statistically
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infrequent in the training data. On the other hand, the latter
representation has the samedimension as the user-specified elemental
descriptor that often produces statistically much more stable results
for small-data problems and is not explicitly constrained by the
elements covered in the training dataset. Moreover, technically, in the
latter representation, each catalyst is represented as a set of elemental
descriptors and scaled by its composition fraction and aggregated into
a single feature vector for the given catalyst by sum pooling, a
permutation-invariant operation.

Notably, the explorative ML model that represents catalysts only
with respect to their physico-chemical properties via certain descrip-
tors without directly specifying the individual contributions of distinct
elements, enables a more extrapolative and ambitious exploration
beyond the training data even to findunseen elements. In our previous
studyutilizing theseMLapproaches for the analysis of reactiondata on
oxidative coupling of methane (OCM)31, we also developed a proce-
dure to recover the catalyst composition from the elemental property
representation because the composition information is indispensable
for catalyst synthesis. We employed a “local search” to find new cata-
lyst candidates. However, in the present study, we employed the “grid
search” approach to suggest new catalyst candidates by manually
specifying the loading amount of each element M in order to perform
global optimization. In this approach, we do not need to use the
recovery procedure but rather calculate the expected improvement
(EI)56 score that is obtained using the following equation for the given
compositions.

EI xð Þ = E max μ xð Þ � y*,0
� �� �

= μ xð Þ � y*
� � �Φ μ xð Þ � y*

σðxÞ

� �

+ σðxÞ �ϕ μ xð Þ � y*

σðxÞ

� � ð2Þ

Here, μ xð Þ and σ xð Þ are the predicted value and the standard
deviation of an ML surrogate for an input x, while the expectation E
assumes a Gaussian distribution with a PDF of ϕ and CDF of Φ. EI
scores can be intuitively considered as a quantity that indicates how
much improvement over the current best y* can be expected for an
input x. The EI is schematically presented in Supplementary Fig. 3.

Clustering was typically performed to group very similar can-
didates into K clusters. In cases where clustering was not used, we
simply selected the catalysts based on the top proposed catalyst
compositions. We normally used K = 100 because the elbow and
silhouette analyses suggested that 100 was the optimal number of
clusters. The elbow method was employed to find the point of
inflection (elbow) in the plot of the explained variation as a function
of the number of clusters, serving as a criterion for determining the
optimal number of clusters. The silhouette analysis was applied to
quantify the similarity among the observations within a cluster, thus
providing additional support for identifying the optimal number of
clusters. A representative analysis result using the 300 data points
(See the data directory in the GitHub repository https://github.com/
shinya-mine) with explorative ML methods based on ETR (Supple-
mentary Fig. 5) revealed that K = 50–100 is optimal. In addition, no
clusters had silhouette scores below the average when K = 100 (with
N = 10 perturbations).

Procedure of ML-assisted RWGS catalysts discovery
The initial dataset consisting of 45 data points was constructed using
catalysts reported in our previous experimental study and some new
catalysts synthesized for the present study, as given in the data
directory of our GitHub repository and labeled as “Iteration” = 0
(https://github.com/shinya-mine). We suggested the next catalyst
candidates using the explorative ML model based on ETR and the
initial dataset (45 data points), picked some suggested catalysts
according to the EI ranking, synthesized the catalysts using the

sequential impregnation method, performed the RWGS reaction, and
updated the dataset to close the loop (Supplementary Fig. 1). Subse-
quently, we suggested the next catalyst candidates using the
explorative MLmodel based on ETR and the updated dataset (50 data
points) and performed the experiments according to the ML predic-
tion to further update the dataset. We continued this procedure until
we performed 44 loops to test 300 catalysts. Since we typically per-
formed the clustering with K = 100, as mentioned above, our ML
pipeline gave a list of 100 top-ranking candidates at each iteration, and
we chose the catalysts for the actual experiments from this list. As it is
practically difficult to test all the 100 candidates in actual experiments,
only some of the suggested catalysts were tested (i.e., not all the 100
candidates were experimentally tested). The selection from the top
100 candidates suggested by the ML approach was manually per-
formed by considering the diversity of the catalyst compositions. ETR
was used throughout in this study. Only the explorativeMLmodel was
used for the initial effort becausewewanted to exploremany elements
and its prediction accuracy was the highest among the three ML
models at the initial stage while the exploitative ML model was also
used after 30 iterations.

Data availability
The sourcedata,which support the result of this study, can be found in
themanuscript and Supplementary information. All experimental data
used formachine learning are available in Excel format on the URL and
can be freely used (https://github.com/shinya-mine).57

Code availability
All machine learning codes used in this study were written under the
anaconda distribution environment of python3 (https://www.
anaconda.com) and can be found online at https://github.com/
shinya-mine57. The VASP code package used in this work can be
accessible after a user license is authorized by the VASP company
(https://www.vasp.at).
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