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Probing the structure of water in individual
living cells

Xiaoqi Lang1, Lixue Shi 2, Zhilun Zhao 1 & Wei Min 1

Water regulates or even governs a wide range of biological processes. Despite
its fundamental importance, surprisingly little is known about the structure of
intracellular water. Herein we employ a Ramanmicro-spectroscopy technique
to uncover the composition, abundance andvibrational spectra of intracellular
water in individual living cells. In three different cell types, we show a small but
consistent population (~3%) of non-bulk-like water. It exhibits a weakened
hydrogen-bonded network and a more disordered tetrahedral structure. We
attribute this population to biointerfacial water located in the vicinity of bio-
molecules. Moreover, our whole-cell modeling suggests that all soluble
(globular) proteins inside cells are surrounded by, on average, one full mole-
cular layer (about 2.6 Angstrom) of biointerfacial water. Furthermore, relative
invariance of biointerfacial water is observed among different single cells.
Overall, our study not only opens up experimental possibilities of interrogat-
ing water structure in vivo but also provides insights into water in life.

Water, the active matrix of life, is an integral part of the structural
organization of living cells1. It is ubiquitous for the existence of all
known life forms.Watermediates or even governsmany, if not all, vital
biological interactions inside of a cell, such as protein folding, enzyme
catalysis, membrane self-assembly, and substrate recognition2–6.
Despite the importance, the structure of intracellular water has
remained elusive7, although the dynamics of a portion of intracellular
water was found to be slowed down8–18. After all, liquid water owes
most of its physicochemical properties to the structure of the
hydrogen-bondingnetwork,whichprovides theunderlying framework
for understanding the structure-dynamics-function relationship. Fun-
damental questions regarding intracellular water are either not
addressed or remain highly debated: whether the hydrogen-bonding
network of water inside living cells differs from that of bulk water (in
fact, one school of thought suggests little to no bulk-like intracellular
water19–25), and if so, what are the abundance and location of such
water, and what are the new structural features (such as tetrahedrality,
hydrogen-bonding strength and dangling bonds) of this “non-bulk-
like” water?

The lack of understanding of intracellular water is largely due to
experimental difficulties in probing the structure of water’s hydrogen-

bonding network in living cells. To this end, vibrational spectroscopy
provides a promising approach, as the O-H stretching vibration carries
valuable information about the local hydrogen-bonding structure26–29.
However, living cells present a formidable challenge. Vibrational sum
frequency generation (SFG) has intrinsic interface selectivity but
requires an extended planar interface30,31, which is not compatible with
intracellular water. Chiral SFG, leveraging chirality transfer from bio-
molecules to adjacentwater, allows probing of interfacialwater in vitro
without the necessity for a flat surface32,33. Vibrational sum frequency
scattering can probe the surface of submicron particles in suspension
but cannot study biomolecules (such as proteins) that are much
smaller than the wavelength of light34,35. Unlike the second-order
optical processes, infrared absorption and Raman scattering could
directly measure the vibrational spectrum of water inside living cells.
However, because they are probing volume properties (i.e., lack of
interface selectivity), it is deemed difficult to distinguish bulk-like
water and water in the vicinity of biomolecules (which we name
“biointerfacial water”), with the former likely dominating over the
latter. Moreover, they have to face the complication of interfering
solutes inside live cells: N-H bonds,mainly from protein backbone and
side chains, unavoidably contribute to the vibrational signal in the O-H
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stretching region. Vibrational spectra of these solutes are not easy to
acquire (which will be elaborated further).

Herein we employed a Raman micro-spectroscopy technique to
uncover the structural nature of intracellular water. To address the
background from solutes, we proposed and validated an experimental
strategy to quantify the spectral contribution from interfering solutes
of thewhole cell. Then,wedemonstrated that theO-Hstretch regionof
the live-cell spectrum is not a simple sum of solute and solvent,
proving the existence of structurally altered water, which we attribute
to biointerfacial water. To distinguish the overwhelming bulk-like
water, we harnessed the emerging Raman multivariate curve resolu-
tion (MCR) spectroscopy36,37 and generalized it to living cells. These
technical advances together allow us to unveil the structural compo-
sition, abundance and vibrational spectra of intracellular water in liv-
ing cells, for the first time to the best of our knowledge. On one hand,
contrary to popular belief, intracellular water turns out to be largely
bulk-like and can co-exist withmacromolecular crowding; on the other
hand, all globular proteins in living cells are found to be working
beneath, on average, one full molecular layer of biointerfacial water
that is structurally disordered. Furthermore, we observed spectral

invariance of biointerfacial water among different individual cells and
distinct cell types, which we postulate might underlie thermodynamic
stability of the proteome inside living cells.

Results
Spectral similarity and discrepancy between bulk water and
live cells
We home-built a whole-cell confocal Raman microscope to examine
live cells (Fig. 1a). The setup is featured by intentionally under-filling
the back aperture of a 20× objective lens (effective numerical aperture
N.A. ~0.4) and still capturing the scattered Raman signal with a large
collection efficiency and a confocal pinhole of 40μm. This configura-
tion yields an optimal confocal volume (~ 2μm×2μm× 10μm), which
is large enough toprobe a substantial fractionof thewholemammalian
cell, reducing subcellular heterogeneity and potential phototoxicity,
and is also small enough to exclude the contribution fromextracellular
water. Figure 1b shows Raman spectra, Ilive cell OH region, of two live HeLa
cells together with Ibulk water from pure bulk water, obtained at the
same experimental condition. The flat baseline is free from auto-
fluorescence and substrate scattering, thanks to the tight confocality.
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Fig. 1 | Whole-cell confocal Raman micro-spectroscopy of O-H stretch region.
a Optical schematics of a home-built confocal micro-Raman system. We purposely
underfilled the back aperture of a 20× objective (beam diameter is 9–10mm) to
spread the illumination volume (~ 2 µm×2 µm× 10 µm) inside a single cell. Details in
Supplementary Information. L: lens; LPD1, LPD2: long-pass dichroic beamsplitter;
SP: short-pass filter; LP: long-pass filter. L1/L2 (f = 40/300mm), L3/L4 (f = 150/
50mm), L5/L6 (f = 100/100mm) (b) Comparison of Raman spectra of

representative live HeLa cells and bulk liquid water, obtained at room temperature
(24 °C) and 0.1MPa (1 atm pressure) with 35mW power on sample during 400 sec
acquisitions. c Zoom-in view of Raman spectra with normalized 3400 cm−1 peak. A
small but non-negligible discrepancy in spectra shape can be identified between
live cells andbulkwater. Shaded area depicts the standarddeviation of 80 repeated
measurements of 5-sec spectral acquisition.
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The time series (Fig. S1) suggests that no photodamage or photo-
driven processes occurred during the measurement. While the
2800 ~ 3000 cm−1 region contains spectral information from C-H of
biomolecules, the broad high-wavenumber region from 3100 to
3800 cm−1, referring to theO-H stretching region, ismostly fromwater.
The relative intensities indicate that the intracellular water con-
centration is slightly lower than that of pure water, consistent with the
fact that living cells contain a large amount of water.

Is the spectral shape of Ilive cell OH region identical to Ibulk water?
Fig. 1c presents the normalized spectra. While the overall shapes are
similar, a small but non-negligible discrepancy is reproducible in dif-
ferent cells and is clearly above the measurement noise (shaded error
in Fig. 1c). Biomolecules inside cells shall contribute to the difference.
Notably, N-H stretching from protein backbone and side chains and
even DNA/RNA and O-H stretching from carbohydrates are expected
to display Raman scattering in 3100–3500 cm−1. This can be assigned
to the “intracellular solute background”. Such solute background can
be intrinsically complicated in living cells, making it challenging to
unveil the true spectral feature of intracellular water.

Quantifying intracellular solute background
It has been estimated in several model organisms that the intracellular
concentration of N-H groups (mainly from proteins) dominates over
the non-water O-H groups by about one order of magnitude18. This
insight, together with the fact that proteins constitute ~75% of dry
weight of Hela cells38, suggests N-H vibrations of protein as the major
contributor to the solute effect (Supplementary Discussion 1). How-
ever, it has been challenging to measure the protein N-H spectrum
in situ under strictly physiological conditions. Similar to the solute
interference, the O-H stretching from water will present the solvent
interference for N-H stretching. To avoid water interference, chiral
N−H stretch was recorded by chiral SFG from protein at interfaces39,
which is unfortunately difficult to implement in living cells. Pre-
sumably, D2O exchange can be used to replace H2O inside cells.
However, O-H groups are generated as soon as hydrogen-deuterium
exchange occurs (over minutes for protein backbone40) between D2O
and intracellular active hydrogen (such as N-H groups), again leading
to interference with the target N-H group.

We hence propose an alternative method to quantify the solute
contribution. We dehydrated intact HeLa cells under vacuum in an
isothermalmanner, and then acquired thewhole-cell Ramanspectrum,
which should include the collective sum of all interfering solutes.
Figure 2a and Fig. S2 shows cellular spectra, Ivacuum dehydrated cell , aver-
aged over 20 cells. The consistency between spectra with vacuum
dehydration periods of 2 days and 7 days proves that water is thor-
oughly removed. A prominent and broad peak is detected around
3300 cm−1 (also called amide A in Fig. 2b), similar to the reported chiral
SFG spectra of N-H from protein at interfaces39. Quantitatively, the
ratio between this peak and the C-H3 protein peak in
Ivacuum dehydrated cell matches with its counterpart in the spectrumof dry
bovine serum albumin (BSA), a popular model protein (Fig. S3 and
Supplementary Discussion 1). This validates the expectation that the
3300 cm−1 peak of cellular solutes largely originates from the N-H
group in intracellular proteins. Other factors, such as carbohydrates,
DNA/RNA or residual water should be insignificant.

Caution needs to be taken, as changes during cell dehydration
might shift the amide A spectrum. We employ a concept of proximity
sensor, namely the carbonyl group (C=O) in the amide unit, to quantify
such potential shift. There are several considerations. First, the car-
bonyl group has local proximity to the N-H group in the protein
backbone (Fig. 2b), physically awayby only one bond. Second, its bond
axis is in parallel with the N-H bond. Hence approximately identical
electric fields from environment are projected on these two bonds as
predicted by Onsager’s reaction field theory41. Third, the vibrational
signature of C=O groups can be readily characterized as the amide I

band without water interference. Thus, the response of amide I can be
utilized as a proximity sensor to infer the nearby change experienced
by N-H. As shown by Fig. 2c, the amide I band in Ivacuum dehydrated cell is
largely conserved compared to live cells with only a blue-shift of
1.4 cm−1. Additionally, the amide III band, derived from coupled C-N
stretching and N-H bending, shows nearly identical spectra after
dehydration. These observations strongly suggest that corresponding
spectral change of amide A should also be relatively insignificant after
vacuum dehydration. More quantitative conclusion can be reached by
studying vibrational solvatochromism42 of model compounds (N-
methylacetamide, butylamine) (Fig. 2d, e, Fig. S4, Supplementary
Discussion 2): less than 4 cm−1 blue-shift is expected for amide A after
vacuum dehydration, much smaller than the peak width. Such insen-
sitivity can be reconciled by the fact that the isothermal vacuum
dehydration employed here only causes a gentle perturbation to
intracellular protein conformation compared to the harsh denatura-
tion process (Fig. S5). This rationalization also aligns with our own
observation on BSA in vitro (Fig. 2f, Fig. S5) and minor conformational
changes reported on globular proteins upon dehydration43,44. Toge-
ther, we conclude that Ivacuum dehydrated cell can largely represent intra-
cellular solute contribution of live cells.

Live-cell water spectrum is not a simple sum of intracellular
solute and solvent
With intracellular solute contribution obtained above, we can revisit
the spectral discrepancy identified in Fig. 1c. If the solute contribution
were the only cause, one would expect to computationally recon-
stitute the measured Ilive cell OH region by adding a certain fraction of
Ibulk water to Ivacuum dehydrated cell (Supplementary Discussion 3). How-
ever, Fig. 3a, b demonstrates that the reconstitution always fails to
reach perfect agreement with the measurement regardless of the
added water concentration. For the closest case with 88.0% water
(Fig. 3c), the addition of solute and solvent is higher than live-cell
spectrum in the red end and lower in theblue end, respectively. Even in
the hypothetical scenariowith solute spectra that are spectrally shifted
or amplitude modulated, the reconstitution still cannot be achieved
(Fig. S6). This study proves that the live-cell spectrum is not a simple
sum of the solute and the solvent. Thus, there must exist a third
component that is spectrally altered from that of bulk water.

Raman MCR micro-spectroscopy uncovers biointerfacial water
inside living cells
Numerous studies have shown that water structure and dynamics are
altered in the close vicinity of biomolecules. We thus attribute the
spectrally distinct third component inside living cells to biointerfacial
water. How to distinguish biointerfacial population from bulk-like
water is another challenge. To achieve the in-solution interface selec-
tivity, we adopt the emerging concept of Raman-MCR
spectroscopy36,37,45–47. Raman-MCR does not have any assumption
about the amplitude, position, andwidth of spectral bands (except the
absence of negative concentration). By computing the non-negative
minimum-area difference between the solution and pure solvent
spectra, it can separate the contribution of bulk water and unravel the
properties of water in the hydration shell of small solutes. Raman-MCR
has been primarily used in small molecules such as alcohols and ions
with relatively large hydration shells and hence negligible solute
contribution36. In parallel, a related approach has been utilized
whereby MCR is combined with FITR spectroscopy to analyze solva-
tion shell of antifreeze proteins in vitro48. Here, we generalize it to live-
cell Raman spectrum (Supplementary Discussion 5), which has to
include the additional intracellular solute background (Eq. 1):

Ilive cell OH region = Ivacuum dehydrated cell + Ibiointerf acial water + x Ibulk water

ð1Þ
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High quality spectrum, Ibulk water , was acquired with an over
1000:1 signal-to-noise ratio (Fig. S7). Figure 3d maps the MCR resi-
dual analysis by subtracting Ivacuum dehydrated cell (after scaling based
on the dominant CH peak at 2930 cm−1) and a varying fraction (x%)
of Ibulk water , from Ilive cell OH region . A critical point is marked at x = 83%
(horizontal dash line); at this point, the difference spectrum from
3054 cm−1 to 3150 cm−1 simultaneously reaches the vanishing
threshold, characterized by a continuously flat green line (Fig. 3d).
Crossing over this point, the difference spectrum starts to display
non-physical negative values (Fig. S8). This collective behavior not
only guarantees the non-negative minimum-area condition to be

fulfilled in Raman MCR algorithm but also serves as an
internal check.

Figure 3f depicts Ilive cell OH region, 0:83× Ibulk water and their differ-
encewhich is named solute-correlated (SC) spectrum. Note that the SC
spectrum nearly overlaps with Ivacuum dehydrated cell from 3054 cm−1 to
3150 cm−1, dictated by the critical point x = (83%) identified by Raman-
MCR. Finally, according to Eq. (1), the difference between the SC
spectrum and Ivacuum dehydrated cell retrieves Ibiointerf acial water (Fig. 3f).
While the retrieval of Ibiointerf acial water is sensitive to the quality
of Ibulk water , it only changes slightly upon spectral shifts of
Ivacuum dehydrated cell (Fig. S9). Similar analyses on two other individual
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Fig. 2 | Quantification of intracellular solute background inO-H stretch region.
a Averaged Raman spectra of HeLa cells after vacuum dehydration, normalized to
the CH3 peak (2930 cm−1). Blue: 18 cells measured after 2-day dehydration. Red: 28
cells measured after 7-day dehydration. b Top: schematics of the main vibrational
modes of peptide bonds in Raman spectroscopy. Bottom: Illustration of the
“proximity probe” concept in protein backbone. cComparisonof Raman spectra of
live HeLa cells (blue and yellow line) and 7-day vacuum dehydrated HeLa cells (red
dash line), showing a blue-shift about 1.4 cm−1 of amide I peak after dehydration.
d Vibrational solvatochromism studies of C=O and N-H groups in

N-methylacetamide (NMA), a model compound for amide. NMA is measured at 1%
(v/v) in different solvents. The slope of linear relationship, which corresponds to
the ratio of the Stark tuning rates: 4~μN�H

�
�

�
�=j4~μC =Oj, is estimated to be 2.8.

e Vibrational solvatochromism of butylamine, amodel compound for N-H group in
protein side chains, showing frequency shift and peak broadening in more polar
solvents. f Comparison of Raman spectra of BSA solution (blue line) and BSA dry
film (red dash line), showing a blue-shift about 2.2 cm−1 of amide I peak after
dehydration.
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HeLa cells are shown in Fig. 3g–j, exhibiting a consistent
spectral shape.

Raman scattering cross section of liquid water is generally con-
sidered relatively insensitive to changes in hydrogen-bonding strength
and structure46,47,49. By comparing the integrated spectral area with
that of pure bulk water (55.5 molar), we conclude that biointerfacial
water and bulk-like water are 1.4molar and 46molar, respectively, and
that biointerfacial water constitutes ~3% of the total intracellular water
(~47.4 molar). We further show that osmosis perturbations (such as
adding pure water or sugar to the cell culture media) can evidently
regulate the composition of intracellular water (Fig. 3k, Fig. S10),
proving the physiological relevance of our measurement. To the best
of our knowledge, it is the first time that the structural composition,
abundance and vibrational spectra of intracellular water are experi-
mentally determined.

Structural features of biointerfacial water: weakened hydrogen-
bonding, more disordered structure and presence of dangling
O-H group
We next analyze the retrieved Ibiointerf acial water to learn the underlying
structural features. To make a more informed comparison, we mea-
sured and reproduced the hydration shell spectra around the hydro-
phobic groups of two small molecules [tert-butyl alcohol (TBA) and
ethanol] (Fig. 4a)37,50. In general, strong hydrogen-bonding between
adjacentwatermoleculesweakens the covalentO-Hbond, causingO-H
to shift towards lower vibrational frequency (i.e., red shift). We hence
quantify the frequency shift by calculating the average O-H frequency
as hωi= Rω2

ω1
ωIðωÞdω where IðωÞ is the corresponding intensity when

the band shape is normalized to the unit area between ω1 = 3100 cm�1

to ω2 = 3800cm�1. Thus, a blue-shift (~36 cm−1) of O-H from biointer-
facial water compared to bulk water suggests a weakened hydrogen-
bonding network, which is opposite to the red shift of hydration shell
around two small alcohols (Fig. 4b).

Errington-Debenedetti tetrahedral order parameter (TOP) is a
popular scalar used to quantify the structure of watermolecule, with 0
and 1 representing ideal gas and perfect tetrahedron, respectively51.
TOP has been attributed to cause the spectral shift of hωi of water52,53,
and a nearly linear correlation between these two quantities was dis-
covered with a slope of −0.00149 (Fig. S11)54–56. Given that TOP of pure
water is about 0.66 at 24 °C and a blue-shift of 36 cm−1 observed here,
TOP = 0.57 is calculated for biointerfacial water (Fig. 4b), a nearly 14%
reduction. It is interesting to note that the average TOP of the hydra-
tion shell of a few proteins have recently been calculated bymolecular
dynamics simulations, yielding 4~8% reduction compared to bulk
water57–59.

The broadO-H spectrum originates from different populations of
water structure. Particularly, two significant populations are categor-
ized as strongly hydrogen-bonded (i.e., ice-like) and weakly hydrogen-
bonded (i.e., liquid-like) water, respectively53,60–62. The peak ~3250 cm−1

is typically assigned to the former and the peak ~3450 cm−1 is often
attributed to the latter. Ibiointerf acial water can be readily fit by a sum of
these two peaks (Fig. 4c), supporting its water origin. Compared to the
bulk water or hydration water around alcohols whose A3250/A3450 > 1,
the area ratio of A3270/A3460 ~ 0.17 is markedly smaller in biointerfacial
water, characterizing amore liquid-like structure.Moreover, these two
populations have been associated with TOP =0.78 (mostly with 4
hydrogen bonds) and TOP =0.52 (mostly with 3 hydrogen bonds),
respectively52,53,63–65. Applying the relativeweights of 0.17 and 1 to these
twopopulations, an averagedTOP canbe calculated as 0.56 (very close
to the analysis above) for biointerfacial water which shall have an
average of 3.1 hydrogen bonds.

Onemay take closer lookwhen interpreting themolecular basis of
the spectral change of O-H stretch66,67. It is noted that the observed
suppression of the 3250 cm−1 band relative to the 3450cm−1 band
might not only signify a transformation towards a weaker hydrogen-

bonding network in the vicinity of biomolecules but could also reflect
reduction in the collective vibrational coupling within the water
matrix. Such change lessens the delocalization of vibrational energy
across multiple water molecules, potentially leading to decreased
spectral response at 3250 cm−1 and a blue-shift in the central frequency
of the O-H stretch, compared to bulk water. Isotopic dilution techni-
ques, which have been effective in differentiating between the impacts
of hydrogen-bondingperturbation and vibration coupling in studies of
ion-induced and hydrophobic hydration shells, face considerable
challenges in cellular context68,69. Despite the complexity of molecular
basis of spectral change, both the weakening of hydrogen bonds and
the reduction in vibrational coupling converge on a consistent struc-
tural theme: a more disordered structure in biointerfacial water.

Interestingly, we also observed a small peak around 3650 cm−1 in
some cells (Fig. 4d). This high-frequency peak is often attributed to
non-hydrogen-bonded free (dangling) O-H group, a common spectral
feature of hydrophobic hydration47,70,71. While the peak position here is
similar to that of dangling O-H in the hydration shell around small
hydrophobic alcohols, its peakwidth (~90 cm−1) is significantly broader
(Fig. S12), suggesting higher heterogeneity of intracellular
environment.

Whole-cell model of biointerfacial water: one water layer
hydrating cellular proteins
It is constructive to analyze the molecular origin of the detected
biointerfacial water. Many species of small electrolytes exist inside a
live cell (Table S1). It has been observed that monovalent cations such
as Na+ and K+ have a negligible effect on the O-H stretching band of
hydration shell68,72. Regarding anions, phosphate is the most dom-
inating species. However, most phosphates are associated with mac-
romolecules as organic forms. The rest of the phosphate is in free form
(indicated as Pi), estimated at 40mM.Given the total amount of anions
(60mM, including Pi, Cl− and HCO3

−), the affected water population is
estimated to be 240mM, assuming there are four water molecules in
the hydration shell per anion. Hence, mobile electrolytes can only
account for a small fraction of the biointerfacial water (~1.4M). The
main contributor shall be macromolecules. Considering that proteins
constitute about 75% of dry weight of Hela cells and DNA/RNA only
accounts for ~10%38, we are prompted to build a model where bioin-
terfacial water is mostly located in the hydration shell of pro-
teins (Fig. 4e).

More quantitatively, we can estimate the thickness, D, of the
biointerfacial water in a single-cell as

Dbiointerf acial water =
Ninterf acial water per protein � VH2O

Solvent accessible surface area
ð2Þ

in which N is the average number of interfacial water molecules
associated with one globular protein, calculated as the concentration
ratio (~1500) between biointerfacial water (1.4M) and globular protein
(0.94mM), VH2O is the volume of one water molecule (~30 Å3), and the
solvent-accessible surface area (SASA) is approximately 18,000Å2 for
an average humanprotein. Details of these estimations canbe found in
Supplementary Discussion 4 and Fig. S13, 14.

Equation (2) yields a thickness value of 2.6Å, corresponding to
just one molecular layer of water. Importantly, a view of short-range
protein hydration is emerging in the literature58,73–76. In particular, a
systematic computational study of the spatial range of protein
hydration reveals all investigated structural and dynamical properties
have exponential decay lengths of less thanonehydration shell58. Since
rotational ambiguity renders Raman-MCR algorithm to give the lower
bound for the abundance of biointerfacial water46, the combination
with the upper bound of just the first hydration shell (strongly sug-
gested by the computational study58) encourages us to quantify the
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biointerfacial water as one full water layer hydrating intracellular
proteins (Fig. 4e).

Single-cell water spectroscopy reveals invariance of
biointerfacial water
To gain general insights, single-cell studies are conducted among 57
HeLa cells and two other cell lines (mice RAW 264.7 macrophages and
HT22 neuronal cells, 46 cells in total). While the measured protein
concentration shows a wide range of distribution, biointerfacial water
is surprisingly conserved. First, its abundance levels are very similar
across three cell types and each display a tight distribution (Fig. 5a, b):
3.1 ± 0.3% (HeLa cells), 3.4 ± 0.4% (RAW 264.7) and 3.3 ± 0.3% (HT22).
Second, the structural parameter TOP, as deduced from the average
frequency ofO-H, is bound to amean value ~0.56 for all three cell types
(Fig. 5c). Third, spectral shape of Ibiointerf acial water bears similarity

among different cells, as indicated by the strong linear correlation
(Fig. 5d) between the 3270 cm−1 peak and the 3460 cm−1 peak. Hence, a
weakened hydrogen-bonded network and a lower TOP seem to be
general features for biointerfacial water. Fourth, the thickness of
biointerfacial water also exhibit a relatively narrow distribution among
individual cells and cell types. For HeLa cells, the thickness spreads
from half layer to nearly two monolayers of water, with an average
value of nearly onemolecular layer (Fig. 5e). Similar distributions were
observed in RAW 264.7 and HT22 cells (Fig. 5f). Hence, we uncover the
generality and invariance of biointerfacial water in living cells.

Discussion
Intracellular water structure had remained elusive. While vibrational
spectroscopy can interrogate the hydrogen-bonding network ofwater,
living cells present a formidable challenge for achieving the necessary
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selectivity. Specifically, how to avoid the complication of interfering
solutes and how to distinguish biointerfacial water from abundant
bulk-like water are two hurdles. The methods we employed here,
particularly quantifying cellular solutes after isothermal vacuum
dehydration and live-cell Raman-MCR spectroscopy, overcome these
challenges and thus open up experimental possibilities of interrogat-
ing water structure in vivo. Our present study attempts to obtain a
spatiotemporally averaged picture of intracellular water with a high
signal-to-noise ratio, as this will form the foundation of the missing
knowledge. This is why we built a whole-cell Raman micro-
spectroscopy instrument to integrate over time (~ 400 sec) and
space (probe volume > 10μm3, as opposed to ~0.1μm3 of standard
confocal Raman microscope) inside individual live cells. However, we
expect that our methodology can be extended to other vibrational
modalities with varying length and time scales77–79. Such explorations
promise to unveil water structure in vivo with high spatial (e.g.,
resolving various organelles) and temporal resolution.

Is intracellular water bulk-like or not? Two schools of thought
have persisted in the literature. The first perspective takes the notion
of macromolecular crowding (up to 40% of the cell’s volume is occu-
pied bymacromolecules80) into consideration, and suggests that most
water in cytoplasm behaves very differently from bulk water and little
to no “bulk-like” water is present within cellular environments19–21. In
fact, Pollack et al. state in the preface that “practically all cell water is
interfacial”22. Recent reviews further argued that, the average distance
between macromolecules in the cytoplasm is around 1 nm, corre-
sponding to just three to four molecular layers of water—which, based
on classical solvation theory, cannot be considered bulk-like23–25. On
the other hand, a series of experiments reported that water dynamics
in cells is largely similar to that of pure water with a small fraction
exhibiting slower dynamics8,10,14,18. Our result of intracellular water
composition clearly supports that intracellular water is largely bulk-
like. Note that our conclusion is basedon structural features probedby
vibrational spectroscopy, while the previous experiments relied on
dynamical observables. As different properties of water respond dif-
ferently to the presence of an interface81, this might account for the
different bulk-like percentage between our result (~97%) and the lit-
erature (80~90%)8,10,14,18. Different types of cells under investigation
could be another factor.

Then how to reconcile with the notion of macromolecular
crowding? First, macromolecular crowding is mainly an effect exerted
by large molecules on the properties of other large molecules. Small
molecules such as small solutes and solvents are less affected. Second,
a substantial fraction of the cell’s volume occupying by macro-
molecules does not necessarily lead to a close distance between
macromolecules, as the sizes of macromolecules themselves are gen-
erally large. Third, the actual distance between macromolecules in the
cytoplasmmight not be as small as believed (~1 nm). ForHeLa cells, our
Raman measurement indicates an average protein concentration of
1.87mM (Supplementary Discussion 4), very close to the reported
1.6mM by proteomics82. The average separation of proteins can be
calculated to be ~10 nm. Given the average 4-nmprotein size, the edge-
to-edge distance between proteins is thus ~6 nm. Hence, macro-
molecular crowding and largely bulk-like intracellular water can
co-exist.

Although biointerfacial water only occupies ~3% of the total
intracellular water, it would be mistaken to neglect its importance. It
can reach 1.4M, making it much more concentrated than the most
abundant electrolyte in the cell (K+ is only 0.1M). Besides its high
concentration, this population of water resides at biointerface to
interactwithmacromolecules,mediating or even governingmany vital
biological processes. Its crucial location is captured by our model
(Fig. 4e): averagely speaking, all the globular proteins inside live cells
are functioning underneath a full molecular layer of biointerfacial
water. Its thickness is an interestingmatter. In fact, the spatial range of

the protein-induced perturbation of water structure and dynamics has
been a contentious issue. Several studies support long-ranged per-
turbation in protein hydration shell16,83,84. In contrast, a NMR experi-
ment has indicated that the perturbation is short-ranged and mostly
limited to the first hydration shell73; a neutron scattering experiment
found less than two shells of water are dynamically affected by green
fluorescent protein in solution74; a recent chiral SFG study finds
structural perturbation persists only into the first hydration shell of
proteins76; a comprehensive simulation concluded that the solvent
perturbation is short-ranged as a consequence of the high energy
density of bulk water, with all investigated structural (including TOP)
and dynamical properties having exponential decay lengths of less
than one hydration shell58. Therefore, our result of biointerfacial water
surrounding the globular protein with less than two molecular layers
(Fig. 5e, f) aligns well the short-range protein hydration picture. It is
remarkable for in vivo result to be corroborated by in vitro measure-
ment and computational results.

Vibrational spectrum of biointerfacial water in living cells is a key
finding of our study. It would be constructive to compare this in vivo
result with the protein hydration shell in vitro. Unfortunately, although
SFG spectroscopy has been applied to study interfacial proteins85,
vibrational spectraof proteinhydration shells are relatively scarce, and
concerns have been raised regarding the impact of air/water interface
on structure and charge profile of protein86. Nevertheless, molecular
dynamics simulations have provided useful references, albeit without
full spectra. The mean TOP of the hydration shell of an antifreeze
protein is ~4% lower than that of bulk water57. TOP around a globular
protein, 1A4V, is lower than that of bulk water, by about 8%59. TOP
averaged over the first shell of small globular proteins is 4.4% smaller
than in bulk water with positive (8.5%) and zwitterionic (13%) residues
giving rise to the largest reduction58. Hence, our result of lower TOP
(about 14% compared to bulkwater) of the biointerfacial water in living
cells is in semi-quantitative agreement with these simulations. More-
over, the averagenumber of hydrogenbonds formedbyfirst hydration
shell water molecules has been computed to be 3.1~3.276, which agrees
well with 3.1 hydrogen bonds estimated for biointerfacial water.

Importantly, vibrational spectra of biointerfacial water are very
similar among three distinct cell types as well as different individual
cells (Fig. 5 and Fig. S15). Even considering the averaging effect over all
proteins inside cells, such spectral invariance might still be surprising,
because the hydration structure results from a complex (in a non-
additive manner) interplay between nanometer-scale chemical het-
erogeneity and surface topology of macromolecules87–89. In fact,
simulations have observed broad distributions and heterogeneous
character of protein hydration shell90,91. Whether the protein surface
topography and chemical heterogeneity have evolved to produce the
invariant character of biointerfacial water is an interesting question
and remains to be determined.

Methods
Home-built whole-cell confocal Raman micro-spectroscopy
The schematics of our home-built whole-cell confocal Raman micro-
scope are shown in Fig. 1a. A 532 nm laser (Samba 532 nm, 400mW,
Cobolt Inc.) is used as the light source. The laser beam was first colli-
mated and expanded by telescope lenses [L1 (f = 40mm), L2
(f = 300mm), Thorlabs] to achieve the designed illumination spot size.
The expanded beam was then directed to an inverted microscope
(IX71, Olympus) installed with a dichroic beamsplitter (LPD1, LPD02-
532RU-25, Semrock). A microscope objective (UplanSApo ×20,
N.A. = 0.75, Olympus) was underfilled, and the resulting illumination
spot had a dimension of ~2 µm×2 µm× 10 µm inside living cells. The
emitted Raman signal first passed a pinhole (PH, 40 µm, Thorlabs) for
background suppression and was relayed by two lenses (L3, L4,
Thorlabs) before being projected to the spectrometer (Kymera 328i
with 600 lines/mmgrating blazed at 500 nm, Andor). A long-pass filter
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(LP, LP03-532RU-25, Semrock) was installed between the relay lenses
to block laser light from Rayleigh scattering. Raman signal was then
collectedby an EMCCD (Newton970, Andor). For brightfield imaging, a
long-passdichroic (LPD2, FF511-Di01, Semrock)was installed in front of
the pinhole, and a set of relay lenses (L5, L6) were used to project the
brightfield images to the CMOS camera (DCC1645C, Thorlabs). A
short-pass filter (SP) was installed to suppress ghost images. All the
data collection was performed with a custom LABVIEW program
(National Instruments). Prior to the preprocessing procedures, the
spectrawere calibrated by 1:1mixture of acetonitrile and toluene taken
on the same day.

Estimation of illumination volume
The diffraction-limited spot sizes, both laterally and axially, are cal-
culated using a simplified equation derived from the more complex
Airy disk formula. In our experimental setup, with a wavelength (λ) of
532nm, and an effective numerical aperture (N.A.) ranging from 0.3 to
0.4, determined by the beam’s dimensions at the objective lens’s back
aperture (20×, air), we estimated the confocal volume to be
~2μm×2μm× 10μm.

dxy =
1:22 * λ
N:A:

= 1:6 ∼ 2:2½ �μm

Z =
2 *n * λ

N:A:ð Þ2
= 6:65 ∼ 11:8½ �μm

Baseline correction in spectra data
Thebaseline correctionwasperformedby subtracting the background
intensity at 3600 cm−1, without applying further corrections or
normalization.

Spectral analysis
Details of Raman-MCR analysis can be found in Supplementary Dis-
cussion 5 and Fig. S8.

Cell culture
HeLa, RAW 264.7 and HT22 cells were cultured in Dulbecco’s Modified
Eagle’s medium (DMEM: 4.5 g/L glucose; 11965, Gibco) supplemented
with 10% Fetal bovine serum (FBS; 16000, Gibco) and 1% antibiotics
(Penicillin-Streptomycin-Glutamine; 10378016, Gibco). Cells were
maintained at 5% CO2 at 37 °C. Cells were first seeded onto the petri
dish (14mm glass bottom precoated with poly-lysine; P50GC1.514 F,
MatTek Corporation), and then cultured for 12 h before experiments.
Then cells were washed with DPBS (14040, Gibco) and immediately
used for Raman spectroscopic measurements at room temperature
within an hour. The laser power on sample was tuned in the range of
20-50mW. Acquisition time ranged from 300 s to 400 s. For vacuum-
dehydrated cells, cells (seeded on a petri dish) were first washed with
DPBS and put into a vacuumdesiccatorwithout any additional fixation
for 2–7 days. For osmotic pressure experiments, HeLa cells (seeded on
a petri dish) were first washed with DPBS, and the imaging media was
replaced with sugar solution (300mM Mannitol) or deionized (DI)
water to control the water flow through the cells. The hypertonic
solution causes the cell body to shrink, and the hypotonic solution
causes the cell to swell and eventually burst. Under the hypertonic
condition, Ramanmeasurements were taken with a 60× objective lens
to maintain the confocal volume inside the cells.

Materials
N-Methylacetamide (Sigma #26305); Butylamine (Sigma #471305);
Dimethyl Sulfoxide (VWR #VN182); Tetrahydrofuran (Sigma #401757);
Chloroform (VWR BDH1109); Dichloromethane (Sigma #270997); BSA
(Sigma #A9418).

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The data that support the findings of this study are available from the
corresponding author upon request, and are provided in the Source
Data file. Source data are provided with this paper.

Code availability
The source code for data analysis and example data for testing is
publicly accessible at GitHub repository [https://github.com/
Sonya922/MinLab_CellWaterRamanMCR].
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