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While a significant fraction of topological materials has been characterized

M Check for updates

using symmetry requirements'*, the past two years have witnessed the rise of
novel multi-gap dependent topological states’’, the properties of which go
beyond these approaches and are yet to be fully explored. Although already of
active interest at equilibrium'®", we show that the combination of out-of-
equilibrium processes and multi-gap topological insights galvanize a new
direction within topological phases of matter. We show that periodic driving
can induce anomalous multi-gap topological properties that have no static
counterpart. In particular, we identify Floquet-induced non-Abelian braiding,
which in turn leads to a phase characterized by an anomalous Euler class, being
the prime example of a multi-gap topological invariant. Most strikingly, we also
retrieve the first example of an ‘anomalous Dirac string phase’. This gapped
out-of-equilibrium phase features an unconventional Dirac string configura-
tion that physically manifests itself via anomalous edge states on the bound-
ary. Our results not only provide a stepping stone for the exploration of
intrinsically dynamical and experimentally viable multi-gap topological pha-
ses, but also demonstrate periodic driving as a powerful way to observe these

non-Abelian braiding processes notably in quantum simulators.

Topologically protected phases profit from connections with mathe-
matical principles to characterize illustrious physical behavior in tan-
gible systems'®'®, Recent theoretical advances have led to more exotic,
multi-gap topological phenomena involving non-Abelian braiding of
band nodes®®', which have importantly also been connected to
observations e.g., in meta-materials'>"?°. The prediction of topologi-
cally stable monopole-antimonopole pairs imprinted upon quenching
by a non-trivial Euler Hamiltonian? has been promptly followed by
experimental verification with trapped ions®. These rapid develop-
ments, as well as their unique non-Abelian properties, have sparked
new multi-gap topological pursuits as a promising research direction
in various platforms that range from phonons'*">*-*? to strained elec-
tronic systems?*,

Going beyond static phenomena, the study of topology in out-of-
equilibrium settings has further revealed new topological classification

schemes®?’and new connections between different invariants® as
signified by a vast body of work on symmetry indicated phases. In this
regard, Floquet systems stand out with the periodic nature of their
spectrum, where the quasienergy can be defined solely up to modulo
2m, forming the Floquet Brilloun zone (FBZ), which repeats itself in
integer multiples of 2m. Essentially, one obtains quasienergy bands
with a crucial difference, compared to static counterparts, of one
additional gap at the FBZ edge, connecting the replicas of bands. With
the possibility of harboring edge states also in this extra gap*?,
anomalous Floquet topological insulators have attracted great atten-
tion, as the Chern number has been rendered insufficient to predict
edge states, also triggering experimental pursuits® .

Here, we address the fundamental question of whether multi-
gap topological phases beyond equilibrium counterparts exist in
Floquet settings and investigate the role of anomalous gap on the
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non-Abelian Euler topological classification as well as relevant
physical signatures. We find that these questions can be answered
affirmatively. We demonstrate novel anomalous non-Abelian phases
where all gaps, including the anomalous Floquet gap, are required
to accomplish the transition in the topological regime. In particular,
band nodes can be braided between bands [which we will denote as
‘gaps’ despite being gapless due to the presence of the degen-
eracies] within the FBZ, as well as over the edge of the FBZ as illu-
strated in Fig. 1d. This similarly holds for Dirac strings which are
lines that mark a change in gauge (from + to -) as will be detailed in
the subsequent. We analyze Dirac strings that can reside in between
bands of different FBZs and elucidate new braiding processes
involving all gaps in the quasienergy spectrum, which can only
occur in periodically driven systems. Moreover, we present a fully
gapped phase with all nodes removed via non-Abelian braiding,
while the system still hosts anomalous Dirac strings allowed by the
Floquet spectrum. Importantly, these findings physically relate to
unaccounted edge states, providing for a direct observable to dis-
tinguish this new anomalous phase.

Results

Multi-gap Floquet topology

We begin by introducing multi-gap topology and non-Abelian braiding
in momentum space. Multi-gap phases acquire topological invariants
in band subspaces (set of isolated bands) via multi-gap conditions and
braiding of band degeneracies (band touching points). Hence, they can
be independent of their irreducible representations (irreps)** at high
symmetry points and go beyond previously known topological clas-
sifications. In particular, all irreps could, in principle be trivial, a case in
which the classifications of refs. 2-4,36 cannot discern any topology.
Yet, when a system has C,7 or P7 [combination of two-fold rotations
or parity and time reversal] symmetry admitting a real representation

Fig. 1| Static Kagome model and multi-gap topology in Floquet spectrum.

a The Kagome lattice underlying model (3). b BZ harbors multi-gap topological
configuration of band nodes visible in the static band structure (c) for vanishing A,.
The double node between bands 2 and 3 (red circles) at the I'-point is stable and
characterized by patch Euler class y,3=1. The nodes at K and K’ (triangles) in gap 1

of the Hamiltonian®®, the eigenstates span a real orthonormal frame.
Keeping track of the rotation of the eigenvectors’ frame on a loop a
band node, one then associates a frame charge corresponding to the
encircled degeneracy’, acting as the analog of disclinations in bi-axial
nematic phases®*°. Most interestingly, these frames can acquire a
non-Abelian accumulated angle when they traverse around a node
residing in another gap, resulting in non-Abelian values of the frame
charge.

Braiding such singular points in momentum (k) space can thus
change their signs and renders similarly-valued charged degeneracies
between two bands possible. The corresponding topological
obstruction to annihilate these similarly-valued charges is quantified
by the Euler class. Specifically, considering the band subspace (n, n +1)
spanned by Bloch states |u,(k)) and |u, , ,(k)), the reality condition can
be employed to define an Euler form

Eu= <aklu,,(k)|akZ u,,+1(k)> - <akzu,,(k)|akl u,,+1(k)> @

and an associated Euler connection 1-form, A= (u,(k)|Vu, ., (K)) - dk
(see Methods for a detailed exposition)’. When this two-band
subspace is fully gapped from other bands, the integral of the non-
Abelian curvature (1) over the whole BZ closely mimics the Chern
number, counting the number of similarly-valued charges'>. How-
ever, the definition remains general to situations in which the band
subspace is connected via nodes to other bands, by considering a
patch D in the BZ that excludes the nodes from neighboring gaps
(see shaded areas in Fig. 1b). The resulting patch Euler class is
evaluated by integrating over the patch upon including a boundary
term over 0D,

xn,n+1[D]=%U Eudk A dk; - A}ez. @)
D oD

b)

Brillougn zone

Quasienergy

are connected by a Dirac string (blue line). These nodes can be annihilated (illu-
strated with empty/filled markers), hence, have patch Euler class (shaded area)
X2 =0. d A schematic Floquet spectrum. The periodic nature of quasienergy cul-
minates in an extra gap (gap 3) at the edge of the Floquet Brillouin zone. As a result,
non-Abelian braiding of band nodes can involve any of these band gaps.
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A particular insightful perspective to quantify the emergent multi-
gap topology can be attained by considering Dirac strings that can
efficiently trace non-Abelian topological phase transitions when the
reality condition set by C,7 or P7 is fulfilled™, which will be useful in
our characterization of Floquet systems. Each pair of nodes within a
given band subspace is connected by a Dirac string (blue line in Fig. 1b).
Note that these Dirac strings are gauge objects and represent the line
across which the sign of the eigenstates forming a node flips upon
circling around it (indicating a m-Berry phase of the eigenstate). When a
node in the subspace of interest crosses the Dirac string of a pair of
nodes in a neighboring gap, its frame charge changes sign, making it
possible to obtain similarly charged band nodes in this gap. We thus
recover the non-Abelian braiding characterized by the patch Euler
class as defined above.

With the important role played by adjacent gaps in multi-gap
topology, it is compelling to address the effect of a Floquet drive and
the periodicity of the spectrum**2, Under a periodic modulation with
frequency w=2m/T, the Floquet spectrum is resolved as the phase
eigenvalues (e*") of the time evolution operator evaluated over a full
period, U(T)=% exp{—ifOT H(t)dt}, for time ordering T and the
Hamiltonian H(¢+ T) = H(t). The quasinergy ¢ is defined on a circle,
where we identify the FBZ with €T € (-m, m] as marked in Fig. 1d. In the
context of Euler class, we here consider periodic drives that preserve
the C,7 symmetry to ensure that the Floquet eigenstates (solutions of
the time-dependent Schrédinger equation) can be brought into real
form together with the non-Abelian frame charges of the band
nodes®®. Crucially, this renders popular circular drives inapt in com-
mon C,-symmetric setups, since the chirality breaks 7. As a result, two
main routes emerge that either involve using linearly polarized driving
or a circular drive that is rotating one direction for half a cycle and in
the opposite direction for the other half.

Model setting

To illustrate our findings, we depart from a simple Kagome geometry,
given in Fig. 1, which we stress merely serves as model setting with C,7
and in no matter affects the generality of the results presented. Taking
into account nearest-neighbor (nn) hopping terms with amplitude / as
well as on-site potentials A, the Hamiltonian, diagonal in crystal
momentum K, is written as

Hk)= — 2 " cos(kdp)chcp+ Y AyCicq, 3)

azf a

where ¢’ is the annihilation (creation) operator at site a for (&, §) € (4,
B, C) denoting the three orbital basis, with the nn distances given by
dg,=1%,dcy=1x+2y and dz= — 1x+ 42y [see Fig. 1 and Meth-
ods]. Hereafter, we set the lattice spacing to one, a =1, together with
the Planck’s constant and unit charge /i = g =1, where energy units will
be expressed in terms of /= 1. The BZ is defined by the reciprocal lattice
vectors, b, =2mx — %j} and b, = %j}, which harbors two dispersive
bands with linear band touchings in between at K and K in the absence
of sublattice offsets (A, =0) as shown in Fig. 1b, c. Empty/filled trian-
gles (and other markers) represent opposite frame charges in a given
gap, connected by Dirac strings. Crucially, the completely flat third
band with a quadratic band touching at I' point carries a patch Euler
class x»3=1between bands 2 and 3, owing to the obstruction to anni-
hilate this double node.

We imagine a periodic modulation in the two-dimensional plane
of the lattice, making the Hamiltonian (3) time-dependent, whose
discrete translation symmetry can be restored by going to the frame
comoving with the lattice via a gauge transformation**%. Eventually,
for the (effective) vector potential A(¢) =A, cos(wt)x — A, cos(wt + )y,
with ¢ controlling the polarization, the crystal momentum gets mod-
ified as k » k + A(t) via the minimal coupling®. In the following, without
loss of generality, we will focus on linear driving along x-direction with

A,=0 as a route to illustrate Floquet-induced multi-gap topological
phases depicted in Fig. 1d. With the tuning parameters w, A,, A4 and A,
where we fix Ag=-A,~Ac for simplicity, we invoke phase transitions
and evaluate the quasienergy spectra numerically together with the
change of the Euler class in different gaps, see also Methods.

Anomalous Euler phase and Floquet-induced braiding

Using the outlined strategy, we now analyze the non-Abelian charges
and their braiding that can be induced by periodic Floquet driving. We
introduce the first anomalous Euler phase summarized in Fig. 2a,
where the patch Euler class is transferred between different subspaces
(nodes) by involving all gaps in the spectrum and, most crucially, the
Dirac string (of the anomalous band nodes) in the anomalous gap at
the FBZ edge.

Specifically, upon linearly driving the Kagome lattice, the -
nodes immediately split due to broken C; symmetry, revealing a
Dirac string (red) in between them (step 1 in Fig. 2a). We then
instigate non-Abelian braiding processes by decreasing the sub-
lattice offsets A, and A, allowing us to annihilate the I-nodes across
the BZ by flipping its charge upon crossing the blue Dirac string of
the (K,K’) nodes. The Floquet nature comes into full play when a
new pair of nodes (green squares) residing in the m-gap (i.e., gap 3)
in between the top and bottom bands over the FBZ edge are created
and separated with the green Dirac string connecting them. These
anomalous band nodes still carry opposite (empty/filled) charges
after crossing two Dirac strings (red, blue) of the adjacent gaps. The
last step witnesses the annihilation of the anomalous (green) nodes
across the BZ, ensuring their Dirac string is left behind in the middle
of Kand K'. As a result, these nodes in gap 1 now have finite patch
Euler class x12 =1 and are thus obstructed to annihilate, which we
confirm by evaluating the Euler form for the final phase given in
Fig. 2b for A,=-2.2, Ac=-1.5 (see Methods for details). Conse-
quently, this Euler phase in which the non-trivial patch Euler class
has been transferred from the T to (K,K’) nodes is indeed anomalous
and does not have a static counterpart. These insights can, in fact,
be corroborated by contrasting with the static system at the same
offset potentials, which has a trivial Euler class for all subsets of
bands where (K,K’) nodes can annihilate.

We stress the anomalous nature of the retrieved phase that comes
about by virtue of an intricate interplay of the Dirac string configura-
tion, corresponding band inversions, and movement of non-Abelian
charges in all gaps. We note that, in analogy to phase bands*', the gap
at the edge of the FBZ can be faithfully identified by connecting to the
high-frequency regime* where the Floquet replicas are well separated,
which has also allowed for gap-specific measurements of winding
numbers in the anomalous single-gap topological context™*. It might,
hence, be referred to as the anomalous gap. However, a simple band
inversion in this gap does not a priori result in a truly anomalous phase
since the FBZ can be shifted, such that a single signature in this gap can
have a static correspondence albeit with different band labeling.
Instead, the anomalous Euler phase in Fig. 2 incorporates all gaps and
has a final configuration featuring a Dirac string or non-Abelian Euler
nodes in each gap, with the Dirac string in the anomalous gap being of
crucial importance to induce a non-zero Euler class. These processes
also profit from the constraints on the Wannier centers instigated by
the Kagome lattice harboring Dirac strings already in the atomic limit,
as we detail in the Methods. Moreover, the anomalous Euler phase is
not only interesting from a fundamental bulk perspective but also
leads to a boundary response where the synergy of the Dirac string
configuration and non-zero Euler class ensures that an edge state
needs to appear, see Fig. 2c, d. Namely, the band inversion generating
the Dirac string in the anomalous gap induces an additional n-valued
shift in the Zak phases. This results in the appearance of a boundary
mode in the anomalous gap for surfaces to which this extra phase
projects (such as in Fig. 2d), as we detail in the subsequent Methods.
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Fig. 2 | Realization of an anomalous Euler phase. a Starting from the Kagome
model (3), linear shaking directly separates the I' nodes (red circles, both filled as
they have same charges), giving the Dirac string configuration in step 1. Subse-
quently, decreasing A4 and A¢ (while keeping Ag=— A,—A¢), new nodes (green
boxes) in the anomalous gap are created and braided with the existing nodes as
shown in steps 2-4. The green nodes eventually annihilate across the BZ, leaving
behind a Dirac string and obstructing the annihilation of the (K,K") nodes (blue

triangles). The Euler class is transferred from the I-node to the K,K’ pair, as
quantified by final patch Euler classes x»3 =0 and y;, = 1. b Quasienergy spectrum of
the final phase (4), for Ay =-2.2, Ac=-1.5 and A, =2, @ =6 in units of J. ¢ The
anomalous (green) Dirac string is incompatible with a static system, and results in
an anomalous edge state for the ribbon geometry given in d, serving as a direct
observable.

We, furthermore point out that our braiding perspective also
shines light on more conventional cases of dynamically inverting band
spectra**, It is known that under periodic modulation, the tunneling
amplitudes get renormalized by Bessel functions*?, with the leading
order captured by the zeroth-order Bessel function. Consequently,
tunneling amplitudes can get dynamically frustrated (see, e.g., ref. 46
for experimental demonstration) or change their sign depending on
the ratio of driving strength and frequency®. For the Kagome system,
this inversion results in the flat band now being the lowest band with
the sign change of J (see Methods for details). Our analysis indeed
reveals that this naturally involves braiding of the nodes in gaps 1and 2
upon increasing the driving amplitude. We note that in both the
anomalous Euler phase introduced above and in the dynamical band
inversion case, the Euler class is transferred from the nodes in gap 2 to
gap 1. Despite comprising Floquet-induced braiding, however, the
latter cannot be called an anomalous non-Abelian phase as these
processes occur only within the FBZ. As a result, the absence of an edge
state in the anomalous gap in the dynamically-inverted case provides a
clear contrast with the anomalous Euler phase.

Anomalous Dirac string phase

We showcase that novel gapped anomalous topological phases may
arise by an interplay of multi-gap topological principles and the peri-
odicity of the FBZ. Figure 3 displays an example of a new “anomalous
Dirac string” (ADS) phase, which we obtain by driving with frequency
w=6 and amplitude A, =2 as before while now decreasing only the
offset parameter Ac. We retrieve the familiar process of splitting the
stable double I''node into two nodes that move along the b;-direction
towards one of the M points, while (K,K’) nodes move towards another
one. Further decreasing Ac = — A, the (K,K") nodes meet and annihilate
at M;, leaving behind the blue Dirac string, while the I'-nodes in the
second gap annihilate at M, point, creating the red Dirac string along
the other direction. The anomalous nature of the phase is induced by

the processes in the anomalous gap, which shows the creation of a pair
of nodes that, crucially, move to the remaining M5 point at which they
annihilate and leave behind the third green Dirac string. Consequently,
the system ends up in a totally gapped phase with a Dirac string in each
gap. As in the anomalous Euler phase, we stress that this gapped ADS
phase can only exist in out-of-equilibrium Floquet settings with Dirac
strings present in all gaps. The anomalous gap at the edge of the FBZ
allows for the system to support this maximum number of Dirac
strings, where the band nodes in each gap can annihilate at different M
points.

As in the anomalous Euler phase, the anomalous nature of the ADS
phase stems from the fact that each gap in the Floquet spectrum
contributes, making it impossible to realize in a static system. We can
make this more concrete. As detailed in the Methods, one can use an
effective Zak phase description provided that this is done in a gap-
specific manner, since similar Zak phases can give rise to different
topological phases with different edge spectra that cannot be con-
nected without going through a band inversion. We emphasize that
while the Dirac strings can be moved locally, and even recombined in
pairs (given that two m-phases sum up to zero), the absolute patch
Euler class of every pair of nodes is gauge invariant. This enforces a
relative topological stability of the Dirac string configuration over the
whole (Floquet) spectrum in a given phase'. In this sense, Zak phases
together with the tracking of the Dirac string configuration (the direct
first homotopy charges) in each gap does provide for an effective
description of the discovered phases, monitoring all gap-specific band
inversions. Indeed, trying to shift the edge state from the anomalous
gap to another gap or connecting to the trivial case, will need to pro-
ceed through band inversions, as can be seen by the incompatible
nature of the Dirac string configuration with those phases. Only
through band inversions the Zak phases and Dirac string configura-
tions can be connected, underpinning the anomalous nature also
quantitatively.

Nature Communications | (2024)15:1144
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Fig. 3 | Realization of an anomalous Dirac string phase. Linearly driven Kagome
model, with w = 6, A, =2. a The multi-gap topological configuration evolves as
shown in steps 1-4 upon decreasing Ac. The final stage entails the ADS phase, a new
fully gapped phase with a Dirac string in each gap, including the anomalous one.
b Quasienergy spectrum of the ADS phase for A, =0, Ac=-Ag=-3. ¢ The extra

string of the anomalous gap signals an extra accumulation of m-Berry phase and
thus an unconventional edge spectrum indicated by the relevant Zak phases, for
the ribbon geometry depicted in d. This anomalous edge state acts as a direct
observable of the ADS phase.

Edge states of anomalous Dirac string phase

Most importantly, by effectively keeping track of the band inversions
during the above-described evolution, our analysis also conveys a
highlight feature of these esoteric phases, which is the appearance of
anomalous edge states. While Dirac strings are gauge objects, similar
to visions in lattice gauge theories, passing through a Dirac string when
considering the Berry phase of non-contractible paths over the BZ
does indicate a phase accumulation*’, meaning that the Zak phase
corresponding to that path shifts by . Since the ADS phase is realized
upon creating and then annihilating band nodes across the BZ to
obtain a Dirac string in the anomalous gap, the bands on either side of
the FBZ edge (bands 1 and 3) acquire an extra i-Zak phase”’. As aresult,
edge terminations characterized by Zak phases over paths [perpen-
dicular to this edge] that cross this string should display anomalous
edge states”. We confirm this in a ribbon geometry presented in
Fig. 3c, d, where the anomalous edge state is precisely identified in the
spectrum as in the anomalous Euler phase. Namely, the Dirac string
configuration of this ADS phase (similar to the anomalous Euler phase)
differs from the trivial atomic limit only by the presence of the Dirac
string in the anomalous gap, as demonstrated in the Methods due to
the shifted Wannier centers. Hence, the anomalous gap hosts edge
states that we indeed prove are completely localized, giving a universal
signature of the ADS phase. This also provides a direct route to create
phases with edge states in each gap.

Discussion

We present for the first time that the recent developments culminating
in novel multi-gap topological phases®, have anomalous counterparts
that can only exist in an out-of-equilibrium setting. Specifically, we
show that the anomalous gap, stemming from the time-periodic nature
of the Floquet spectrum, can similarly induce non-Abelian braiding via
band nodes therein, leading to Floquet-induced Euler phases. Apart
from these hitherto uncharted out-of-equilibrium braiding processes,
we further discover an anomalous Dirac string phase. Akin to the
characteristic boundary modes of anomalous Floquet insulators,

which were employed for their identification, this fully gapped ADS
phase has an unconventional Dirac string configuration, resulting in a
distinct edge state spectrum. These new phases thus appeal both for
their non-equilibrium and multi-gap nature. Indeed, we stress that
multi-gap models can systematically be formulated for a wide range of
systems’, which, together with the applicability of periodic driving
techniques®’, furnishes various routes to realize these new anomalous
phases. Here, we specifically mention trapped ion systems®, ultracold
atoms®*%*°, meta-materials”, or Floquet engineering of real
materials®*°'. We, therefore, anticipate that our results form a stepping
stone for the theoretical investigation of new exotic topologies and
their experimental observation®.

Methods

Euler class and multi-gap topological characterizations

To classify wave functions over a Brillouin zone or Floquet bands over
a Floquet Brillouin zone from a topological perspective, one is essen-
tially interested in characterizing the describing vector bundle.
Although there has been a wealth of results on getting different
topological invariants, we focus on new developments that take into
account multi-gap conditions’. We recall that oriented real bundles
over a base space B admit a characterizing Euler class, being an ele-
ment of the de Rham cohomolgy. More specifically, integrating the
Euler class’****, over a base space with no boundary results in integer in
units of 2, meaning that the Euler form integral defines an element of
the singular chomology with integer coefficients H*(B,Z). From a
physical perspective, it has been shown that the Euler class of a two-
band isolated subspace directly conveys the stability of the nodes in
that subspace. When a system enjoys C,7 or P7 symmetry, band
degeneracies in adjacent gaps, that is, in the gap situated directly next
to the gap under consideration, carry non-Abelian frame charges®.
For example, when one considers a three-band system, the reality
condition allows for a frame or dreibein interpretation, and the band
nodes act like m-vortices, whose frame charges take values in the
quaternion group’, similar to how disclinations in bi-axial nematic

Nature Communications | (2024)15:1144
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phases can carry quaternionin charges****°, From a more mathema-
tical point of view, this can be directly seen from the fact that the
describing Flag variety relates to SO(3)/D,””. The orientation of the
frame or dreibein needs to be fixed>", ensuring that multiplying any
eigenvector spanning the frame with a minus sign is a priori a gauge
degree of freedom, rendering the mentioned SO(3)/D, parametriza-
tion. The first homotopy group m;[SO(3)/D,]=Q ={+1,+i,+j,+k, — 1}
accordingly reveals the frame charges. The Euler class of the gapped
isolated two-band subspace then physically pertains to the stability of
the nodes, giving a finite value when the frame charges of the nodes do
not add to zero’.

Most interestingly, the Euler class can be refined to a patch Euler
class x, which essentially evaluates the Euler class over a patch in the
Brillouin zone, taking into account a boundary term’. The explicit
expression for a two-band subspace spanned by bands B, and B, ,;

reads
i { / Eu — f{ a} e
2 |) p D

where the Euler 2-form ‘Eu’ is integrated over the patch D
and supplemented with a boundary term that integrates
the Euler connection 1-form ‘a’ over the contour 0D of the patch.
The Euler 2-form in the above expression in terms of the wave function
u, is defined as Eu=da=dPfA with Ay, =(u,kiduyk)=A,,
dk=3";_1,(Uug k|0 up,k)dk; where we have set A2b=<ua,k|akiub,k)
(A'€80(Q2)).  This  gives  Eu=((dy, Uy K|y, Upk) — (Oy,ug K|
Oy, up,k))dk, A dk,, where a, b take values in the band indices n,
n+17% In addition, the Euler connection 1-form is given as a = PfA - dk.
The above characterization assumes a real bundle structure. In
other words, we need to maintain either C,7 or P7 symmetry to
ensure that the Hamiltonian and wave functions admit a real for-
mulation. Focusing on Floquet systems the constraint to have real
eigenvectors u, restricts the type of the periodic modulation. Hence,
we focus on linearly polarized driving as they can preserve time-
reversal symmetry in most common C,-symmetric setups, fulfilling the
reality conditions.
We start from the real-space tight-binding Hamiltonian,
jzjj , on the Kagome lattice, where {j,;'} run through all
nearest nelghbor pairs. We consider a periodic driving which induces a
force, F(t)=F sin(wt)x +F,, sin(wt + @)y on the lattice srte r;, making
the Hamiltonian time dependent H@®)=H -3 F@©) -1 After per-
forming a gauge transformation, R=exp{-i}; [ th(t) NG j} to
the frame of the lattice*>*°, we obtain a simple form of the Hamiltonian
in which the tunneling amplitudes are modified with the Peierls sub-
stitution J;(¢) =/ exp{—i jr A(t) - dr}, where we define the effective
vector potential A(t)=A, cos(wt)x A, cos(wt + @)y with A;=F/w [the
Planck’s constant and lattice spacrng are set to one for simplicity].
Hence, we control the strength of our periodic modulation by tuning
(Ax, Ay) and, in this work, focus on linear driving only along x-direction
by setting A,=0. Eventually, this modifies the momentum space
Hamiltonian in Eq. (3) under minimal coupling to
Hk,t)= — 23 g cOs[(k +A(D) - dyglcics + 3" AgChc, . We numeri-
cally calculate the time evolution operator at the end of one full period
of the drive, U(k,T)=Texp{—ifOT H(k,t)dt} and evaluate the quasie-
nergy £(k) as its phase eigenvalues, e *®7, which can be defined only up
to modulo 2.

Xnn+1[D] = XUBp,Bn+1}; DI = “)

Characterizing the anomalous Euler phase

With the above characterization of Euler class and multi-gap topology
in terms of wave functions, we may directly analyze band spaces of
Floquet systems. We note that, in fact multi-gap conditions arise
naturally as there is no fixed band ordering since the Floquet spectrum
repeats itself in multiples of the driving frequency.

Departing from the static regime", we follow the progression of
the bands as we tune the parameters of the system, see Fig. 2 of the
main text. This achieves a braiding using the nodes of the anomalous
gap over the Floquet Brillouin zone, which can be quantified using the
patch Euler class of Eq. (2), profiting from the discussed real gauge. For
completeness, we demonstrate the evolution and the braiding of the
band nodes in Fig. 4, which also includes the anomalous band nodes
(green) between bands 1 and 3. We confirm these braiding processes
by numerically calculating the patch Euler class of the final anomalous
Euler phase given in Fig. 2.

Itis instructive to further underpin the truly anomalous nature of
the described Euler phase by comparing to its static counterpart with
the same sublattice potentials. We stress that, in this case, the band
structure shows a trivial multi-gap topological configuration. Indeed,
the nodes between the first and second bands can be gapped, which is
corroborated by a calculation of the Euler patch class that is trivial for
any patch for the nodal intermediate regions until the band structure is
fully gapped.

Secondly, we present another example of Floquet-induced
braiding in Fig. 5, which we now attain by tuning the driving strength
while keeping the sublattice offsets at zero, hence, also connecting to
the case of dynamically inverting the bands. It is known that the tun-
neling amplitudes can be frustrated*® or made to change sign*’ by
tuning the driving strength. This effect can be understood by looking
at effective time-independent tunneling amplitudes at leading order,
Jeff = )T o(A)*?, which gets normalized by the zeroth-order Bessel
function 7, that can indeed vanish or become negative as a function of
A. Therefore, one can obtain a spectrum with the flat band with the
non-trivial Euler patch class node at the bottom for large A, which
requires to be addressed from a braiding perspective. As discussed in
the main text, linearly driving the Kagome lattice breaks C, symmetry
and separates the I'-nodes, as shown in Fig. 6a for A, =2. Upon further
increasing the driving strength, our analysis reveals that the I' nodes
and K,K’ nodes move towards the same M point, where the latter is
shown to touch in Fig. 5b for A, =5. However, instead of annihilating
each other and gapping out, the system undergoes rearrangement of
Dirac strings where now the I' nodes in gap 2 carry opposite charges
while the nodes in gap 1 are the same valued. This, thus effectively
amounts to a transfer of Euler charge and the inversion of the band
spectrum where the flat band is situated at the bottom. Further
increasing the driving strength, we indeed observe that these nodes
now move along directions perpendicular to their previous move-
ments and arrange themselves according to the inverted spectrum
associated with effective tunneling amplitudes with opposite sign. We
stress, however that the essential dynamics are captured by a multi-
gap braiding perspective, addressing also the topological stability of
the (K,K") nodes illustrated with filled triangles in Fig. 5d.

Characterization of anomalous Dirac string phase

Analogous to the Floquet-induced braiding process culminating in the
anomalous Euler phase, we can further concretize the Dirac string
phase in the outlined model setting, although we stress the generality
of these phases. Accordingly, in Fig. 6 we present the band structures
of the different stages as shown in Fig. 3a. A Dirac string physically
connects band nodes" and thus can be directly tracked by examining
the evolution of the bands.

We can further corroborate the Dirac string configuration by
evaluating the Zak phases of the bands and edge states, see Fig. 7,
where we recall that a Zak phase is obtained by integrating the Berry
phase over a non-contractible path in the Brillouin zone'*. As dis-
cussed in the main text, when a Dirac string resides between two
bands, it indicates a phase accumulation of m in Berry phase for each
crossing of the path with the string. Specifically, turning to the Dirac
string configuration of the ADS phase discussed the main text; see also
Figs. 3, 7 and 8b), we have Dirac strings between each band which we
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Fig. 4 | Floquet spectra of intermediate stages to reach the anomalous

Euler phase. Band structures during the evolution depicted in Fig. 2 show the
anomalous braiding process for frequency w = 6 and amplitude A,=2. The eigen-
vectors directly characterize the Euler class and quantify the braiding. The offset

parameters [A4, Acl (where Ag=— A,~A() are tuned as a) [-0.5, -0.5], b [-1, -1] and
c [-1.9, -1.5], right before the anomalous (green) nodes annihilate to give
rise Fig. 2b.
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Fig. 5 | Floquet non-Abelian braiding and inverted spectrum. Starting from the static Kagome model, Euler charge is transferred from gap 2 to gap 1 by increasing the
driving strength at fixed frequency w = 6 and vanishing sublattice offsets A4 = Ag= Ac= 0. The driving strength A, is varied to take valuesa4,b5,c6,andd 7.

will denote as DS, ,, DS, 3, and DS; ;. Here, the subscripts refer to the
bands which we number from the lowest to the highest by keeping
track of their labeling during the evolution from the static Kagome
limit. Hence, DS;3 corresponds to the Dirac string in the anom-
alous gap.

We close the circle of our analysis by relating the Dirac string
configuration and the Zak phases of the bands. Given the band inver-
sion processes [Fig. 6] of the various stages described in the main text
that lead to the ADS phase, we obtain the string configuration pre-
sented in Fig. 8b) where the band nodes at each gap are annihilated at a
different M point. We can thus readily infer the Zak phase y; of band 1
along the non-contractible path b;. As this path crosses DS; , and DS;,
but not DS, 3, we find yj [b;]=0. This is because band 1 acquires a
phase factor 7 from both DS; , and DS3 ;. Similar reasoning shows that

Vs,[bi]=m and yg [by]=1, as these Zak phases get a single m-con-
tribution from DS; , and DS; 3, respectively. The same procedure can
also be repeated for the path along b, giving that
(V5,[b21,V5,[,1,¥5,[b5]) = (71,7,0). Upon numerically calculating the Zak
phases of the bands in the ADS regime, we indeed verify these insights
and Dirac strings.

Edge state counting in anomalous Dirac string phase

An important physical consequence that characterizes the anomalous
Dirac string (ADS) phase is the appearance of edge states. As we
highlighted in the main text, the transition to the ADS phase is char-
acterized by the formation of nodes, that leave behind a Dirac string.
While tracking the spectral evolution is effective in characterizing the
topological phases, we here would like to further quantify the edge
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Fig. 6 | Floquet band structures of intermediate stages to reach the Anomalous
Dirac string phase. a Driving [here with frequency w = 6, and amplitude A, =2]
splits the double node at the I point. As detailed in the main text, the ADS phase
comes into existence by decreasing Ac=— Ag (at fixed A4 = 0). Successively, the
(K,K') nodes between band 2 and 3 (blue triangles) and the I'-nodes (red circles)
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between bands 1 and 2 annihilate and leave behind Dirac strings shown in Fig. 3a.
Similarly, nodes in the anomalous gap (green boxes) are created and annihilated
across the BZ, giving rise to the anomalous Dirac string. The panels show snapshots
of the evolution to reach the final stage in Fig. 3b, fora Ac=0,b Ac=-1.2,

and c Ac=-2.

state spectra, using these intricate relations between the Zak phases
and the various Dirac string configurations.

In static systems, a Zak phase of m(0) indicates the presence
(absence) of edge states when the orbitals in real space are centered at
the maximally symmetric Wyckoff position*’>°¢, When the orbitals are
“shifted”, corresponding to the boundary of the unit cell as in the case
of our Kagome system, the role of the O and n-Zak phases is inter-
changed, and a m-Berry phase corresponds to having no edge states.
Essentially, the mismatch may be quantified by counting the difference
in charges of bands and Wannier centers as formalized by charge
anomalies®. It is tempting to directly infer from the Zak phases whe-
ther an edge termination will give edge states or not in the Floquet
setting. Here diligence, however, has to be taken with the out-of-
equilibrium nature of the system. Indeed, due to the time periodicity of
the Floquet Brillouin zone, the system is not simply adiabatically
connected to the static counterpart, as each band now relates to gaps
above and below. As an example, we consider starting from a static
system where the Zak phase configuration of the three bands relevant
for a certain edge projection reads (v ¥,V 5,) = (0,1,1). Let us further
assume that this configuration entails an atomic limit giving no edge
states. Upon going to the Floquet counterpart, we may consider
driving a band inversion in the anomalous gap, inducing a Dirac string
and thus a r shift in the Zak phase of those bands. This then results in
the configuration (v ,¥p,,V,) = (,1,0) and an anticipated edge state
in the anomalous gap. However, starting from the same initial config-
uration we may also consider inducing first a band inversion between
the two top bands and then the two bottom bands successively. In this
scenario, we thus anticipate edge states between bands 1 and 2 and
bands 2 and 3. Nonetheless, in this case, the Berry phases also amount
to (V,,V5,V5,) = (1,1,0), showing the subtly of predicting edge states.
Indeed, rather than focusing solely on the Berry phases, one in fact
needs to keep track of the Berry phases, Dirac string and the band
evolution.

The above analysis shows that we have to start from a universal
description in a well-defined limit, a requirement that is unequivocally
set by a trivial atomic limit (AL). To this end, we consider Hamiltonian
(3) with all hopping terms switched off, i.e., / = 0, and on-site potentials
(A4 A, Ao) = (0,1, -1). This evidently realizes a trivially gapped system
where the top, middle and bottom band corresponds to the localized
wave functions on the B, A, and C cites, respectively. As the Wannier
centers are not localized at the center, this phase does have a Dirac
string configuration, as presented in Fig. 8a). Characterizing the real-

space positions of the orbitals A, B, and C as r, g ¢, a simple calculation
then indeed corroborates that

(VA b V5B VE b)) = (€7 P, g1, effity)
=(m,m,0),

for the energy-determined band ordering 5; < B3, < B;. The Zak phases
along the other direction are readily verified to amount to
(V& [b,], V& [b,], & [b,]) = (0,7,m). A simple analysis similar to the one
presented in the previous subsection then indeed shows that the Dirac
string configuration of the AL phase presented in Fig. 8a is consistent
with these Zak phases.

With the trivial reference state in place, we can now effectively
characterize the edge state spectrum for the “arm chair” termination
studied in the main text, in a more concrete manner that corroborates
the results of tracking the band inversion processes. In Fig. 7, we show
the ribbon termination and the corresponding momentum space
description. The spectrum should be analyzed by the Zak phases that
project to the edge Brillouin zone. We observe that for this edge
geometry, the unit cell is effectively doubled along the periodic
direction and hence, half as large in reciprocal space. Concretely, this
results in edge states which can be directly observed®. These relate to
the Zak phases along the path 2b,; + b, perpendicular to the vertical
edge. Considering the trivial AL reference phase, it is easy to see that
we obtain (y§[2b; +b,], y4[2b; +b,], y4:[2b, + b,]) = (0,m,m), as the
factor 2 trivializes any contribution from by, hence ensuring the result
is the same as considering the path along b,. Comparing subsequently
to the anomalous Dirac string (ADS) phase, we observe that the extra
Dirac string induces another m-phase for the top and bottom
band, (VE‘;?S[Zbl +b,], V’éfs[Zbl +b,], V’é’;’S[Zbl +b,])=(,m,0).

We can thus imagine starting from the atomic limit as defined
above and inducing driving without closing any of the gaps. This phase
should then evidently have no edge states. As a next step, the anom-
alous Dirac string is entered upon a band inversion in the anomalous
gap, and edge states are anticipated within that gap, as consistent with
the observation in Fig. 3 of the main text and quantified via the Zak
phase configuration. We reemphasize that the order of processes in
the band evolution needs to be taken into account to interpret these
indices.

The above-presented analysis can be employed for any type of
edge termination. Hence, to conclude, we comment on the edge in the
three main “zigzag” directions demonstrated in Fig. 8a, b, where we cut
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Fig. 7 | Edge Brillouin zone determination for ‘arm chair’ cut. a The real-space
ribbon geometry of the main text. The unit cell is doubled along the periodic
direction, which results in a halved-edge Brillouin zone illustrated in orange (b). The
edge states for a band B are determined by Zak phases y;[2b, +b,] along paths
perpendicular to this edge. ¢ Real-space localization of the two anomalous edge

30

states y(x, k) and ¢(x, k;) in the ADS phase as function of x along the ribbon cross-
section. Due to the difference of the Zak phase configuration in the ADS phase with
respect to the atomic limit, these edge states show characteristic real-space loca-
lization, ﬁzf“ Zy(\tpl(x,y,kuﬂ2 + \(pz(x,y,ku)\z), where we considered N=30
momentum points in the edge BZ and y runs over the sites in the unit cell.
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Fig. 8 | Zigzag edges and Dirac strings in atomic limit and ADS phase. a Dirac
string configuration of the atomic limit defined in text. The three zigzag edges are
characterized by the Zak phases over paths along the perpendicular directions in
momentum space. ZZ;, the edge perpendicular to by, results in

(V& [b1], V4-[by], y&: b)) = (11,m,0), whereas ZZ, and ZZ are characterized by

(V’?; [b,], Yfgz [b,], }”2;3 [b,])=(,0,m) and (V’é v=—(b, - b,)] Z[V] )”é} [v)=(0,m,m),

respectively. b Same edge terminations and relevant Zak phases for the ADS phase,
which differs from the atomic limit by the presence of a Dirac string in the anom-
alous gap. ¢ Edge state spectra for the zigzag edges in the ADS phase. The ZZ; and
ZZ, terminations show anomalous edge states due to the difference in Zak phases
with respect to the atomic limit, while ZZ; has no edge states.

the BZ in three directions that we label as Z7;, Z7Z,, and ZZ. By applying
the similar analysis that we employed in the study of the previous edge
termination, we obtain that in the ZZ;-cut the Zak phase configuration
reads (v [by], VA [by], v [by]) = (,7,0). Evaluatmg the configuration in
the ADS phase we get (yg,DS[bl] V25 [by], v523[by) = (0,m,m), signaling

again that the ADS phase is entered upon a band inversion in the
anomalous gap that we verify to be the only gap with edge states in the
spectrum for this termination in Fig. 8c. Turning to the ZZ,-edge, we
see that the boundary states are determined by the paths along b, and
thus result in the same outcomes (Zak phases) as for the “arm chair”
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termination above, meaning that we predict edge states in the
anomalous gap, which we confirm in Fig. 8c. Finally, when we con-
sider the ZZ;-edge, the boundary spectrum is determined
by paths along the direction v=-(b—b,). We then obtain
VA VL VEIVL VEIVD = (V2 IVL v IV vE2IvD) = (m,0,m). Consistent
with the interpretation that the relevant non-contractible paths in the
v-direction do not cross the string of the anomalous gap, no edge
states are anticipated for this termination. This is reflected in the
similarity of Zak phases for both the ADS phase and AL and corrobo-
rated by our numerical results that show no edge states in either of the
gaps of our system, see Fig. 8c. We finally note that this explicit eva-
luation sets the stage for more types of Anomalous Dirac String phases.
One may, for example, consider a system that has edge states in the
anomalous gap as well as the other gaps. We therefore believe that our
results mark an important stepping stone for future pursuits.

Data availability
All data and descriptions of codes accompanying this publication are
directly available within the publication.
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