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interactomics of tooth-associated
keratinocytes in periodontitis
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Periodontitis affects billions of people worldwide. To address relationships of
periodontal niche cell types and microbes in periodontitis, we generated an
integrated single-cell RNA sequencing (scRNAseq) atlas of human period-
ontium (34-sample, 105918-cell), including sulcular and junctional keratino-
cytes (SK/JKs). SK/JKs displayed altered differentiation states and were
enriched for effector cytokines in periodontitis. Single-cell metagenomics
revealed 37 bacterial species with cell-specific tropism. Fluorescence in situ
hybridization detected intracellular 16 S and mRNA signals of multiple species
and correlated with SK/JK proinflammatory phenotypes in situ. Cell-cell
communication analysis predicted keratinocyte-specific innate and adaptive
immune interactions. Highly multiplexed immunofluorescence (33-antibody)
revealed peri-epithelial immune foci, with innate cells often spatially con-
strained around JKs. Spatial phenotyping revealed immunosuppressed JK-
microniches and SK-localized tertiary lymphoid structures in periodontitis.
Here, we demonstrate impacts on and predicted interactomics of SK and JK
cells in health and periodontitis, which requires further investigation to sup-
port precision periodontal interventions in states of chronic inflammation.

Periodontal diseases—i.e., periodontitis—affect billions of people every
year across the globe1. They are most often characterized by dysre-
gulated, chronic inflammation of the periodontium, typically caused
by polybacterial dysbiosis, though other systemic conditions have
been associated with periodontitis symptomology2. If left untreated,
the result of chronic periodontitis is tooth loss3. Periodontal diseases
are associated with >60 systemic diseases, including cardiovascular
diseases, type 2 diabetes, Alzheimer’s disease, and inflammatorybowel
diseases4. Precisionmedicine approaches for these diseases—including

diagnostics, prognostics, and biologics—have had minimal success to
date; however, early identification and treatment may improve oral
andoverall health5. A limitedunderstanding of cell subpopulations and
their cell states, either supporting niche maintenance or contributing
to its breakdown, inhibits precision approaches in periodontitis, and
there is an unmet need to elucidate cell-specific and cooperative cell
plasticity in periopathogenesis. Despite decades of data supporting
tooth-associated keratinocyte heterogeneity6, functional cell annota-
tion remains incomplete.
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Structural immunity7 i.e., “immune functions of non-
hematopoietic cells”, can be studied using single-cell and spatial
genomic approaches, and recent work in this field suggests that in
certain contexts, “every cell is an immune cell”8. In periodontitis, this
concept has been demonstrated between fibroblasts and innate
immune cells9. Other structural cell types such as epithelial cells—
specifically keratinocytes—have been implicated in regulating auto-
immune and infectious disease immune responses10,11. Furthermore,
while epithelial cells and/or keratinocytes (KCs) may passively permit
microbial infection via tissue barrier breakdown12, keratinocytes via
their stem/progenitor cells at the stromal tissue interface may play
important immune education roles before, during, and after barrier
breakdown; alternatively, keratinocyte stem/progenitor cell rewiring
through immune-like memory of past immune and microial interac-
tions may sensitize these cells to proinflammatory profiles with or
without chronic challenge13.

To addresswhether and how tooth-associated epithelial cell types
mayplay active structural immune roles inperiodontitis, we created an
integrated periodontitis atlas of human tissues9,14–16 using the open-
source single-cell analysis toolkitCellenicshostedby ParseBiosciences
(https://scp.biomage.net; see Methods), describing 17 total and func-
tionally annotating 5 new gingival keratinocyte subpopulations within
the human gingival epithelium at a single-cell level. Tooth-facing sul-
cular keratinocytes (SKs) and tooth-interfacing junctional keratino-
cytes (JKs) were classified into their stem/progenitor cells and their
differentiated progeny using KRT19 and other niche-specific marker
expression. We made this data publicly available at CZI CELLxGENE
and validated these cell identities using multiplexed fluorescence
in situ hybridization (mISH). Transcriptionally, SK and JK microniches
respond differently in disease but generally alter cell differentiation
and upregulate effector cytokines (“epi-kines/keratokines”) along
stem-cell-to-progeny trajectories.

Since keratinocytes function at the interface of microbial chal-
lenge and related immune effects, we combined unmapped reads of
our integrated atlas and found that SKs and JKs harbor numerous
bacterial reads from known periodontitis-associated pathogens
(“periopathogens”). mISH in vivo pinpointed cell-specific signatures of
highly positive 16S+ cells, revealing regional SK/JKs phenotypes mostly
associated with 16S signal within tissue microniches. To understand
the effects of this phenotype, we used cell-cell communication analysis
to predict these SK/JKs preferentially regulate innate and adaptive
immune cell subpopulations, even in health. Using highly multiplexed
immunofluorescence assays (mIF; 33-antibody), we found adaptive
and innate immune cell compartmentalization between SK and JK
niches, including potential immune suppression phenotypes at areas
closest to the tooth surface where gram-negative bacteria aggregate
into immunostimulatory biofilms in disease—i.e., the peri-JK micro-
niche. The JK-microniche was most often PD-L1+ in contrast to SK-
localized tertiary lymphoid structures, which more often contained
mixed active (ICOS+) and exhausted (PD-1+) populations in period-
ontitis. Here, we demonstrate impacts on and predicted interactomics
of SK and JK cells in health and periodontitis, suggesting their linked
barrier integrity maintenance, immunostimulatory microbial interac-
tion endurance, and immune cell tropism coordination roles require
deeper investigation to support precision periodontal interventions in
states of chronic periodontal inflammation.

Results
Generation and analysis of a first draft integrated
periodontitis atlas
The tooth is supported by diverse cell types (Fig. 1a). Hundreds of
diseases affect teeth; however, the cell-specific contribution to these
diseases remains limitedly explored17. Though not exhaustively
explored here, recent murine18–20 and human studies have focused on
the single-cell RNA sequencing (scRNAseq) of the tooth-supporting

periodontium (mineralized tissues: alveolar bone, cementum; soft
tissues: gingiva, periodontal ligament)21, but some cell types like ker-
atinocytes are minimally annotated despite their known
heterogeneity22. We analyzed 4 human scRNAseq datasets9,14–16

(34 samples, 3 states [20 health, 4 gingivitis, 10 periodontitis]; Fig. 1b)
using Cellenics®. Metadata was harmonized (Supplementary Data 1)23

and the location noted for 27 of the 34 samples to establish a common
coordinate framework (CCF) for these and future periodontium
studies24 (Supplementary Fig. 1a). Some harvest sites were unknown
(~20%); others were taken frombroader characterizations than a single
tooth site (i.e., “anterior”, meaning incisors and canines or “posterior”,
meaning premolar and molars).

All scRNAseq samples were reprocessed, filtered, and integrated
(Fig. 1b; seeMethods). Cellswerebroadly annotated atTier 1 resolution
(epithelial, stromal, endothelial, neural, and immune). We focused on
gingival epithelial heterogeneity (Fig. 1c) within the distinct transi-
tional zone between non-keratinized alveolarmucosal (AM, if present),
attached gingival (AG), gingival margin (GM), and sulcular and junc-
tional keratinocytes (SK/JKs)22. Red blood cells (HBA+/HBB+) and
cycling cells were filtered out, and each study was further annotated
(Tier 2; Fig. 1d). Integrating data enabled the harmonized cell annota-
tion of 32 cell types across datasets (Tier 3; Fig. 1e, f); marker genes
were determined for each (Fig. 1g; Supplementary Data 1). All kerati-
nocytes were broadly marked by KRT5/KRT14. SK/JKs also expressed
higher FDCSP, ODAM, and keratins KRT7 and KRT196. At this level of
resolution, epithelial cells could be classified into 7 different types,
including SK/JKs and other epithelial-resident cells i.e., Merkel cells,
melanocytes, and Langerhans cells.While no single study contained all
the cell types annotated in this atlas, these four studies were similar
when comparing relative cell proportions (Supplementary Fig. 1b).
Cellenics® data was exported to CELLxGENE for public use (https://
cellxgene.cziscience.com/collections/71f4bccf-53d4-4c12-9e80-
e73bfb89e398; Supplementary Fig. 1c).

Transcriptomic analysis reveals immune roles for and effects on
keratinocytes in periodontitis
Recent work supports the idea that “structural” cells (i.e., neural, adi-
pose, muscle, vasculature, fibroblasts, epithelial cells) can support the
tailoring of individual immune responses to niche-specific challenges
(“structural immunity”7). In periodontitis, this has been relatively
unexplored. Individually, fibroblasts in single-cell9 and spatial
transcriptomic25 studies have shown direct innate immune curation
roles via effector cytokines and other ligands predicted to interact with
innate and adptive immune cell populations. To ask how structural cell
types may play roles in periodontitis progression, we analyzed peri-
odontitis versus healthy cells in pseudobulk RNAseq analyses, gen-
erating differentially expressed gene (DEG) lists (Fig. 1h; Supplementary
Fig. 1d–f), Supplementary Data 1) for all cells and specifically kerati-
nocytes, fibroblasts, and vasculature endothelial cells. We observed
structural populations comprising ~2/3 of the up- and downregulated
DEGs from the “all-cell” pseudobulk experiment, supporting potential
immune roles in periodontitis for multiple structural cell types.

The immunoregulatory role of keratinocytes in periodontitis has
been specifically studied12,26 and the innate immune population resi-
dency near JKs previously shown27. In diseased keratinocytes, our DEG
analysis revealedupregulationofCXCL1, CXCL3, CXCL8, CXCL13, CCL20,
CSF3, IL1A, IL1B, and IL36G and receptors IL1R1 and IL7R in period-
ontitis. Furthermore, CXCL1, CXCL8, IL1A, and IL1B had a greater log
fold change in keratinocytes compared to all cells (Fig. 1h), andCXCL17,
CCL20, and CSF3 were upregulated in keratinocytes (compared to
Supplementary Fig. 1) and also sharedwith primarilyfibroblasts and/or
endothelial cells. We used g:Profiler (see Methods) to understand
altered disease state pathways in keratinocytes, and using functional
profiling of GO pathways, cell signaling and bacteria/dysbiosis
responses were highlighted as the most upregulated (Supplementary
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Fig. 2a). Immune response upregulation also appeared to come at the
expense of terminal differentiation, development, and translation
activity (Supplementary Fig. 2b). This phenomenon may help reshape
the periodontal niche through immune recruitment, either individu-
ally or in concert with other epithelial and structural cell types of the
periodontal niche.

Using the DEG data, the “reactome” of diseased keratinocytes
further suggested active immune roles for these cells (Supplementary
Fig. 2c). To understand this comprehensively, we used CellPhoneDB
(see Methods) to investigate relative cell-cell communication patterns

of Tier 3-level cell identities via receptor-ligand pairs (Fig. 1i; Supple-
mentary Data 2). We found expected fibroblast-vasculature and
fibroblast-immune interactions. As predicted, we also discovered
many interactions between SK/JKs and many other cell types, sug-
gesting regional epithelia-stromal-immune communication axes in
periodontitis. While some other keratinocytes are predicted to signal
to other cell types in disease states, this occurs prominently for SK/JKs
compared to other keratinocytes, melanocytes, and Merkel cells.
Overall, this focused our investigation on understanding these tooth-
associated keratinocytes in health and disease states.
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Redefining human gingival keratinocyte subpopulations for
niche-specific analysis in periodontitis
To validate the KRT19/KRT19 spatial localization, adult gingivae were
harvested, and the orientation was preserved to feature both oral-
facing and tooth-facing keratinocytes (Fig. 2a–c). Immunofluorescence
validated KRT19 as the definitive SK/JK marker (Fig. 2b, c). Each of
these regions within the entire gingiva revealed similar proportions of
Ki67+ cycling cells, highlighting theneed tounderstand SK/JK epithelial
stem/progenitor cells in humans as previously done with mice28

(Fig. 2c). We subclustered keratinocytes from our integrated atlas
(~8500 cells, Fig. 1) and identified that KRT19-high expressing cells
clustered together (Fig. 2d, Supplementary Fig. 3a). We generated
marker lists for each population (Fig. 2e; Supplementary Data 1). Using
a custom 12-plex in situ hybridization (ISH) assay (RNAscope) designed
from single-cell signatures with built-in negative/low controls, we
found CXCL14 expression in keratinized basal cells (AG) in contrast to
no expression in SK/JK KRT19+ cells (Fig. 2f; Supplementary Fig. 3b).
Other markers enriched in oral-facing keratinocytes included NPPC,
PAPPA, and NEAT1 but SAA1/2, IL18, and RHCG in tooth-facing SK/JKs.
Using primary human gingival keratinocytes (HGKs), we discovered
the persistenceof KRT14+ andKRT14+/KRT19+ cells that could enter the
cell cycle (Ki67+; Fig. 2h). This mixed primary culture model was
maintained at passage (P) 5, including differentiated progeny from
both stem/progenitor cell types (Fig. 2i). Using ISH, we also found cell
subpopulation-specific markers such as SK/JKs (SOX6+/FDCSP+) and
oral-facing AG keratinocytes (SOX6+/LGR6+; Fig. 2j). This established
multiple lines of evidence for distinct SK/JK epithelial stem cells and
their progeny in vivo as well as the potential for new in vitro models to
understand their cell subpopulation-specific activity and disease and/
or stress responses.

Murine gingival Krt19 subpopulations exist around molars but
are less common
Despite the frequent use of mouse models of periodontitis29, the
junctional niche similarity between mice and humans is debated30,31.
We were curious whether these SK/JK cells and their signatures were
conserved between human andmouse. To address this, we performed
scRNAseq of adult mouse gingiva (Supplementary Fig. 4a, b). Sub-
clustering epithelial cells revealed a subpopulation of Krt19+ kerati-
nocytes. When compared to basal epithelial stem/progenitors (Krt14+)
and differentiated (Krt1+, Krt4+) keratinocytes, Krt19+ cells were mostly
Krt14-positive (Supplementary Fig. 4b). ISH analysis of healthy mouse
gingiva around molar (M) 1 and M2 readily showed pockets of Krt19
expression, suggesting some conservation (Supplementary Fig. 4c).
These rareKrt19 cells alsoupregulatedCxcl1, Cxcl8, andCxcl17, distinct
from other Krt14-high cells (Population 7, yellow box: Supplementary

Fig. 4d), suggesting somemirroring of human cell-cell communication
activity between SK/JKs and other cell types inmice. Someothermixed
cell subpopulations expressed some interleukins (Population 6, pink
box: Il1a, Il1b, Il1rn, Il18).Whenexamining thehealthy keratinocytes,we
observed similar expression signatures in SK/JK cells. When using the
same human signatures from Fig. 2, mouse subpopulations failed to
cleanly segregate using human signatures, supporting only some
heterogeneity of murine gingival keratinocytes. Overall, this data
suggested that further investigation of cross-species cell type analyses
is needed for mouse periodontium between other animal models and
humans32.

Periodontitis affects SK/JK stem/progenitor differentiation to
upregulate inflammatory signatures
Confirmation of SK/JK cell identities led us to refine cell annotations
using new markers (Fig. 3a) and consider how SK/JKs are uniquely
affected in periodontitis. To better understand SK/JK heterogeneity,
we subclustered out the KRT19-high cells from the integrated atlas,
annotating subpopulations to include basal (stem/progenitors) and
their differentiated progeny (suprabasal [SB] keratinocytes; Fig. 3b, c).
We next looked at the cell-specific gene upregulation patterns to gain
insight into these cells inperiodontitis (SupplementaryData 1). Despite
their adjacency, we found 28.5% of shared SK/JK gene upregulation in
periodontitis (Fig. 3d). We found basal and SB JKs—infrequently basal
and SB SKs—generally upregulated effector cytokines CXCL1, CXCL3,
CXCL6, CXCL8, IL1A, IL1B, and IL36G (CXCL1 and IL1B by SB JKs com-
pared to SB SKs (Fig. 3e)). Thisfinding uncoveredpotential therapeutic
avenues for periodontitis niche restoration to health, since keratino-
cytes closest to the tooth surface drove most effector cytokine
expression compared to all keratinocytes.

Next, we subclustered basal and SB SKs and JKs and found that
these distinct cell identities formed unique clusters using partition-
based graph abstraction (PAGA; see Methods and Supplementary
Fig. 5a–e). We sought to understand how gene expression pattern
changes revealed the differentiation and proinflammatory changes in
SK/JKs. Along the differentiation trajectory in pseudotime, we pre-
dicted altered differentiation trajectories i.e., JUND increased and
SPRR3 decreased in both JKs and SKs yet TGM decreased in JKs and
SPINK7 decreased in SKs (Fig. 3f, g). The largest difference occurred in
cell signaling changes between JKs and SKs (Fig. 3h, i). CXCL1, CXCL3,
CXCL8,CSF3, IL1A, IL1B, and IL1RN all increased in JKs in periodontitis as
predicted by our atlas/DEG analyses; alternatively, SKs were relatively
less active compared to JKs.Overall, SK/JK stem cells and their progeny
appeared to differently upregulate proinflammatory, immunor-
egulatory, and innate immune chemotactic signatures at the expense
of healthy cell differentiation and epithelial barrier maintenance.

Fig. 1 | An integrated periodontitis atlas reveals important oral keratinocyte
population roles in immune signaling. a Specialized tissues support human
teeth, including the periodontium, consisting of 1) gingiva (blue/box: epithelia;
stroma), 2) periodontal ligament, and 3) mineralized tissues (cementum; alveolar
bone). b Four single-cell RNA sequencing (scRNAseq) datasets were reprocessed
for broad cell class comparison between studies. c The gingival epithelial attach-
ment is a specialized transitional epithelium example, changing from non-
keratinized alveolar mucosa (AM; if present), to keratinized attached gingiva (AG),
altering expression profiles at the gingival margin (GM), then specializing in gin-
gival sulcus and junctional epithelial keratinocytes (SK/JKs). d Each study was first
integrated using Harmony and assigned Tier 1 cell type annotations. eHarmonized
tier annotationwas performedbetween epithelial, stromal, endothelial, neural, and
immune cell populations. f Integrated UMAP and cell assignments and g cell sig-
natures (Supplementary Data 1) were generated. Epithelial cells (blue) are high-
lighted. The entire dataset was uploaded to publicly-available CELLxGENE
(cellxgene.cziscience.com/). SKs and JKs were grouped in the Tier 3 analysis as co-
expressing Keratin 14 (KRT14) and Keratin 19 (KRT19). h Pseudobulk analysis of
some differentially expressed genes (DEGs) in periodontitis using all keratinocytes

(Tier 3 annotations) in volcano plots; full list, Supplementary Data 1. i Using Cell-
PhoneDB, all Tier 3 cell types were analyzed for inferred receptor-ligand interac-
tions; most frequent–bottom left. SK/JKs appear uniquely expressive of effector
cytokines/other ligands compared to other keratinocytes (Supplementary Data 2).
Abbreviations: ILCs Innate Lymphoid Cells, KCs Keratinocytes, VECs Vascular
Endothelial Cells, VSM Vascular Smooth Muscle, LECs Lymphatic Endothelial Cells,
Neut Neutrophils, Mast Muc, MM Masticatory (Keratinized) Mucosa, Lining Muc,
LMLining (Non-Keratinized)Mucosa, SBSuprabasal (Differentiated) Keratinocytes,
Fib Fibroblast, AECs Arterial Endothelial Cells, PCV Postcapillary Venule, VECs
Venule Endothelial Cells, Mac/Mono Macrophage/Monocytes, cDCs Conventional
Dendritic Cells, pDC Plasmacytoid Dendritic Cells, Tc Cytotoxic T Cells, gdT
GammaDelta TCells, TregRegulatoryTCells,MAITMucosal Associated Invariant T
Cells, ThHelper T Cells. Illustration from (a) createdwith BioIcons (image hosted at
https://bioicons.com; tooth icon by Servier https://smart.servier.com/, licensed
under CC-BY 3.0 Unported https://creativecommons.org/licenses/by/3.0/); illus-
tration from (c) created with BioRender (https://www.biorender.com/). n = 34-
sample, 105918-cells.
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Polybacterial interactions of human keratinocytes are diverse
and frequent in periodontitis
Considering polymicrobial dysbiosis drives periodontitis in susceptible
hosts33, we hypothesized these SK/JK phenotypes for altered differ-
entiation and immune cell communication partially arose from period-
ontal pathogen (“periopathogen”) interactions. We first used a 16S rRNA
ISH probe common to all bacteria34 in healthy and periodontitis tissues
(Fig. 4a). In health, 16S was frequently detected in suprabasal keratino-
cytes; however, in periodontitis, we noted higher counts of 16S+ basal
keratinocytes and stromal cells, with generally higher burdens in JKs.We
wanted to reveal cell-specific, species-specific bacterial burden and
adapted the “Single-cell Analysis of Host-Microbiome Interactions”

pipeline (SAHMI; see Methods) to identify sparse bacterial reads from
single-cell datasets (Fig. 4b; Supplementary Data 2). We first looked at
healthy samples, identifying few cell-microbial associations (Fig. 4c); yet,
in diseased samples, we observed many more bacterial reads per cell.
Well-known periopathogen Porphyromonas gingivalis35 had the largest
increase–nearly 200-fold–in keratinocytes and larger in other immune
cell populations (Fig. 4d, e). Other well-known periopathogens Lepto-
trichia sp36., Treponema (T.) denticola, T. medium, T. vincentii37, and
recently-associated periopathogen Pseudomonas aeruginosa38 each had
>2-fold increases, suggesting cell-specific enrichment for oral microbes
and/or their outer membrane vesicles (OMVs) containing bacterial
nucleic acids in/on human cells may increase in disease states39.
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P. gingivalis, F. nucleatum, and T. denticola have been found
intracellularly in keratinocytes, fibroblasts, and endothelial cells40. We
hypothesized that SK/JKs may harbor these microbes—or microbial
fragments—intracellularly. Using healthy and diseased keratinocytes,
we analyzed the average number of cells harboring at least one bac-
terial read per barcode, finding enrichment of key periopathogens in
0.5-2% of all barcodes (Fig. 4f). We then created an ISH panel against 2
of the detected periopathogens (P. gingivalis, fimA; Fusobacterium,
fadA), with the 16S rRNA probe as a control. We used tissues first
profiled by multiplex IF in periodontitis (see below) and re-probed for
microbial mRNA targets (Fig. 4g, h), revealing intracellular signals of
both periopathogen targets in 3D—occasionally in the same JK epi-
thelial stem cells (Fig. 4h). Whether this is truly intracellular patho-
genesis in each case in situ or possibly OMVs containing 16S ormRNAs
remains to be confirmed39. At this periodontal niche, >500 species
have been detected in humans41, thus the SK/JKs at the interkingdom
interaction “front line” likely play important roles in regulating host-
microbe interactions.

Polybacterial interactions are interlinked with keratokine
expression in junctional keratinocytes
We predicted that polybacterial interactions are likely more common
than previously appreciated and performed a metagenomic reanno-
tation of the periodontitis atlas (Fig. 1). In this cell-agnostic atlas, single
(monobacterial), and multiple species (polybacterial) reads were
found in every major cluster (Fig. 5a). Focusing on how this impacted
keratinocytes, we found chemokine signatures such as CXCL1/3/8/17
and CCL20 that had been found in previous analyses, in both period-
ontitis and health (Fig. 5b, c). Furthermore, CXCL1/3/8 and CCL20 can
attract innate (neutrophils) and adaptive immune cell populations
(dendritic andT cells), suggesting potential immunoregulatory roles in
chronic disease states.

We hypothesized that the observed increase in SK/JK immunor-
egulatory roles (Figs. 3, 4) was potentially related to host-microbial
interactions at a single cell level; we wanted to validate these poly-
bacterial signatures in keratinocytes with spatial context. Because we
consistently saw these cell-specific signatures, we termed this epithe-
lial cell signaling response as “epi-kines/keratokines” i.e., cytokine
upregulation by keratinocytes in response to challenge. To investigate
single-cell, polybacterial interactions in situ, we created a custom 11-
keratokine panel with one 16S probe and performed three consecutive
imaging rounds, aligning the individual images of the same tissue
sections to simultaneously assess all 12 probes at single-cell and spatial
resolution (Fig. 5c–e; seeMethods). Using 16S revealed lineage tracing-
like patterns of polybacterial interactions in epithelial stem cells and
their differentiated progeny in AG, GM, SK, and JK regions (Fig. 5f),
reminiscent of lineage patterns in mouse oral epithelial stem/pro-
genitor cells28,42,43. This is important because these cell types persist in
the basal layer and give rise to differentiated suprabasal progeny for
many cell divisions, with polybacterial interactions potentially
impacting subsequent stem and suprabasal cell generations.

Considering periopathogen increases in biofluids like blood (i.e.,
bacteremia44) and saliva45 as well as epithelial stem/progenitor long-
evity in the basal layer46, this could be a body-wide phenomenon
associated with exposures over the lifespan.

When qualitatively assessing cytokine expression, there appeared
to be a positive correlation with host expression and 16S+ signal
(Fig. 5g). To quantitate this, we segmented stroma and basal/supra-
basal keratinocytes at the four ROIs (Fig. 5f), subdividing each tissue
into 12 segments around epithelial transition regions. We generated
custom scripts to run 12-plex ISH analyses from these ROIs. Simulta-
neous keratokine comparison revealed highly infected stromal cells
and keratinocytes displayed cell-specific phenotypes (Fig. 5c). Other
markers were enriched in suprabasal cells or the stroma specifically.
IL1A, IL1B, CXCL1, and CXCL3 displayed some correlation with highly
infected cells (Fig. 5c)—mostly suprabasal cells, likely explaining the
differentiation effects predicted for these cells in periodontitis (Fig. 3).

Broadly, when comparing health and periodontitis, we found
upregulation of keratokines by higher RNA transcript numbers per cell
(Fig. 5d). IL1 superfamily members IL1A, IL1B, and IL36G were upregu-
lated in periodontitis in both the basal and suprabasal layers of the JK;
further, though previously reported, we observed concomitant
expression of these genes in the peri-junctional stroma. These obser-
vations held in CXCL1 and CXCL3 expression—both innate immune cell
chemokines. We downsampled and reordered keratokine expression
heatmaps by 16S burden in the JK and distant GM regions (Fig. 5h, i).
16S-high burden directly correlated with high CXCL1, CXCL3, CXCL8,
and IL1A, with IL6 additionally corresponding to basal and suprabasal
layer 16Sburden—in either ROI. Thiswasmore pronounced forC-Cand
C-X-C motif chemokines in either region. Consistently, single-cell 16S
signals were most clearly associated with broad effector cytokine
expression in situ.

Tooth-facing keratinocytes are predicted to support immune
response coordination for innate and adaptive immune
cell types
Having confirmed cell identities of SKs and JKs and gained some insight
into their linkage of differentiation, immune signaling, and microbial
interactions, we further annotated innate and adaptive immune cell
populations using CellTypist (see Methods and Supplementary
Fig. 6a–c; Supplementary Data 1). We noticed that some DEGs in ker-
atinocytes targeted both adaptive and innate immune cells.We became
interested to understand their targets through receptor-ligand analysis.
We utilized CellChat to understand cell-cell interactions via receptor-
ligand interactions (see Methods), considering innate and adaptive
populations separately. In health, keratinocyte receptor-ligand inter-
actions between the same and heterogeneous subpopulations were
high, as evidenced by larger “nodes”. This phenomenon diminished in
periodontitis. Immune cell communication patterns sharply increased,
with larger nodes for multiple T and dendritic cell subpopulations
(Fig. 6a). We next investigated information flow from keratinocytes to
innate and adaptive cells (Fig. 6b). Healthy and diseased keratinocytes

Fig. 2 | Gingival keratinocyte diversity ismolecularlydefined, spatially distinct,
and preserved in vitro. a To validate keratinocyte heterogeneity, healthy human
gingival tissues were preserved on the tooth surface after extraction and fixed.
b IHC revealed the gradual transition from tooth-facing JKs and SKs to GM, AG, and
AM keratinocytes using KRT19; c KRT19-high and -low epithelial stem cells pro-
liferate in the basal layer in health. d All keratinocytes (KRT14+) were subclustered
from the integrated periodontitis meta-atlas (30 samples, 8584 cells) and assigned
annotations (e) based on Louvain clustering. Cell signatures for these populations
are plotted and included inSupplementaryData 1. fUsing these signatures, we used
a custom 12-plex ISHpanel to reveal heterogeneity in keratinocyte populations (AG,
GM, and JK here; SK andAMas in Fig. 1).Markers such asCXCL14 andNEAT1marked
the AG basal epithelium in the opposite pattern of KRT19 protein of the SK/JK cells;
ODAM, RHCG, IL18, and SAA1/2markedSKand JK cells in sequencing and in situ (See

Supplementary Fig. 3 for sulcular, marginal, and alveolar mucosa imaging). g Pri-
mary human gingival keratinocytes were cultured over multiple passages. KRT19-
high (marked by+) basal and larger suprabasal keratinocytes are found in mixed
populations at (h) first passage and over (i) multiple passages. jUsing RNA ISH and
additional markers, cell subpopulations that were defined in vivo such as AG
(LGR6+) and SK/JK (FDCSP+) can be identified in vitro, suggesting a heterogeneous
2D model of tooth-facing and oral-facing keratinocytes can be utilized for future
assays and that these markers are more likely cell identities than cell states.
Abbreviations: P Passage; see Fig. 1 legend. Sequential sections from samples were
used (n = 3 health). Scale bars: b 100 μm; c 50 μm; f 25 μm; i, j 10 μm. Illustration
from (g) created with BioRender.com. For this figure, n = 30-sample, 8554-cell for
scRNAseq; n = 3 for tissues; n = 2 for unique primary cell lines.
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showed a preference for cell adhesion (NECTIN, COLLAGEN, junctional
adhesion molecule [JAM], LAMININ) and other pathways such as APP,
CXCL, and MIF pathways. In disease, we observed a preference for cell
signaling (TGFB, TIGIT, CCL, CD45, and EGF), suggesting cell–cell
communication shifts in disease, supporting a coordinated response,
likely in conjunction with mucosal barrier defects.

With potential keratinocyte-adaptive and keratinocyte-innate
axes identified, we next plotted predicted interactions between basal
and SB JKs and SKs to understand cell-cell communication changes at
the individual gene level for innate and adaptive populations. In the

innate plots, JK signaling to macrophages, neutrophils, and type 1
classical dendritic cells (cDC1s) dramatically increased; communica-
tion by GM KCs decreased. JK basal cell signaling decreased; differ-
entiated SB cell signaling generally increased (Fig. 6c). In the adaptive
plots, basal JK and GM KC receptor-ligand signaling also decreased,
with most differentiated/SB signaling to natural killer T (NK T), tissue-
residentmemory T (TRM), gammadelta T (gd T), and cytotoxic T cells.
We observed little change in basal/SB SK signaling (Fig. 6d).

We quantified the confidence of receptor-ligand interaction
between tooth-associated keratinocytes and immune cells. MIF,
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Fig. 3 | Increased proinflammatory profiles coincide with altered differentia-
tion patterns of tooth-associated keratinocytes. a Due to single-cell annotation
and in situ validation (Fig. 2; Supplementary Fig. 3), a draft model of the oral-to-
tooth transition zone in humans is presented, with basal and suprabasal keratino-
cytemarkers uniquely identifying the alveolarmucosa (AM), attached gingiva (AG),
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draft (Tier 4) annotation of epithelial cells of the gingival attachment. d Assaying
differentially expressed genes in periodontitis, SKs and JKs only share about a
quarter of upregulated genes. JKs displayed nearly 125 unique upregulated genes in
diseased cells. e Further analysis of basal and suprabasal (differentiating) SK and JK
keratinocytes revealed unique cell signatures between basal and suprabasal cell

types. This full list is included in Supplementary Data 1. f–iTounderstand SK and JK
developmental progression and cell state alterations, we used partitioned-based
graph abstraction (PAGA). f Examining the basal to suprabasal transition, JKs dis-
play altered gene expressed comparing health to disease cell types, including
broader expression of KRT17 and more expression of JUND, COL17A1, and CDH3.
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g JKs displayed robust cell signaling and inflammatory phenotypes, which appear
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JKs in disease, with lower overall expression of effector molecules such as
CXCL1, CXCL8, IL1A, IL1B, and IL1RN. Abbreviations: Merk Merkel Cells, LC langer-
hans cells,Melamelanocytes,Mucmucosa, SB suprabasalKeratinocytes; for others,
see Fig. 1 legend. For this figure, n = 30-sample, 2504-cell for scRNAseq.
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associated with periodontal disease progression47, was a ligand (via
CXCR4 and CD44/CD74) in both the innate and adaptive analyses; pre-
dicted interactions for MIF were strongest in JKs for neutrophils, mac-
rophages, and NK and gd T cells (Fig. 6e). We also found decreases in
several innate and adaptive cell interactions between structural markers
(Fig. 6f; Supplementary Data 2). Overall, basal JK interactions decreased,
suggesting these cells are especially affected in periodontitis; however,
why these keratinocytes might be affected—and the significance of the
remaining interactions—over nearby cells remained unclear.

Spatial proteomic analysis of periodontitis reveals distinct
peri-epithelial immune microenvironments
Informed by our atlas and downstream analysis of SK/JKs at the
interface of immune and microbial challenges, we designed a highly
multiplexed immunofluorescence (mIF) assay (33-antibody) across
healthy and periodontitis samples to understand how disease states
affect immune cell patterning around these keratinocytes (Fig. 7a,
Supplementary Fig. 7a, b). For whole-slide analysis, we segmented
images using StarDist (Fig. 7b, see Methods). In periodontitis, we
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consistently found concentrated CD45+ adaptive immune cells near SK
cells; we also found isolated expression of KRT19-high cells in the
keratinized mucosa (AG) uniquely attracting CD45+ immune cells
(inset, Fig. 7b). When cell identities were classified (Supplementary
Fig. 7c), peri-junctional niches consistently revealed higher innate
immune cell concentrations in periodontitis (MPO+-neutrophils, CD14/
CD68+-macrophages, CD56+-natural killer cells, CD11c+-dendritic cells),
whereas the sulcular region revealed distinct adaptive immune foci
(CD8+-cytotoxic T cells, CD4+-helper T cells, FOXP3+-regulatory T cells,
and CD20+-B cells) (Fig. 7c, d).

Knowing these peri-junctional nicheswere enriched for 16S signal,
we wondered if SKs and JKs may tolerate and/or support unique
immune cell-cell interactions in situ. Usingmultiple proteinmarkers of
the same four ROIs (Fig. 7e), cells were assigned tiered identities
(Fig. 7f; see Methods). Proportionally, tissue-wide, immune cell ratios
shifted to favor dendritic, macrophage, cytotoxic T, and B cells. Con-
sidering local neighborhoods, the sulcus supported more immune-
immune predicted “interactions” within cellular neighborhoods,
favoring both innate and adaptive immune cell types; however, the
junction supported interactions between CD14/CD68+ transitioning
monocytes/macrophages, CD68+ macrophages, and MPO+ neu-
trophils (Fig. 7g).

Using a graph network of immune cell nodes and cell identities
(Fig. 8a), we wanted to understand how phenotypes of these immune
cells were shaped in the microniche, including cell states and immune
checkpoint expression (Supplementary Fig. 7c). We observed few
immune cells and little activation (ICOS) or immune exhaustion mar-
ker expression (PD-1, PD-L1; Fig. 8b). Phenotypic analysis revealed an
immunosuppressed JK-microniche (PD-L1+ epithelial and stromal cells)
and evidence for SK-localized tertiary lymphoid structures containing
mixed active (ICOS+) and exhausted (PD-1+) populations in period-
ontitis (Fig. 8c). Few papers have described oral tertiary lymphoid
structures as a common feature in periodontitis48,49. We quantified this
by the same ROIs using single protein markers and manual thresh-
olding to determine the positivity of by converting 0-255 auxiliary
units of fluorescence to a binary classification of either negative (“0”)
or positive (“1”; see: Methods). This revealed proportionally more
immune infiltrate in peri-oral-facing stroma (Fig. 8d) and higher innate
peri-junctional and adaptive peri-sulcular immune foci frequency in
disease (Fig. 8e, f). Notably, the proportion of PD-L1+ cells was statis-
tically significantly higher in disease when analyzing JKs compared to
SKs (Fig. 8e, f). Thus, the periodontal niche may potentially support
immunosuppressed microenvironments through PD-L1/PD-1 interac-
tions nearest to the tooth-JK interface in some disease states.

Assigned cell nodes were assessed for all 10 included cell
states, including cell cycling (Ki67), immune activation (GZMB,
IFNG, Galectin-3, HLA-A, ICOS), immune tolerance (IDO1), immune
memory (CD45RO), and immune exhaustion (PD-1, PD-L1). This

extended to cell states of CD3+ T cells, which displayed mixed phe-
notypes of both ICOS+ andPD-1+ inperi-sulcular foci (Fig. 8c). Assessing
cell states, peri-junctional immune cells expressed more GZMB, IFN-
G/IFN-γ, Galectin-3, and HLA-A in disease compared to peri-sulcular
foci (Fig. 8g–i).

Discussion
Precision medicine implicitly promises earlier disease intervention,
improved clinical outcomes, and generally improved quality of life
through extending both life- and healthspan50. To date, periodontitis
has not benefited from this promise for several reasons: 1) complex
host genetics51, 2) polymicrobial heterogeneity52 along an ante-
roposterior axis (likely caused by swallowing53), 3) systemic effects on
the periodontium from other chronic/genetic diseases54, and 4) intra-
patient “asymmetric burst” and linear “flare” patterns of disease
progression55. Our study highlights the lack of precision periodontal
medicine advances likely arise from an incomplete understanding of
this complex niche at a single-cell and spatial biological level. It also
underscores that integrated and interkingdom analyses will be
necessary to reveal the multi-layered impacts of chronic dysbiosis in
susceptible hosts to overcome that lack of progress56.

Our first step to address this was to create an integrated atlas with
harmonized cell annotations and meta-atlas annotation for microbial
reads of just one tissue niche in the human body. More studies have
been published in the oral cavity, including related to this niche; each
will be integrated in future drafts of integrated oral and craniofacial
atlases17. Here, we focused these analyses just on keratinocytes, but
other important cell types were not discovered in high enough num-
bers for further analyses. As evidenced here and even with large-scale
efforts for human scRNAseq i.e., the Tabula Sapiens project using
~500k-cell and 24 body sites57, more work remains to be done identi-
fying and validating new cell types in human tissues across the body.
Furthermore, spatial biology is in its ascendency, helping to determine
new cell identities and states58 and pinpoint cell locations and func-
tions in health and disease17.

Since this is one of the first studies to use spatial omics assays in
the oral tissues, significantly more work remains to understand each
niche inmoredetail to support futureprecision initiatives. Here, in just
one humanoral cavity niche in one disease type,multiplemicroniches/
neighborhoodswere identified around newly described niche-resident
cells17. Evenbefore fully understandingdisease states,much remains to
be understood in adult homeostasis, aging, and development, espe-
cially in the oral cavity. The limitation of this study is that it has likely
missed as-of-yet undiscovered cell types or states in periodontitis. For
example, some rare59 or difficult-to-sequence cell types like
eosinophils60 are underrepresented in these single-cell atlases, making
validation difficult until enrichment for sequencing or targeting
through in situ approaches61.

Fig. 4 | Single-cell metagenomic reanalysis of keratinocytes reveals perio-
pathogen signals concentrated in tooth-associated keratinocytes. a Using 16S
rRNA FISH, we segmented cells using StarDist in health and disease tissues. We
found bacterial signals primarily focused on the most terminally differentiated
suprabasal keratinocytes across each region of the oral- and tooth-associated
keratinocytes. In disease, epithelial barrier integrity appeared compromised: we
observed more bacterial-associated stromal and epithelial stem cells—especially in
SKs and JKs.bUsing amodified single-cell analysis of host-microbiome interactions
(SAHMI) pipeline and a custom Kraken2 database, we used unmapped reads from
our integrated single-cell periodontitismeta-atlas. cUsing a broadTier 1 annotation
of cell types revealed 37 distinct species captured from inside of or membrane-
bound to Keratinocytes (KC), Fibroblasts (Fib), Vascular Endothelial (VEC), Lym-
phatic Endothelial (LEC), Pericyte/Vascular Smooth Muscle (PC/VSM), Glial (Glia),
Monocyte/Dendritic (Mono/DC), T/Natural Killer (T/NK), B (B), and Mast Cells
(Mast). Using microbial per averaged total reads per human health cell class, we
found low read counts across most bacterial species. d In periodontitis, we found

large associated read shifts, often in well-known periodontal pathogen species
(“periopathogen”; i.e., P. gingivalis, T. vincentii, P. aeruginosa [P. sp. CIP-10]).
e Performing a ratio analysis of (d) over (c), we found dramatic increases in many
bacteria—especially in known periopathogens. f Focusing on all keratinocytes, we
found variable bacterial numbers (0.1%-15% of all KCs). g Utilizing broad cell clas-
sification of our multiplex immunofluorescence data (mIF; Figs. 7, 8), we showed
the innate versus adaptive immune disease foci differ between 16S-high regions in
situ.hUsing the samemIF slides and targets predicted fromour SAHMIpipeline,we
applied in situ hybridization against 16S and two commonperiopathogenmRNA (P.
gingivalis, fimA; Fusobacterium, fadA). We found polybacterial 16S and mRNA sig-
nals in some epithelial stem cells and their progeny usingNyquist-optimized, three-
dimensional imaging. Abbreviations: Fig. 1 legend. Scale bars: a 100μm; g 50μm;
h 10μm. Samples from Figs. 7 and 8 were used (n = 6, 3 health, 3 periodontitis).
Illustration from (b) created with BioRender.com. n = 30-sample, 8554-cell for
scRNAseq; n = 3 for tissues.
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In our atlas, tooth-associated keratinocytes (SK/JKs) represent a
rare epithelial cell population (1.1%; stem/progenitor and SB fractions
much lower); however, even rarer are epithelial-resident KRT20+/
ATOH1+ Merkel cells (0.02%) and MLANA+ melanocytes (0.1%)—not
found in high enough proportions even when combining four studies.
Basophils, eosinophils, innate lymphoid cells, and mineralized tissues
(osteoblasts, osteoclasts, osteocytes, cementocytes, etc.) were not
annotated here; peripheral nervous system contributions via myeli-
nating or non-myelinating Schwann cells were also undersampled
(0.05%). Thus, we refer to this as a “draft v1” of the atlas; with more
datasets and multimodal sampling of this niche, more will be refined,
annotated, and learned that can benefit precision approaches through

digital “tooth” modeling of druggable targets at a single-cell level via
available therapeutics (i.e., heart; drug2cell62). Adapting this in a spatial
context will also be necessary to overcome these precision approach
challenges for periodontal diseases.

This original study shows the “spatial” nature of periodontal dis-
ease, due to tissue orientation challenges and microniche breakdown
in disease states. Here, we link historical knowledge and approaches to
annotate new keratinocytes and describe their functions. This study
singularly focuses on keratinocytes; more work will be forthcoming
about other structural immune influences. As a first focus, we knew
that the oral/gingival epithelium is comprised of KRT14/KRT14-high
epithelial cells, yet someKCs are alsoKRT19/KRT19-high in the gingival
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“pocket”6. Previous studies showed common cell ontology class
representation in each scRNAseq dataset; using Cellenics® enabled the
integration and collaborative, harmonized annotation of these data-
sets as well as KC discovery and validation. It will be important to
design future studies with both Tier 1 and Tier 2 clinical metadata,
including detailed descriptions of sample origins (CCF24) for dataset
harmonization to allow for host impact discovery of this chronic dis-
ease. Importantly, future studies using gingiva around primary, early
erupted succedaneous teeth, and aged periodontal tissues in older
adults will help us understand the origin and maintenance of SK and
JKs over time. Here, our study suggests that JKs express more odon-
togenic markers compared to SKs, which is consistent with recent
literature63.

Our study highlights another challenge to precision periodontal
medicine with body-wide implications in many diseases with more
validation64. After cell annotation and spatial validation, ourmultiomic
toolkits gave us insight into cellular programming shifts in single-cell,
polybacterial interaction phenotypes only when combined. Utilizing
scRNAseq, (m)IHC, (m)ISH, and cell culture, we linked altered differ-
entiation patterns and upregulated keratokines in these new cells to a
specific host-microbe-interaction cell state. While these new cell types
signaled many cell types, JKs predominantly signaled macrophages
and neutrophils (CXCL1, CXCL3, CXCL8), whereas SKs predominantly
signaled T/NK and B cells (CCL20, CCL28), correlating with the poly-
bacterial interaction phenotype—likely with structural immunity cor-
relations with peri-junctional and -sulcular stromal foci and peri-
vascular microniches, which warrants further investigation. Overall,
thediseasedmicroniche at the tooth-soft tissue interface appears to be
defined by a layered combination of unqiue microbial insults, immu-
noresponsive and immunostimulatory epithelial cell identities and cell
states, and regionalized immunophenotypes. Noting the vast com-
plexity of this disease at a single-cell and spatial level will necessitate
multimodal assays of more participants considering disease severity
(Stage/Grade), sex, age, genetic ancestry, and other known risk factors
i.e., smoking and poorly controlled diabetes.

Though some studies suggest tissue and/or tumor-specific
microbiomes exist65, ours could be discerned at a cell-specific
and niche-specific level. While polymicrobial interactions are not
thought to occur between multiple viruses within single cells (i.e.,
superinfection exclusion66), polymicrobial infection phenomena are a
known cause of multiple inflammatory diseases across the body67.
Recent work has implicated numerous bacteria such as
periopathogen F. nucleatum in colorectal and oral cancers34 with
similar immunomodulatory effects from epithelial cell invasion68;
similar to our periodontitis findings, Porphyromonas, Streptococcus,
and Leptotrichia genera co-occur in colorectal cancers, further linking
oral-systemic distal sites with epithelial barrier breakdown, stromal
immune regulation, immune trafficking to stress sites, and microbial
dysbiosis.

We termed this observed phenomenon “polybacterial interac-
tions” becausewe observed and analyzed thesephenotypes at a single-
cell and spatial level in vivo with 3D imaging. However, we acknowl-
edge that some or all these signals may be extracellular bacterial
aggregates69 or intracellular OMVs containing bacterial nucleic acids
and/or proteins. This is also a limitation of the current study. While
manydiseases presentwith polymicrobial infections generally, this has
been historically described at a tissue level across bacteria, viruses,
fungi, and parasites70. While P. gingivalis had broad cell tropism in
disease using single-cell metagenomics (Fig. 4), Treponema sp.
appeared to have lymphatic endothelial cell (LEC) tropism, with other
enrichment patterns including P. endodontalis in pericytes/vascular
smooth muscle cells (PC/VCM) and monocytes/dendritic cells and R.
mucilaginosa in PC/VSM. Our finding of polybacterial interactions in
tissues further raises new questions about current long-term period-
ontitis treatment effectiveness. Understanding host–microbe inter-
actomics through this lens will allow true restoration of the tissue
niche considering new strategies that combine biofilm removal, anti-
microbials therapy, host-directed immunomodulation, and frequent
maintenance of this susceptible niche over the lifespan.

Methods
Ethics statement
This research complies with all relevant ethical regulations. Studies
using human gingival biopsies were approved by the University of
Pennsylvania (IRB#6; Protocol #844933; LeadPI: KIK) and theNational
Institutes of Health/National Institute of Dental, Oral and Craniofacial
Research (NCT #01805869; Lead PI: JL [NIDCR]). Studies using murine
samples were approved by the University of North Carolina at Chapel
Hill (American Association for Laboratory Animal Science: IACUC ID
#20-041.0-B) and the Queen Mary University of London (Animal Wel-
fare & Ethical Review Body ID #P48019841).

Human integrated periodontitis atlas and mouse keratinocyte
atlas generation and analysis
Human single-cell data reprocessing. Raw fastq files for the pre-
viously published single-cell RNA sequencing projects were down-
loaded and processed using scripts available here: https://github.com/
cellgeni/reprocess_public_10x. Briefly, series metadata was collected
using the GEO soft family file. Following this, ENA web API was used to
obtain information about the format in which raw data is available for
every run (SRR/ERR), as well as to infer the sample-to-run relation-
ships. Raw read files were then downloaded in one of the three for-
mats: 1) SRA read archive; 2) submitter-provided 10X BAM file; 3)
gzipped paired-end fastq files. SRA archives were converted to fastq
using fastq-dump utility from NCBI SRA tools v2.11.0 using “-F --split-
files” options. BAM files were converted to fastq using 10X bamtofastq
utility v1.3.2. Following this, raw reads were mapped and quantified
using the STARsolo algorithm. STAR version 2.7.10a_alpha_220818

Fig. 5 | Polybacterial interactionswithgingivalkeratinocytes arehighly specific
in situ and can be niche- and disease-state agnostic. a Metagenomic “reanno-
tation” of the integrated periodontitis atlas showed most cells have no bacterial
reads. Some (~15%) have 1 read (Monobacterial); a minority have 2 or greater reads
(Polybacterial). b Disease-agnostic analysis of keratinocyte immune signatures
revealed chemokine and interleukin signatures potentially related to bacterial
signal—even in health. This was visualized using (b) dot plots and (c) violin plots.
d 12-plex custom ISH panel of 11 human effector cytokine mRNA targets and 16S
were overlaid using Warpy. e All 11 cytokines are shown simultaneously in GM and
JK. Without 16S overlaid, each cytokine had a distinct patterning. Some i.e., IL1B,
were broadly expressed in epithelia and stroma. Others i.e., CXCL3 and CXCL8
appeared to be cell-specific and enriched in JK over GM keratinocytes. f There
appeared tobepolybacterial patterns in disease that spread toall epithelial regions,
including in terminally differentiated attached gingiva keratinocytes i.e., kerati-
nized mucosa. Epithelial stem cell 16S signal was found in each region (insets).

g Even in regions with sparse 16S signal (intracellular, red overlay), phenotypes
appeared highly specific to cells with the highest 16S per-cell counts. h, i Con-
sidering keratinocytes at a cell-specific level, we found that 16S alone is positively
associated with most cytokines in health and disease states whether in (h) JK or (i)
GM. Assessing both JKs and GM, all keratinocytes were plotted on a normalized
heatmap relative to 16S expression. We quantified that CXCL8, CXCL17,
CCL20, CCL28, IL1A, and IL1B are associated with microbial burden in healthy GM
keratinocytes. In JKs, nearly all cytokines were positively associated with microbial
burden in heath, suggesting that some bacteria may have cell-specific effects
in vivo. Scale bars: (a, d) 100μm (insets; 50μm); (b, c) 25 μm. Abbreviations: ISH
In situ hybridization; also see Fig. 1 legend. Illustration from (a) created with
BioRender.com. Imaging was performed on sequential sections of samples used in
Figs. 4, 7, and 8. For this figure, n = 34-sample, 105918-cell for scRNAseq; n = 6 for
tissues: 3 health, 3 periodontitis.
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compiled from source files with the “-msse4.2” flag was used for all
samples. Wrapper scripts documented in https://github.com/cellgeni/
STARsolo/ were used to auto-detect 10x kit versions, appropriate
whitelists, and other relevant sample characteristics. The human
reference genome and annotation exactly matching Cell Ranger 2020-
A was prepared as described by 10x Genomics: https://support.
10xgenomics.com/single-cell-gene-expression/software/release-notes/
build#header. For 10x samples, the STARsolo command
was optimized to generate the results maximally like Cell Ranger
v6. Namely, “--soloUMIdedup 1MM_CR --soloCBmatchWLtype

1MM_multi_Nbase_pseudocounts --soloUMIfiltering MultiGeneUMI_CR
--clipAdapterType CellRanger4 --outFilterScoreMin 30” were used to
specify UMI collapsing, barcode collapsing, and read clipping algo-
rithms. For paired-end 5’ 10x samples, options “--soloBarcodeMate 1
--clip5pNbases 39 0”were used to clip the adapter and perform paired-
end alignment. For cell filtering, the EmptyDrops algorithm employed
in Cell Ranger v4 and above was invoked using “--soloCellFilter Emp-
tyDrops_CR” options. Options “--soloFeatures Gene GeneFull Velocyto”
were used to generate both exon-only and full-length (pre-mRNA)
gene counts, as well as RNA velocity output matrices.
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Cellenics® database generation and subclustering. The single-cell
RNA-seq dataset was processed, analyzed and visualized using the Cel-
lenics® community instance (https://scp.biomage.net/) hosted by
Biomage (https://biomage.net/), accessed between May 2022 and Feb-
ruary 2024. The team of Cellenics included Alex Pickering, Iva Babu-
kova, Pol Alvarez Vecino, Martin Fosco, Anugerah Erlaut, Germán
Beldorati Stark, Sara Castellano, Stefan Babukov, Vicky Morrison, Adam
Kurkiewicz, Dana Vuzman, and Peter Kharchenko. The tool itself is
Cellenics®, an open-source single-cell analysis toolkit from Harvard
Medical School: https://github.com/hms-dbmi-cellenics. Pre-filtered
count matrices were uploaded to Cellenics®. Barcodes were then fil-
tered in a series of four sequentially applied steps. Barcodes with less
than 500 UMIs were filtered out. Dead and dying cells were removed by
filtering out barcodes with a percentage of mitochondrial reads above
15%. To filter outliers, a robust linearmodel was fitted to the relationship
between the number of geneswith at least one count and the number of
UMIs of each barcode using the MASS package (v. 7.3-56)71. The
expected number of genes was predicted for each barcode using the
fitted model with a tolerance level of 1−α, where α is 1 divided by the
number of droplets in each sample. Droplets outside the upper and
lower boundaries of the prediction interval were filtered out. Finally, the
probability of droplets containing more than one cell was calculated
using the scDblFinder R package v. 1.11.372. Barcodes with a doublet
score greater than 0.5 were filtered out. After filtering, each sample
contained between 300 and 8000 high-quality barcodes and was input
into the integration pipeline. In the first integration step, data were log-
normalized, and the top 2000highly variable geneswere selected based
on the variance stabilizing transformation (VST) method. Principal-
component analysis (PCA) was performed, and the top 40 principal
components, explaining 95.65% of the total variance, were used for
batch correction with the Harmony R package73. Clustering was per-
formed using Seurat’s implementation of the Louvain method. To
visualize results, a Uniform Manifold Approximation and Projection
(UMAP) embedding was calculated, using Seurat’s wrapper around the
UMAP package74. To identify cluster-specific marker genes, cells of each
cluster were compared to all other cells using the presto package
implementation of the Wilcoxon rank-sum test73. Keratinocytes were
subset from the full experiment by extracting manually annotated bar-
codes and filtering the Seurat object. The subset samples were subse-
quently input into the Biomage-hosted instance of Cellenics®. Filtering
steps were disabled since the data was already filtered. The data was
subjected to the same integration pipeline as the full experiment. All
cells weremanually annotated using available literature and CellTypist75.

Transfer of Cellenics® data to CELLxGENE. Annotated cell-level data
were downloaded fromCellenics in the formof an .rds file containing a
Seurat object. The data was converted by exporting count matrices
and metadata from R and loading them using Scanpy version 1.9.3
(https://scanpy.readthedocs.io/). Additional metadata (e.g., age, sex,
self-reported ethnicity) from the original datasets werematched to the
closest entries in the respective ontology, per CELLxGENE

contribution guidelines (https://cellxgene.cziscience.com/docs/032__
Contribute%20and%20Publish%20Data). The final CELLxGENE dataset
can be found at https://cellxgene.cziscience.com/collections/71f4bccf-
53d4-4c12-9e80-e73bfb89e398.

DEG analysis using Cellenics® and g:Profiler76. Cells (all, keratino-
cytes, fibroblasts, vascular clusters; Supplementary Fig. 1) were
grouped using lasso tools to allow for the pseudobulk RNA sequencing
analyses using these Tier 1 annotations. Differentially expressed
gene (DEG) lists and volcano plots (volcano plot statistical significance
measured as a p value [i.e., ANOVA] log2 fold change) were generated
in Cellenics® and exported as .csv files and uploaded to the g:Profiler
website (https://biit.cs.ut.ee/gprofiler/gost). g:Profiler is part of the
ELIXIR Recommended Interoperability Resources that support FAIR
principles. A complete list of those resources can be found: https://
elixir-europe.org/platforms/interoperability/rirs. g:Profiler assesses
Gene Ontology and pathways from KEGG Reactome and
WikiPathways. DEGs were uploaded to the query section andwere first
analyzed using g:GOSt multi-query Manhattan plots. These data were
further analyzed for the results tab (GO:MF, GO:CC, GO:BP, KEGG,
REAC, TF, MIRNA, HPA, CORUM, HP, WP). Data from Supplementary
Fig. 2 are an incomplete display of all the g:Profiler data. DEGs are
included in Supplementary Data 1 for further analysis.

CellPhoneDB77 and CellChat78. The total number of ligand–receptor
interactions between Tier 3 cell types was calculated for healthy and
periodontal disease using CellPhoneDB (version 3.1.0). The Tier 3
annotated AnnData object was subsetted and separate AnnData objects
were saved for healthy and periodontal disease, respectively. Metadata
tables containing the cell barcodes as indices were also exported. Cell-
PhoneDB was then run as follows: cellphonedb method statistical_ana-
lysis metadata.tsv AnnData.h5ad --iterations = 10 --counts-data
hgnc_symbol --threads = 2. The CellPhoneDB results were filtered by
removing those interactions with a P value >0.05. Results were visua-
lized using a modified form of CellPhoneDB’s plot_cpdb_heatmap func-
tion to allow for re-ordering of cell types. Cell-cell interactions between
receptors in Tier 4 keratinocyte subtypes and ligands in innate and
adaptive immune subtypes were further explored using the R package
CellChat (version 1.6.1 using the cell-cell interaction database). TheTier 4
annotated AnnData object was subsetted and separate expression
matrices exported for healthy and periodontal disease, together with
their respective metadata tables. These were used to create Seurat
objects for health and periodontal disease, which served as inputs to
CellChat. Analyses were performed using the log-transformed normal-
ized gene counts with default parameters and using the human Cell-
ChatDB. Cell type composition differences were accounted for when
calculating communication probabilities. Data from health and disease
were compared to identify significant changes.

Partition-based graph abstraction (PAGA) plots79. The keratinocyte
subset count matrices were imported into Scanpy version 1.9.3 to

Fig. 6 | Cell–cell communication between keratinocytes and immune cells is
predicted to occur through innate and adaptive cell-specific programs.
a CellChat was used to understand cell signaling pathways in health and disease
considering tooth-associated keratinocytes (basal versus suprabasal; SB and junc-
tional versus sulcular keratinocytes; JK/SKs). Circle plots highlight the significant
receptor-ligand interactions between any cell populations, including same-cell type
signaling interactions (i.e., JK-JK, SK-SK, etc.). The proportion of interactions
increased across more detailed immune cell type annotations (Tier 4 annotations;
see Supplementary Fig. 6). b Relative information flow in health and disease
showed a preference for cell adhesion (NECTIN, COLLAGEN, JAM, LAMININ) and
other pathways such as APP, CXCL, and MIF pathways. In disease, more preference
for cell signaling pathways is preferred, such as TGFB, TIGIT, CCL, CD45, and EGF.
Value of 0 red signifies the pathway is not enriched in periodontitis; value of 100

red signifies highly enriched. Innate (c) and adaptive (d) immune cell commu-
nication was measured gene-by-gene using a chord diagram for visualizing cell-cell
communication. e, f Dot plots showed upregulated signaling pathways in period-
ontitis at the level of predicted receptor–ligand interactions (y-axis) based on
tooth-associated keratinocytes (x-axis). Innate cells appeared topotentially interact
with junctional keratinocytes (JK) via CD99-CD99, CD99-PILRA, GAS6-AXL, and
MIF-(CD74 +CXCR4/CD44). Adaptive cells appeared to potentially interact via
similar pathways. Unique to adaptive cells-JK signaling include XCL2-XCR1; unique
to innate cells, AREG-EGFR. Abbreviations: Cycle; KCs Cycling Keratinocytes, Spin
Spinous Layer,GranularGranular Layer, Inter Intermediate Layer, Super Superficial;
Merk Merkel Cells, Mela Melanocytes, LC Langerhans Cells, MigDC Migratory
Dendritic Cells, Mast Mast Cells, also see Fig. 1 legend. Illustration from (a) created
with BioRender.com. For this figure, n = 34-sample, 46835-cell for scRNAseq.
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conduct quality control, normalization, and log transformation of the
data to control for variability in sequencing depth across cells. To
minimize the potential batch effects across the four datasets, a batch
correction technique was applied using the Python package Harmo-
nyPy version 0.0.973, with the ‘sample ID’ serving as the batch key.
PAGA graphs were constructed using Scanpy’s implementation. These
graphs were used to explore the relationships between different
clusters of cells and to understand the potential developmental tra-
jectories. The coordinates for UMAP80 were then calculated with
the PAGA graph as the initial position, allowing for a visualization
that is coherent with the topology of the PAGA graph. To better

understand the developmental progression of cells along these
trajectories, pseudotimes were estimated by diffusion pseudotime
(DPT) analysis81 over the PAGA graphs. The DPT is a measure of the
transcriptional progression of cells along a trajectory, starting from
root cells that were manually selected. Heatmaps were created to
visualize gene expression changes along the trajectories, with manu-
ally selected start and endpoints, using both Scanpy and Seaborn82. To
smooth theplots and reducenoise, amoving averageof the expression
values was used, with a window size of 50 data points along pseudo-
time. The clustering of the genes in the heatmapswas performedusing
Ward’s method.
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Mouse single-cell RNA library preparation, sequencing, proces-
sing, and analysis of data. All the necessary animal procedures were
followed according to the UK law, Animals Scientific Procedures Act
1986. The experiments were covered by the necessary project licenses
under the Home Office and Queen Mary University of London’s insti-
tution’s Animal Welfare & Ethical Review Body (AWERB). The mouse
tissueswere obtained atQueenMaryUniversity of London, Barts&The
London School of Medicine and Dentistry. Mice from both genders
were maintained on the C57BL/6N genetic background and were
housed under a 12-h light/12-h dark cycle, at temperatures of 20–24 °C
with 45–65% humidity. Single-cell suspensions of gingival tissue were
obtained from P28 mice, sacrificed by cervical dislocation. Three bio-
logical replicates were pooled together to give one single sample for
sequencing. Both males and females were used. Fresh gingival tissues
were processed immediately after dissection, cut into smaller pieces in
a sterile petri dishwith RPMImedium (#11875093, Sigma) and digested
for 30min at 37 °C under agitation using the Miltenyi Mouse-Tumor
Dissociation kit (#130-096-730). The resulting cell suspension was
consecutively filtered through 100 µm and 70 µm cell strainers and
cells were collected by centrifugation. The viability of the cell sus-
pension was determined using a Luna-FL automated cell counter
(Logos Biosystems). Single-cell cDNA library was prepared using the
10x Genomics Chromium Single-cell 3’ kit (v3.1 Chemistry Dual Index).
The prepared libraries were sequenced on Illumina® NovaSeq™6000
(2 × 150bp) with a targeted sequencing depth of ~30,000 reads/cell.
The cell ranger-6.0.1 pipeline was used for processing the scRNAseq
data files before analysis according to the instructions provided by 10x
Genomics. Briefly, base call files obtained from each of the HiSeq2500
flow cells usedwere demultiplexed by calling the “cellrangermkfastq”.
The resulting FASTQfileswere aligned to themouse reference genome
(GRCm38/mm10), filtered, and had barcodes and unique molecular
identifiers counted and count files generated for each sample. The raw
count matrix output from CellRanger was then processed by the
ambient RNA removal tool CellBender83, giving an output-filtered
countmatrixfile. Thiswasused for subsequent preprocessing anddata
analysis using Python package 3.8.13 with the Scanpy pipeline84. For
basic filtering of our data,wefiltered out cells expressing less than 200
genes and less than 100 counts.We filtered out genes expressed in less
than three cells and with less than 10 counts. Cells were filtered out by
applying the following thresholds: 1) more than 20% mitochondrial
reads; 2) ribosomal reads lower or higher than the 5th and 95th per-
centile; 3) more than 1% of hemoglobin reads and 4) total reads lower
than 700 and higher than 50,000. Scrublet, a doublet removal tool was
applied to further remove predicted doublets85. To ensure that the
data was comparable among cells, we normalized the number of
counts per cell to 10,000 reads per cell. Data were then log-
transformed for downstream analysis and visualization. The cell
cycle stage was predicted using the sc.tl.score_genes_cell_cycle tool86.
We regressed out cell-to-cell variations driven by mitochondrial,
ribosomal, and cell-cycle gene expression and the total number of

detected molecules. We then scaled the data to unit variance. The
neighborhood graph of cells was computed using PCA presentation (n
PCs = 40, n neighbors = 10). The graph was embedded in two dimen-
sions using UMAP as suggested by Scanpy developers. Clusters of cell
types were defined by the Leidenmethod for community detection on
the generated UMAP graph at a resolution of 0.1. Epithelial clusters
were used for the second-level clustering. The respective cell types
were identified upon annotation of clusters from first-level clustering.
The cluster-specificbarcodeswere retrieved as a list, whichwasused to
select the cells of interest from the filtered count matrix on a separate
Jupyter notebook andwere re-analyzed separately. Epithelial cells were
filtered and analyzed as previously described, and clustered at reso-
lution 0.5 using Louvain.

Adapted Single-cell Analysis of Host-Microbiome Interactions
(SAHMI)87. The standard Kraken2 database (version 2.1.3) was
downloaded. To avoid overlooking potential oral microbes, genomes
from the Human Oral Microbiome Database (HOMD) (https://homd.
org) not present in the standard database (n = 1,502 taxIDs) were
also downloaded, and this custom database was built using kraken2-
build88 with default parameters. Reads from were taxonomically
classified using Kraken 2, with “–use-names” and “–report-minimizer-
data” (Kraken2Uniq) but otherwise default parameters. True posi-
tives from Kraken2 results were identified using barcode
level denoising from the SAHMI pipeline and rRNA enrichment.
First, barcode denoising was performed. True taxa were identified
by performing Spearman correlations between the number of
unique and total k-mers across barcodes in each sample. Taxa
found to significantly correlate (p value < 0.05) in at least one sample
were retained. For all retained taxa, genomic contigs belonging to
the taxa were extracted from the Kraken2 database and the reads
that were classified to that specific taxa were then mapped to those
genomic contigs using bowtie2 (version 2.2.5)89 with default para-
meters. Additionally, rRNAs were annotated along the extracted
genomic contigs using barrnap (version 0.8) with default para-
meters. BEDTools (version 2.30.0)90 coverage was used to count the
number of aligned reads overlapping annotated rRNAs. We then
calculated the fold enrichment of reads across rRNAs relative to the
entire genome, normalized by rRNA and genome length, respec-
tively. Taxa found to contain at least a fivefold enrichment in rRNA
sequences relative to the whole genome, which is expected for
bacterial transcriptomics that is not rRNA depleted, were retained.
From the human host reads, we previously identified which barcodes
corresponded to which cell types. Because the reads that are classi-
fied to microbial taxa also contain these same barcodes, we
then assigned cell types to the microbial reads. To calculate the
relative abundance of taxa in each cell type, we divided the total
number of reads classified to those taxa with a barcode assigned to
that cell type by the total number of reads in the sample assigned to
that cell type.

Fig. 7 | Spatial proteomics reveals that peri-epithelial immune microenviron-
ments are uniquely enriched in innate immune populations nearest to junc-
tional keratinocytes. a The orientation of periodontal tissues is critical to show
tooth-facing (sulcular, junctional epithelial keratinocytes; SK/JKs) and oral-facing
(gingivalmargin, GM; attached gingiva, AG; and alveolar mucosa, AM) attachments
for highly multiplexed immunofluorescence (mIF) assays of periodontitis. b By
doing this in sequential sections, we first confirmed orientation and noted highly
localized inflammatory profiles near tooth-facing epithelial keratinocytes. As dis-
covered in the initial analysis (Fig. 2), tooth-facing SKs and JKs uniquely express
Keratin 19 (KRT19) in every cell type, highlighting the transition zone. An initial
analysis of Tier 1 cell assignments using mIF (PhenoCycler Fusion; Akoya Bios-
ciences) revealed adaptive immune foci concentrated near SKs and more diverse,
innate immune populated foci near JKs. Cell segmentation was performed using
StarDist. c The 33-antibody assay revealed more heterogeneity at the cell type and

cell state level, including peri-sulcular tertiary lymphoid structures (TLS, yellow)
defined by T cell, B cell, and dendritic cell mixed aggregates. Antibodies are
grouped and zoomed-in regions from a periodontitis sample are featured.d Spatial
analysis of peri-epithelial regions was broken into four specific regions as before,
highlighting the innate (MPO, CD68, HLA-DR) to adaptive (CD4, CD8) cell transi-
tion. e Segmented immune cells were assigned identities in health and disease
across the four regions. f Periodontitis displayed more diverse heterogeneity
considering thewhole tissue.gHowever, cell–cell interactions among immune cells
revealed diverse enrichment of immune cell types in peri-junctional and peri-
sulcular immune foci in periodontitis. Abbreviations: Antibodies (see Methods);
also see Fig. 1 legend. Scale bars: (b, d) 250μm, (c) 50μm. Illustration from (a)
created with BioRender.com. For this figure, n = 6 for tissues: 3 health, 3
periodontitis).
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Spatial validation and analysis of keratinocytes
Mouse husbandry. All mice (Supplementary Fig. 4c) were bred and
maintained in an AAALAC-certified animal facility under an IACUC-
approved protocol (wild-type to Wallet/ID#20-041.0-B) at the Uni-
versity of North Carolina at Chapel Hill. Each animalwas determined to
have a healthy body score of at least 3 and had not previously been
included in any other panel. Mice were euthanized in accordance with

the Panel on Euthanasia of the American Veterinary Medical Associa-
tion. In wild-type experiments, animals were only used for validation
experiments.

Tissue preparation, mounting, and sectioning. Deidentified human
gingival tissues were acquired from discarded routine third molar
extractions (healthy tissues, Fig. 2 showing gingiva attached to tooth:

Fig. 8 | Spatial analyses ofperi-junctional andperi-sulcularmicronichesdisplay
regionalized and distinct immunophenotypes. a Network diagram analysis of
only immune-immune cell predicted interactions highlighted regional differences
in immune cell aggregation in periodontitis. Both cell identities and their cell states
are spatially distinct in periodontitis, with the peri-junctional immune cells
expressing more immune exhaustion phenotypes than (b) health, contributed by
both epithelial cells and stromal-resident cells in (c) periodontitis. Peri-sulcular
immune cells, including tertiary lymphoid structures (TLS) more often found
localized near this zone, contained mixed active (ICOS+) and exhausted (PD-1+)
populations in periodontitis, evenwhen compared to peri-junctional foci.dManual
thresholding was performed to show individual marker heterogeneity along the
peri-epithelial niches. The cell assignment algorithm for this study is shown in
Supplementary Fig. 2. e Single marker analysis of CD45+ cells revealed general
increases in both GM and AG stroma. f Comparison of cell identities and cell states

showed minimal differences between peri-junctional and peri-sulcular niches in
health. While both peri-junctional and peri-sulcular immune infiltrate increased in
disease, peri-junctional foci were biased toward more innate and relatively more
CD4+ T cells compared to peri-sulcular niches, which were biased toward adaptive
immune cells (T and B cells). Both junctional stromal and JKs also expressed more
PD-L1 compared to sulcular cell types. Dot plots from total spatial analysis of
immune cell states in health considering (g) peri-junctional and (h) peri-sulcular
microenvironments. i In periodontitis, differences were quantified between both
regions. Abbreviations: Antibodies (see Methods); also see Fig. 1 legend. ns not
significant; TLS tertiary lymphoid structure, JK junctional keratinocytes, SK sulcular
keratinocytes. Scale bars: (a) 100μm (b, c) 50μm. For thisfigure, n = 6 for tissues: 3
health, 3 periodontitis. Two-sided t tests and chi-square tests were used. *, **, and ***
signify less than p <0.05 when comparing healthy JKs to SKs and diseased
JKs to SKs.
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NIH/ National Institute of Dental and Craniofacial Research (NIDCR) to
LOCI: NCT01805869) or from gingival biopsies (all else: UPenn to
LOCI; IRB #844933; MTA #68494). Immediately after extraction, tis-
sues attached to teeth were placed in a 10% solution of N-buffered
formalin (NBF) and fixed for a minimum of 24 h in a 4 °C refrigerator.
After fixation, the tissues were washed twice in 1X PBS before being
placed in 70% EtOH in a 4 °C refrigerator until they were ready to be
mounted. Tissues were embedded in paraffin blocks using a Leica
system and stored in a 4 °C refrigerator until sectioning using RNAse
precautions on a Leica system. Formalin-fixed, paraffin-embedded
(FFPE) human gingival tissue on SuperFrost Plus slides was heated to
60 °C on a slide warmer for 30min. Following deparaffinization for
10min using HistoChoice Clearing Agent, the tissues were rehydrated
using a series of ethanol solutions (100%, 90%, 70%, 50%, and 30%
EtOH in nuclease-free water) for 10min (for 100%) and 5min each,
followed by 2 × 5min in 100% nuclease-free water. During rehydration,
50mL of a 1X solution of AR9 buffer (commercially available pH 9
buffer, Akoya Biosciences) in nuclease-free water was prepared and
added to a Coplin jar. Following rehydration, the slides were added to
the 1X AR9 buffer and covered with aluminum foil. Samples were
antigen retrieved in a pressure cooker for 15min at low pressure.
Following antigen retrieval, the Coplin jar was removed from the
pressure cooker and cooled for at least 30min. The slide was then
soaked in nuclease-free water for 30 s, followed by soaking in 100%
EtOH for 3min, both in Coplin jars.

Immunofluorescence on Human or Murine Tissues. Blocking solu-
tion was prepared using gelatin from cold water fish skin (10%; Sigma-
Aldrich #G7765-1L), normal donkey serum (10%; Jackson ImmunoR-
esearch #017-000-121), bovine serum albumin (10%; Sigma-Aldrich
#A7030-50G), and Triton X-100 (0.2-0.4%; Sigma-Aldrich #T9284-
500ML). The sample underwent antigen retrieval as described. A pap-
pen was used to draw a hydrophobic barrier around the sample and
allowed to dry for 5min. The slide was then placed in a humidity
chamber, and the sample was washed with 1X PBS for 2 × 5min using a
Pipetman (Gibco), then blocked using the blocking solution for 1 h.
During blocking, an antibody cocktail containing Rb anti-Hu/MsKRT19
(clone EP1590Y, 1:500 dilution; Abcam #Ab52625), Ck anti-Hu KRT14
(clone Poly9060, 1:500 dilution; Biolegend #906004), and Rt anti-Hu
Ki67 (Clone SolA15, 1:500 dilution; Invitrogen #14-5698-82) in blocking
solution dilution was prepared. Following the removal of the blocking
solution, this antibody cocktail was added to samples, which were
stored overnight in a 4 °C refrigerator. The next day, a donkey anti-
species secondary antibody cocktail from was prepared (AlexaFluor
488 [AF488], anti-Rb, 1:1000 dilution, Jackson #711-545-152; Rhoda-
mine Red-X [RRX], anti-Rt, 1:500 dilution, Jackson #712-295-153; and
Cyanine 5 [Cy5], anti-Ck, 1:400 dilution, Jackson #703-175-155). The
primaryantibody cocktail solutionwas removed, and the sampleswere
washed with 1× PBS for 2 × 5min. The secondary antibody cocktail was
added to samples and left to hybridize for 2 h at rt. This cocktail was
then removed, and the samples were washed with 1× PBS for 2 × 5min.
Then, a solution of DAPI (1:1000 dilution in 1× PBS) was added to the
sample for 5min. This solution was removed, and the sample was
washed with 1× PBS for 2 × 5min before mounting with ProLong Gold
Antifade. Imaging was performed using a Leica DMi8 with THUNDER
Imager (Leica Microsystems) using a 20× 0.8 NA air or 40× 1.35 NA oil
objective.

PhenoCycler-Fusion (PCF) on human tissues. All reagents in this
section were purchased and used as received from Akoya Biosciences
unless otherwise noted. Samples underwent deparaffinization, rehy-
dration, and antigen retrieval as described above. Following sample
immersion in EtOH, the sample was immersed in Akoya Hydration
Buffer for 2min, followed by Akoya Staining Buffer for 20min. While
the sample cooled to rt, the antibody cocktail was prepared. To 362 µL

of Akoya Staining Buffer was added 9.5 µL of N, J, G, and S blockers.
Then, 157 µL of blocking solution was pipetted into a 1.5mL vial, and
1 µL of barcoded antibody (Table 1) was added to the vial such that the
final volume of antibody cocktail was 190 µL. After immersion in
Staining Buffer, the slide was removed, the back and area around the
sample were wiped dry, and the slide was added to a humidity cham-
ber. As a modification to the manufacturer’s instructions, the antibody
cocktail was added to the sample, and the humidity chamber was
placed in a 4 °C refrigerator overnight. After removal of the antibody
cocktail, the slide was placed in staining buffer for 2min, followed by
post-stain fixing solution (10% PFA in staining buffer) for 10min. Fol-
lowing 3 × 2min washing in 1X PBS, the slide was immersed in ice-cold
MeOH for 5min. While the slide was immersed, the final fixative
solutionwas preparedby adding 1 vial offixative (approximately 20 µL)
to 1mL of staining buffer. The slide was removed from MeOH and
placed in the humidity chamber, and 200 µL of the final fixative solu-
tion was added to the sample. This was left in place for 20min. Then,
the final fixative solution was removed, and the slide was washed in
3 × 2min in 1× PBS. To convert the slide into a flow cell for use in the
PCF experiment, the back of an Akoya flow cell top was removed, and
the top was placed adhesive face-up in the Akoya-provided impressing

Table 1 | Conjugated antibodies for use in the PhenoCycler
Fusion assay

Antibody Clone Barcode/
Reporter

Wavelength Catalog
Number

CD20 L26 BX/RX020 AF750 4450018

CD8 C8/144B BX/RX026 Atto550 4250012

CD4 EPR6855 BX/RX003 AF647 4550112

GZMB D6E9W BX/RX041 Atto550 4250055

FOXP3 236A/E7 BX/RX031 AF647 4550071

Ki67 B56 BX/RX047 Atto550 4250019

HLA-A EP1395Y BX/RX004 AF750 4450046

Galectin-3 M3/38 BX/RX035 Atto550 4450034

CD3e EP449E BX/RX045 AF647 4550119

CD45RO UCHL1 BX/RX017 Atto550 4250023

CD45 D9M81 BX/RX021 AF647 4550121

PD-L1 73-10 BX/RX043 AF647 4550072

CD14 EPR3653 BX/RX037 Atto550 4450047

PD-1 D4W2J BX/RX046 AF647 4550038

MPO AKYP0113 BX/RX098 Atto550 4250083

CD68 KP1 BX/RX015 AF647 4550113

IDO1 V1NC3IDO BX/RX027 AF647 4550123

CD31 EP3095 BX/RX001 AF750 4150017

KRT14 Poly19053 BX/RX002 Atto550 4450031

ICOS D1K2T BX/RX054 AF647 4550117

SMA AKYP0081 BX/RX013 AF750 4450049

PDPN NC-08 BX/RX023 Atto550 4250094

COL_IV EPR20966 BX/RX042 AF647 4550122

CD34 AKYP0088 BX/RX025 Atto550 4250057

HLA-DR EPR3692 BX/RX033 AF647 4550095

CD38 E7Z8C BX/RX089 Atto550 4250080

Bcl2 EPR17509 BX/RX085 AF647 4250098

VIM O91D3 BX/RX022 AF750 4450050

IFNG AKYP0074 BX/RX020 Atto550 4250062

CD66A/C/E ASL-32 BX/RX016 AF647 4550001

PanCK AE-1/AE-3 BX/RX019 AF750 4450020

CD56 CAL53 BX/RX028 Atto550 4250087

CD11c 118/A5 BX/RX024 AF647 4550114
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device. The slide was removed from the 1× PBS, and the edges around
the slide that matched where the top of flow cell adhesive would
adhere were dried using a micro-squeegee tool (Essential Bangdi).
Then, the slide which formed the bottom of the flow cell was placed
sample-side downon the top of the flow cell without applying pressure
to the adhesive. The tray of the impressing devicewas inserted into the
device, and the lever was gently pulled to adhere to the top and bot-
tom of the flow cell. After 30 s, the lever was depressed, the tray was
pulled out, and the flow cell was removed. This flow cell was placed in
1× PCF buffer without buffer additive for a minimum of 10min before
any PCF experiment to allow for improved adhesion between the top
and bottom of the flow cell. To prepare the PCF reporter wells, a 15mL
Falcon tube was first wrapped with aluminum foil. To this Falcon tube
was added 6.1mL of nuclease-free water, 675 µL 10× PCF buffer, 450 µL
PCF assay reagent, and 4.5 µL of in-house prepared concentrated DAPI
such that the final DAPI concentration was 1:1000. Then, this reporter
stock solution was pipetted to 18 amber vials, with the volume in each
vial being 235 µL. To each vial was added 5 µL of reporter per cycle. The
total volumeper vial was either 245 µL for a cycle with two reporters or
250 µL for a cycle with three reporters; to optimize reagents and
reporters, no cycles contained only one reporter. Only one criterion
was used to create a cycle: each cycle could contain a maximum of 3
reporters, corresponding to 1 of Atto550, AlexaFluor 647, and Alexa-
Fluor 750 (where appropriate; see below for more information). A
separate pipet tip was used to pipet the contents of each amber vial to
a 96-well plate. DAPI-containing vialswerepipetted into awell in theH-
row, whereas vials containing reporters were pipetted into wells in
other rows. Once all wells were filled, Akoya-provided foil was used to
seal the wells. Imaging was performed using a PhenoImager Fusion
connected to a PhenoCycler i.e., the PhenoCycler Fusion system
(Akoya Biosciences) using a 20 × 0.8 NA air objective (Olympus).
Requisite solutions for this instrument include ACS-grade DMSO
(Fisher Chemical), nuclease-free water, and 1× PCF buffer with buffer
additive, the latter ofwhichwaspreparedby adding 100mLof 10XPCF
buffer and 100mL of buffer additive to 800mL of nuclease-free water.

RNAscope HiPlex 12 V1 or V2 on human or murine tissues. All
reagents in this section were purchased and used as received from
ACD unless otherwise noted. The sample underwent deparaffinization
and rehydration as described. 1 drop of RNAscope hydrogen peroxide
was added to the slides, and the samples were left for 10min at rt. The
hydrogen peroxide was tapped off the slides, and the samples were
antigen retrieved and dried as described. During this time, the HybEZ
oven was turned on and set to RNAscope (40 °C). The hydration paper
was wetted with nuclease-free water to prepare the humidity chamber
in the slide tray. An Immedge pen was used to draw a tight hydro-
phobic barrier around the tissues, then dried at rt for 5min. The slides
were then placed in the slide holder. One drop of Protease IV reagent
was added to each contained region. The slide holderwasplaced in the
tray, and the tray was placed in the HybEZ oven for 30min. During this
time, 1X RNAscope wash buffer was prepared in nuclease-free water.
TheRNAscope hybridization solutionswere preparedby adding 1 µL of
T probe (Table 2) to 100 µL of probe diluent. The tray was removed,
and the slide carrierwas immersed in thewash buffer for 2 × 2min. The
carrier was removed and dried, and a paper towel was used to dry the
area around the barrier. Then, 20 µL of hybridization solutionor 1 drop
of positive or negative control probe mix was added to each spot. The
slide holder was replaced in the tray, and the tray was placed in the
HybEZ oven for 2 h. After 2 h, the slide holder was washed in wash
buffer for 2 × 2min. Signal amplifiers were added to the samples by
hybridizationofAMP1, AMP2, and AMP3 for 30min each, withwashing
in-between steps. After signal amplifiers, T1–T4 fluorophores were
added to each spot, with 15min hybridization and washing. Then,
RNAscope DAPI was added to each sample for 30 s. Following this, the
DAPI was tapped off the slides, whichwere immediately mounted with

Prolong Gold Antifade. Imaging was performed using a Leica DMi8
with THUNDER Imager (LeicaMicrosystems) using a 40× 1.35 NA oil or
63 × 1.35 NA oil objective.

After imaging acquisition had been completed for T1–T4 probes,
the sample necessitated the removal of the first probes for imaging
T5–T8 and T9–T12 probes. After completed imaging of T1–T4, slides
containing samples were placed in 4X saturated sodium citrate (SSC)
at minimum overnight until the cover glass could be gently removed.
During this time, an ampule of RNAscope cleaving solution was
opened, and a 10% solution of cleaving solution in 4× SSC was pre-
pared. After slide immersion4×SSC and removal of the cover glass, the
slides were added to the slide holder, and one drop of cleaving solu-
tion was added to each region containing the sample. The slide holder
was loaded into the tray, and the tray was loaded into the HybEZ oven
for 15min. Then, the slide holder was washed in 0.5% Tween for
2 × 2min. This process was repeated. Following this, T5–T8 probes
were added to the sample in the same manner, and the sample was
imaged. Once the imaging of T5–T8 probes was completed, their
reporters were cleaved as described, and the T9–T12 probes were
hybridized and imaged.

For HiPlex V2, no hydrogen peroxide was used, and Protease III
was used instead of Protease IV. Additionally, for HiPlex V2, between
the AMP3 step and the addition of T1–T4, the addition of FFPE reagent
was required as follows. To 100 µL of 4× SSC was added 2.5 µL of FFPE
reagent, resulting in a 1:40 solution of FFPE reagent. Followingwashing
slides using 1× wash buffer, the FFPE reagent was added to each slide
and incubated at RT for 30min. Following this, the slide holder was
removed from the tray and immersed in 1× wash buffer before pro-
ceeding to fluorophore addition.

Human primary cell culture and analysis
Human gingival keratinocyte (HGK) culture passaging, cryopre-
servation, and fixation. All reagents in this section were purchased
and used as received from Lifeline Cell Technology or ATCC. Derma-
Life K Keratinocyte Medium (HGK medium), the keratinocyte growth
kit, and a six-well plate (ThermoFisher Scientific) were brought into a
biosafety cabinet using aseptic techniques. The keratinocyte growth
kit reagents were added to the dermal basal cell medium. To three of
the wells was added 1.5mL of warmedmedia. The HGKs (Passage (P)2:
Lifeline Cell Technology product #FC-0094, lot #05390; ATCC pro-
duct #PCS-200-014, lot #80523333) were thawed and aliquoted into
100 µL portions in cryovials (ThermoFisher). One of the 100 µL vials
was diluted to 1.5mL by adding media; then, 500 µL of this diluted
media was added to each well, and the six-well plate was placed in a
tissue cabinet at 5% CO2 and 37 °C. After 24 h, the media was removed
and replaced every 48 h until the cells reached 70% confluence, at
which point they were passaged using 0.05% trypsin-EDTA, neu-
tralized, and pelleted using a Sorvall Legend X1R centrifuge (Thermo
Scientific) at 1232 RCF for 5min, resulting in P3 HGKs. Some cells were
re-plated in HGK medium and grown using the same procedure until
P4 and P5 HGKs were obtained.

Cells that were not plated or re-plated were cryopreserved. P2
HGKs were cryopreserved using the solution in which they were
delivered. For in-house passagedHGKs, the excess trypsin/neutralizing
solution was removed, and the HGKs were resuspended in 1mL of
Frostalife (Lifeline). The cell suspensions were aliquoted into 1mL
cryovials, which were then placed into a Nalgene Freezing Container
that was pre-loaded with 250mL of ACS Reagent Grade 2-propanol
(Sigma-Aldrich). The cells were cooled to -80 °C in an ultra-low-
temperature freezer for at least 2 h before immersion in liquid nitro-
gen. Instead of cryopreservation, some cells were fixed for down-
stream analysis.

The cells were passaged and either cryopreserved or fixed. Fol-
lowing centrifugation and removal of the excess solution, the cells
were suspended in 4% paraformaldehyde (PFA) for aminimumof 24 h.

Article https://doi.org/10.1038/s41467-024-49037-y

Nature Communications |         (2024) 15:5016 18



Following fixation, the PFA solution was removed, and the cells were
resuspended in 70% ethanol (EtOH) in water. These were stored in a
4 °C refrigerator until future use. SuperFrost Plus (Fisher Scientific)
slides were immersed in a solution of 0.1% poly-L-lysine (Sigma-
Aldrich) in a Coplin jar for a minimum of 24 h. The slides were rinsed
and dried at 37 °C for a minimum of 10min before use. Cell suspen-
sions were added to 1.5mL Eppendorf tubes and diluted to 500 µL
using 70% EtOH. Cytospin funnels (Fisher Scientific) were rinsed by
adding an uncoated slide to the Cytospin clip and adding 70% EtOH to
the funnel. The rotor was spun at 1600 RPM for 15min, resulting in the
evaporation of EtOH. Then, a poly-L-lysine slide was added to the
Cytospin clip. The funnel was charged with the appropriate cell sus-
pension in 70%EtOHand spun at 1600RPM for 15min to obtain cells in
a circular spot on the slide. Multiple funnels were used, with rearran-
gement of the slide and funnels, to obtain four spots per microscope
slide. Cells were processed for immunofluorescence and RNA ISH
(HiPlex 12) as outlined in the above sections.

Mycotesting was performed using a MycoAlert Plus sample kit
(Lonza). Luminescence testing was performed on a Spark (TECAN).
Control testing was performed on Lonza MycoAlert Positive Control

and deionized water from aMilli-Q IQ7003 (Millipore Sigma). Samples
tested included sterile media, media collected prior to passaging cells
to P5, andmedia collected fromLPS-challenged andunchallenged cells
prior to passaging cells to P4. All test reagents were brought up to rt.
TheMycoAlert PLUS reagent andMycoAlert PLUS Substrate were each
dissolved in 1.2mL MycoAlert PLUS Assay Buffer. Samples were cen-
trifuged at 200 × g for 5min. 100 µL of each sample was added to a
Hard-Shell PCR 96-Well Plate (Bio-Rad), followed by 100 µL of
MycoAlert PLUS Reagent. After 5min, the first luminescence mea-
surement (Reading A) was taken. Following this, 100 µL of MycoAlert
PLUS Substrate was added to each sample. After 10min, the second
luminescencemeasurement (Reading B) was taken. The ratio of B to A
was then calculated (Supplementary Data 1). All cells were found to be
mycoplasma negative.

Statistical methods
General methods. All non-sequencing-based data were analyzed in
Fiji, QuPath, and/or Prism 9. The selection of statistical tests is
described in the text and figure legends; all statistical tests were two-
sided. The graphs supporting each figure and the Supplementary Fig.

Table 2 | RNA in situ hybridization T probes for use in the RNAscope assay

Target Channel Wavelength NBCI ref sequence Chemistry Cat. #

KRT19 T1 488 NM_002276 V1 310221-T1

CCL28 T1 488 NM_148672.2 V2 418001-T1

Polr2a (+control) T1 488 NM_000937.4 V1 324311

Krt19 T1 488 NM_008471.2 V2 402941-T1

LAMB4 T2 550 NM_001318048.1 V1 530651-T2

CXCL17 T2 550 NM_198477.2 V2 513241-T2

P. gingivalis T2 550 NR_040838.1 V2 532132-T2

PPIB (+control) T2 550 NM_000942.4 V1 324311

CXCL8 T3 647 NM_000584.3 V2 573621-T3

Fusobacterium T3 647 NR_026083.1 V2 433881-T3

UBC (+control) T3 647 NM_021009 V1 324311

CXCL14 T4 750 NM_004887.4 V1 425291-T4

EB-16S T4 750 * V2 464461-T4

HPRT1 (+control) T4 750 NM_000194.2 V1 324311

SAA1/2 T5 488 NM_000331.6 V1 813351-T5

IL36G T5 488 NM_001278568.1 V2 424791-T5

COL7A1 T6 550 NM_000094.3 V1 803381-T6

RHOV T6 550 NM_133639.3 V1 532931-T6

LGR6 T6 550 NM_001017404.1 V1 410461-T10

IL1B T6 550 NM_000576.3 V2 310361-T6

NPPC T7 647 NM_024409.2 V1 431221-T7

CCL20 T7 647 NM_001130046.1 V2 409611-T7

ODAM T8 750 NM_001385579.1 V1 300040-T8

PAPPA T8 750 NM_002581.5 V1 582481-T8

IL1A T8 750 NM_000575.3 V2 556791-T8

SFRP1 T9 488 NM_003012.4 V1 429381-T9

TNFSF15 T9 488 NM_005118.3 V2 403121-T9

IL18 T10 550 NM_001562.3 V1 400301-T10

IL6 T10 550 NM_000600.3 V2 310371-T10

RHCG T11 647 NM_001321041.2 V1 834511-T11

FDCSP T11 647 NM_152997.3 V1 444231-T11

CXCL3 T11 647 NM_002090.3 V2 1002151-T11

NEAT1 T12 750 NR_131012.1 V1 411541-T12

SOX6 T12 750 NM_017508.2 V1 524791-T12

CXCL1/2 T12 750 NM_001511.4x V2 427151-T12

DapB (- control) T1-T4 various EF191515 V1 324341
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were generated using Prism 9/10 and a community instance of Celle-
nics® (hosted by Biomage) unless otherwise specified. Venn Diagrams
were generated using http://www.interactivenn.net/.

Spatial proteomic cell assignment and analysis. The determination
of marker positivity in each cell was based on comparing its fluores-
cence intensity to predefined thresholds. We carefully selected
thresholds for eachmarker to ensure accurate cell type classification. A
marker was positive if its fluorescence intensity exceeded its threshold
and negative if it did not. By applying this criterion, each cell was
associated with positive/negative signals for each marker. The
assignment of cell types for individual cellswasmade using consistent,
predefined cell type signatures consisting of multiple markers. Cells
considered fibroblast/stroma (PanCK−, CD45−, and CD31−), vascular
cells (CD31+), and epithelia (PanCK+) were removed from further ana-
lysis. Only cells that were identified as immune cells (CD45+, PanCK−,
and CD31−) were kept in the downstream analysis. In most cells, a
unique cell typewas confidently assigned based on the presenceof the
positive markers consistent with its signature. However, in some
instances, a cell exhibited positive markers from more than one cell
type. To resolve this ambiguous cell-type assignment, we implemented
a deconvolution approach (adapted from Celesta91). The intent was to
assign the most likely cell type to each cell in the presence of cell-type
mixtures. As such, for each mixed cell type group, we extracted a
feature intensity submatrix consisting of those cells and the features
relevant to the cell type mixtures they represented. We then utilized a
Louvain clusteringmethod92 implemented in the Seurat toolkit version
393 to re-cluster those cells. The clusters were then subjected to cell
type assignment based on their enrichedmarkers. Dot plots were used
to visualize the marker intensity exhibited across those clusters. The
identity of each cluster was then determined by inspecting highly
expressed markers, which we determined by the size and intensity of
dots in the output matrix and compared with our DEG lists. To infer
cellular interactions from the spatial data annotatedwith cell types, we
employed the Squidpy library in Python94. Each cell on the slide was
represented as a node in the cellular interaction graph. Edges con-
necting the nodes were created using Delaunay triangulation andwere
assumed to represent two interacting cells. To remove excessively
long edges i.e., unlikely cell-to-cell interactions, a 99th percentile dis-
tance thresholdwas applied to the edges. From the cellular interaction
graph, immune cells located in the junctional and sulcular stromawere
extracted for further analysis. Interaction matrices were constructed
to quantify the number of edges shared between each immune cell
type within the junctional and sulcular stroma. Each entry in the
interactionmatrices represented the number of edges shared between
the respective pair of immune cell types. To investigate the variation in
immune cell interactions between the junctional and sulcular stroma,
focusing on the levels of interaction between each immune cell type,
we computed the difference in their respective interaction matrices.
Specifically, we subtracted the interaction matrix of the junctional
stroma from that of the sulcular stroma. The resulting matrix repre-
sented the difference in immune cell type interactions between the
two regions, where more positive values represented greater interac-
tion in the sulcular stroma and more negative values represented
greater interaction in the junctional stroma. This subtraction matrix
was then plotted as a hierarchically clustered heatmap using the Sea-
born library in Python. This process was performed for each of the
present slides to visualize the differences in immune cell interactions
between the sulcular and junctional stroma across the various diseased
patients. The resulting matrices were averaged to provide an aggre-
gated view of the variations in the type of cells interacting with the
immune cells.

Quantification and plotting of in situ hybridization. A multi-step
approach to analyzeRNAmultiplex imageswas utilized after the image

acquisition was performed using Fiji (ImageJ). The acquired.lif files
were subsequently converted into 8-bit images, as an ome.tiff file
(scripts available: see Code Availability). The RNA multiplex images
were acquired at three different time points, each utilizing four probe
sets on the same sample section. To ensure accurate representation,
the three images from the same sample were overlaid using theWarpy
and image combiner tools95, generating a 12-plex image represented in
different channels. Subsequently, the images were subjected to seg-
mentation using a pretrainedmodel based onCellpose 2.096 (Fig. 5; 12-
plex ISH in vivo) or on StarDist97 (other analyses). The segmentation
process was iteratively refined using images from 80 fluorescent
images from post-mortem biopsies. The model was trained multiple
times until achieving accurate delineation of cell expansion in both the
basal and suprabasal layers. The gingival biopsy was segmented
separately for each of the areas of interest—junctional epithelia, sul-
cular epithelia, and gingival margin—with each area divided into basal
and suprabasal layers. Following the nuclei-based cell segmentation,
subcellular analysiswasperformedusingQuPath,where thenumber of
RNA spots within each cell was detected based on the fluorescence
intensity per spot. An individual spot was positive if its fluorescence
intensity exceeded its threshold and negative if it did not. The rawdata
was then exported, and the number of RNA spots was detected and
quantified per cell and channel. Subsequently, the raw data was pro-
cessed as an input file through log scripts to rank the most highly
expressed RNA transcripts and extract the field-of-view (FOV) from the
X and Y coordinates of each cell. Manual thresholding was applied to
define the positivity of the transcripts. To further analyze the RNA
transcript data, we transformed the matrix into a Seurat object. The
data were treated, and raw clustering was performed in the UMAP
projection, as well as PCA evaluation, for each of the twelve probes
analyzed, adding the spatial information regarding RNA transcript
expression in each patient sample and providing RNA expression
patternswithin the basal and suprabasal layers fromeachof theROIs in
the tissue. Individual cell quantification was performed using a similar
process (segmentation, manually-thresholded dot quantification) but
was conducted independently to validate findings.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All data, including links to original raw data from each of the four
studies9,14–16 (GSE152042, GSE161267, GSE164241) can be found at:
https://cellxgene.cziscience.com/collections/71f4bccf-53d4-4c12-9e80-
e73bfb89e398. Original raw data from the COVID-19 Cell Atlas was
uploaded to GEO (GSE266897). Additional raw data available includes
the mouse gingival keratinocyte single-cell data (GSE267511).

Code availability
Analysis notebooks are available at: http://github.com/LOCI/
periodontitis https://github.com/sequeira-science/Quinn_et_al_2024_
NatComms_mousegingiva.
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