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Type 1 polyketides are a major class of natural products used as antiviral,

antibiotic, antifungal, antiparasitic, immunosuppressive, and antitumor drugs.
Analysis of public microbial genomes leads to the discovery of over sixty
thousand type 1 polyketide gene clusters. However, the molecular products
of only about a hundred of these clusters are characterized, leaving most
metabolites unknown. Characterizing polyketides relies on bioactivity-guided
purification, which is expensive and time-consuming. To address this, we
present Seq2PKS, a machine learning algorithm that predicts chemical struc-
tures derived from Type 1 polyketide synthases. Seq2PKS predicts numerous
putative structures for each gene cluster to enhance accuracy. The correct
structure is identified using a variable mass spectral database search. Bench-
marks show that Seq2PKS outperforms existing methods. Applying Seq2PKS
to Actinobacteria datasets, we discover biosynthetic gene clusters for mon-

azomycin, oasomycin A, and 2-aminobenzamide-actiphenol.

Natural products are important sources for drugs, and currently, ~51%
of clinically approved small molecules are inspired or derived from
natural products, or unaltered natural products'. Polyketides are a
significant class of metabolites that are used as antiviral®, antibiotic**,
antifungaP’, antiparasitic®, immunosuppressive’, and antitumor® drugs.
For example, ivermectin, a derivative of avermectin, was recently
approved for treating river blindness. Ivermectin’s discovery led to the
2015 Nobel Prize in Physiology or Medicine for its discoverers. The
growing resistance to certain anti-infective drugs is a growing threat
to human health, highlighting the urgent need to discover and develop
compounds. Discovering polyketides can assist in the treatment
of future epidemics’, parasite outbreaks'’, and the emerging anti-
microbial resistance crisis".

Modular Type I Cis-AT polyketides (MT1PK) are a major subtype of
polyketides, mainly produced by bacteria. They include antibiotics
such as rifamycin'?, antifungals such as amphotericin B®, and antic-
ancer agents such as rapamycin'. In microbial genomes, polyketide
biosynthetic machinery for a given polyketide is a specific set of
enzymes whose coding genes are co-located in a region called a bio-
synthetic gene cluster (BGC). A modular Type | Cis-AT polyketide
synthase (MT1PKS) consists of various modules, each responsible for
synthesizing a specific chemical substructure in the core structure of
an MTIPK. Each module comprises an acyltransferase (AT) domain
responsible for recruiting initial substrates to an acyl carrier domain
(ACP), and other domains within each module can further modify this
substrate to form the mature substructure. Substructures attached to
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ACPs of neighboring modules are connected by ketosynthase (KS)
domains in a modular assembly pathway, where starting from the
substructure produced by the first module, each subsequent module
extends the polyketide chain by adding a substructure and passing it
to the next module as ACP-tethered intermediates. The last module
contains a thioesterase (TE) domain that releases the polyketide core
structure from the MTIPKS as a cyclic or linear product. Tailoring
enzymes then catalyze post-assembly modifications of the MTIPKS
product into a mature bioactive molecule™®,

Based on this biosynthetic logic, predicting the chemical structure
of polyketides from their BGCs is a challenging task that involves (a)
annotating PKS domains and enzymes, (b) predicting substrates from
AT domains and other domains present in each module, (c) predicting
the order of substrates in the polyketide assembly pathway, and (d)
applying corresponding post-assembly modifications to the polyke-
tide core structures based on identified modification genes. Over the
past two decades, various methods have been developed for polyke-
tide genome mining and chemical structure prediction. However,
existing methods are not able to accurately predict the structure of
mature polyketides from BGCs due to the complex post-modifications.
Notably, methods like PRISM" and the Genomes to Natural Products
(GNP) platform’® generate a large set of potential structures from PK
BGCs, and then map them to mass spectrometry data. However, these
methods require full structural information of the characterized
polyketide metabolites.

The existing approaches for predicting the substrate specificity of
AT domains in Cis-AT PKSs are based on analyzing an amino acid motif
adjacent to each domain’s active site (referred to as signatures)”.
These methods mainly utilize nearest neighbor search or support
vector machines to predict the specificity of domains by training on
domains with known specificity. While these approaches outperform
traditional methods based on the global homology of catalytic
domains, they fail to classify ones that lack close homology.

During the biosynthesis of Cis-AT polyketides, the arrangement of
genes in the assembly pathway often deviates from their linear order
(e.g., non-colinear) on the polyketide synthase (PKS) BGC. The state-of-
the-art SBSPKS method introduced by Khater et al.” utilizes reference
docking domain structures and calculates the raw affinity score for
pathway predictions. This approach suffers from several limitations: (i)
the algorithm assumes that the structure of the reference docking
domains can be applied to other docking domains, which is often not the
case, as demonstrated by several studies*?; (ji) this method results in a
large number of tied ranks in the prediction results, complicating the
selection of top candidates; (iii) the output of the method is a raw score,
making its reliability difficult to interpret. Also, these methods overlook
the fact that the gene order in BGCs is typically mostly preserved in the
final polyketide assembly pathway. For instance, among the 27 non-
colinear BGCs of type I polyketide synthases (T1PKS) examined in MiBiG,
19 differ from the genomic order by merely one gene.

Finally, predicting the function of tailoring enzymes and applying
the post-assembly modifications governed by these enzymes is a cru-
cial step for accurately predicting the structure of mature polyketides
from BGCs. However, current tools such as PRISM" only account for
modifications responsible for the cyclization of the constructed core
structures, omitting other complex modifications for the sake of sim-
plicity. Consequently, this method fails to accurately predict com-
pounds that closely resemble the correct compounds among T1PKS-
BGCs in MIBIG. Prior methods such as SBSPKS* and SEARCHPKS*
construct a database of modification domains and their corresponding
tailoring modifications for predicting the core structure of polyketides.
In that case, the drawback is that the database size is limited.

Here, we introduce Seq2PKS, a machine learning method to
streamline the process of polyketide discovery based on large mass
spectral and genomics datasets collected from various microbial iso-
lates. Seq2PKS improves the domain specificity prediction by using an

extra-tree-based classification algorithm, which can classify domains
that are not a close homolog of any known domain. In addition,
Seq2PKS distinguishes itself by utilizing a rule-based methodology that
effectively considers the complex transformations performed by other
domains within each module to generate precise predictions of chain
elongation structures. Moreover, Seq2PKS uses an approach for pre-
dicting the assembly pathway of Cis-AT polyketides by incorporating
the gene order in the genome. Compared to other methods, the
Seq2PKS method used for assembly pathway prediction includes 90
training samples in the database, which allows the algorithm to
accommodate different docking domain structures. Furthermore, the
algorithm assigns a probability to each order, which avoids ties and
provides interpretability.

Seq2PKS enhances structure prediction reliability by incorporat-
ing a more comprehensive tailoring modification database and uses a
graph-based approach for searching reaction sites and applying
modifications to the constructed core structure of mature com-
pounds. In contrast to the existing methods that predict a single
molecular structure per BGC, resulting in low accuracy”**, Seq2PKS
generates up to millions of molecular structures per BGC and then
ranks those structures by searching against paired mass spectrometry
data, allowing for enhanced accuracy and comprehensive analysis of
the polyketide structures. In addition, Seq2PKS uses a variable mass
spectral database search to identify polyketides even when a mis-
predicted chain extension substrate or modification exists.

Results

Seq2PKS overview

Figure 1 illustrates the Seq2PKS pipeline, which includes the following
steps described in the method section: (a) annotating polyketide
domains and enzymes by genome mining, (b) predicting substrate
specificity of domains, (c) predicting the assembly order of catalytic
steps for building the core structure, (d) incorporating post-assembly
modifications, and (e) searching mature structures against mass
spectral data using Dereplicator+>.

Datasets

Datasets of 624 Cis-AT domains with known substrate labels from
polyketide BGCs** were used to train the substrate specificity predic-
tion models. 175,201 unlabeled AT domains from antiSMASH-DB*
were used to further refine the model. A dataset of 90 Cis-AT BGCs
with annotated pathways from Blank et al.” was employed to train the
assembly order prediction model. To compare the performance of
Seq2PKS with other tools, the chemical structure of 80 Cis-AT poly-
ketides along with reported Tanimoto similarity was obtained from the
literature search.

Benchmarking the accuracy of substrate specificity prediction
For each AT domain in our training data, we extracted 24 active site
residues reported by Yadav et al.”” by aligning the protein to a refer-
ence using MUSCLE?® sequence alignment. These residues were then
one-hot encoded as the input for various machine learning models.
To compare the prediction ability of each model when the testing
samples are different in the degree of dissimilarity with the training
data, we split the test data points into bins. The notation Bk+
represents the bin containing data points that are at least Kk Hamming
distance away from any training data points. To compare different
machine learning algorithms for Cis-AT domain specificity, we con-
ducted fivefold cross-validation using the 624 labeled training data and
reported the average resulting accuracy (Fig. 2). While most algorithms
exhibit similar accuracy in the overall category, the extra-tree algo-
rithm demonstrates better generalization (i.e., it attains higher
accuracies for bins that are far away from training domains
based on Hamming distance). The evaluation metrics are shown in
Supplementary Fig. 1. Generalizability is an essential requirement for
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Fig. 1| The Seq2PKS framework. This process initiates with the microbial genome,
where (a) polyketide domains and enzymes are identified through genome mining
(M1-M13 Modules, AT acyltransferase, KS ketosynthase, DH dehydratase, KR
ketoreductase). Subsequently, b the specificity of the Cis-AT domains is predicted,
and the corresponding substrates are determined by combining these specificities
with other domains in each module (mal: malonyl-CoA; mmal: methylmalonyl-

CoA). Following this, ¢ the order of the assembly pathway is predicted to form the
initial core structure. This leads to (d) the incorporation of post-assembly mod-
ifications. Lastly, e the mature structures are compared against mass spectra using
Dereplicator+. The arrows illustrate the fragmentation process of the target
molecule, and peaks in the mass spectra corresponding to these fragments are
highlighted in red®.

analyzing BGCs, as the signatures of unlabeled AT domains are widely
variable, and a large portion of them are significantly distinct from the
training (labeled) data (Supplementary Fig. 2).

Seq2PKS utilizes a rule-based technique to predict the structure of
mature PK substrates (Supplementary Fig. 3). This prediction relies on
the specificity of the AT domain and the functionality of other domains
within each biosynthetic module, which has been extensively discussed
in prior work****. Seq2PKS also identifies inactive domains and takes
them into account for accurate prediction of the mature substrates.

Benchmarking the accuracy of assembly pathway order
prediction

In contrast to colinear Cis-AT PKSs, many non-colinear systems exist
where the order of substrates in the chain elongation assembly

pathway does not correspond with the order of genes on the BGC”. In
these non-colinear gene assemblies, some of the substrates in the
pathway differ from the order of genes by a series of inversions,
exchanges, and insertions (Supplementary Fig. 4).

To address this, Seq2PKS recruits a pairwise nearest neighbor
(PNN) search approach that utilizes the docking domain motifs at the
two ends of each gene to predict the correct assembly pathway (Fig. 3).
In addition, since the majority of adjacent genes in PK BGCs are con-
tinguous, Seq2PKS further rewards orders that preserve co-linearity.
Figure 4 illustrates the fivefold cross-validation accuracy of the PNN
method compared with DDAP, which employs a support vector
machine algorithm?”. As a benchmark dataset, we used docking
domain sequences from 90 BGCs reported in the DDAP paper. The
ROC-AUC curve for the PNN method is shown in Supplementary Fig. 5.
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achieves higher accuracy for testing samples that are dissimilar to the training
samples. b Confusion matrix for extra-tree prediction. The results are averaged
across five different shuffles (used in fivefold cross-validation) and rounded to the
nearest integer.

Fig. 3 | TIMPKs assembly order pattern. Many of the TIMPKs (Type 1 Modular
Polyketides) are non-colinear, i.e., the order of assembly of substrates is not the same
as the linear order of the modules on the PK genes. For non-colinear TIMPKs, we can
identify the true order of substrates by identifying docking domains at the beginning
(head) and end (tail) of modules that interact with each other. In the graph, the head
and tail that are in the same color represent cognate docking domains.

In this comparison, PNN resulted in higher accuracies for both colinear
and non-colinear BGCs. Also, PNN outperformed DDAP both with and
without the feature of rewarding co-linearity.

To compare our method with antiSMASH’s predictions for
assembly order, we selected all 27 non-colinear PKSs from our
benchmark dataset and predicted their assembly order using anti-
SMASH. Concurrently, we extracted Seq2PKS interaction scores dur-
ing our fivefold cross-validation for the testing samples using the best-
performing model for Seq2PKS, thus ensuring no sample overlap
between training and testing data. These interaction scores were then
employed to rank the assembly orders. Of the 27 non-colinear samples,
antiSMASH accurately predicted the assembly pathway for 20, while
Seq2PKS correctly predicted 25 (Fig. 4).

We also tested the efficacy of PNN on 19 reported BGCs that are
non-overlapping with our training data. Starting with the genome

sequences containing these BGCs, Seq2PKS first identifies the genes
and the docking domain sequences using HMM search before pre-
dicting the assembly order. For 14 out of 19 BGCs, Seq2PKS correctly
identified the pathway genes. Among these 14, Seq2PKS correctly
predicted the assembly order for 12 BGCs.

Benchmarking post-assembly modification module

Seq2PKS predicts the mature structure of hypothetical polyketides by
applying modifications corresponding to tailoring enzymes present in
their BGCs. Thus, we created a database of known polyketide tailoring
enzymes and their corresponding modifications by literature mining
and parsed them in a computer-readable format. Our format consists
of a motif (stored as a SMILES string) along with a series of graph
modifications (addition/removal of nodes and edges) that are applied
to the molecular structure if the corresponding motifs are
observed (Fig. 5).

Seq2PKS first annotates all the modification enzymes in the BGC.
Then, modifications corresponding to these enzymes are applied to
the core structures foreseen in the previous step. Combined with the
results of earlier steps, in 23 cases, Seq2PKS can correctly predict the
mature molecular structure starting from the BGC, excluding the
uncommon starter units (Table 1).

Benchmarking against PRISM and antiSMASH
To better evaluate the power of Seq2PKS, we benchmarked the overall
accuracy against the state-of-the-art methods PRISM" and antiSMASH
(antiSMASH is not designed to predict the final compound structures)®.
We obtained 80 known Cis-AT polyketide BGCs from MiBIG and cal-
culated the Tanimoto similarity between the predicted mature and true
structures. At a Tanimoto similarity threshold of 0.6, Seq2PKS found 13
molecules, while PRISM and antiSMASH identified two and zero mole-
cules, respectively (Fig. 6). At a Tanimoto similarity threshold of 1,
Seq2PKS found eight molecules, while PRISM and antiSMASH identified
zero molecules. Since antiSMASH predicts only hypothetical core
structures rather than mature polyketide compounds, a lower Tani-
moto similarity between antiSMASH results and the actual compounds
is expected. Moreover, Seq2PKS and PRISM predict multiple structures
per BGC (to be refined by mass spectrometry in downstream steps),
while antiSMASH predicts only one structure.

We further benchmarked versions of Seq2PKS that only consider
cyclization modification or cyclization along with primary sugar
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Fig. 4 | Comparison of pathway prediction accuracy between PNN, antiSMASH, and DDAP. The comparison is performed across (A) all 90 candidate BGCs and B 27
non-colinear BGCs in the dataset. In both scenarios, PNN outperforms DDAP and antiSMASH in accuracy. Note that for antiSMASH, only the rank one order is reported.

moieties (instead of all post-assembly modifications). Even these
incomplete versions of Seq2PKS outperform PRISM". At a Tanimoto
similarity threshold of 0.6, the first version can identify seven mole-
cules, and the second version can identify four molecules.

Searching predicted structures against mass spectra

We further search against paired genomics and mass spectral dataset
of Streptomyces strains available from GNPS using Dereplicator+ and
Variable Dereplicator+”. As a result, five polyketides were identified,
including nystatin (Supplementary Fig. 6), chalcomycin (Supplemen-
tary Fig. 7), salinomycin (Supplementary Fig. 8), aureothin (Supple-
mentary Fig. 9), and vicenistatin (Supplementary Fig. 10). Nystatin,
chalcomycin, and salinomycin do not have any uncommon starter unit,
so their exact structures can be constructed. Therefore, they were
identified through a Dereplicator+ search of hypothetical structures
against mass spectra in exact mode. Aureothin and vicenistatin possess
starter units, which the software cannot predict. Therefore, we relied
on a modification-tolerant search utilizing Variable Dereplicator+ to
identify them. Variable Dereplicator+ is a specialized version of Dere-
plicator+ that accommodates the absence of starter units by incor-
porating hypothetical mass shifts during the matching procedure.

Identification of BGC for monazomycin

By taking the genome sequence of Streptomyces NRRL B12432 as input,
Seq2PKS identified one long PK BGC and predicted 15 core structures
leading to 4,035,840 mature compounds. Variable Dereplicator+
search of these structures against the corresponding spectra resulted
in identifying a PK-spectrum match. Searching against the PubChem?®
database annotated this spectrum as monazomycin (Fig. 7). The pre-
dicted compounds correctly captured 23 out of 24 substrates involved
in constructing the monazomycin core structure. The missing sub-
strate is attributed to the absence of the corresponding module during
the HMM search process. Furthermore, the accurate post-modification
steps for compound construction were appropriately captured. Cur-
rently, there are no BGCs reported encoding for monazomycin bio-
synthesis, and we provide the plausible hypothetical biosynthetic
assembly for this metabolite through our developed pipeline (Fig. 7).
Experiments have demonstrated the effectiveness of monazomycin
against gram-positive bacteria®*2. Our results enable access to the

monazomycin BGC, which unveils opportunities for pathway engi-
neering to optimize production and generate analogs for structure-
activity relationship studies.

Identification of BGC for oasomycin A

The Seq2PKS application on the NRRL databases led to the identifi-
cation of Streptomyces NRRL ISP-5512 genome with a putative long PK
BGC. Seq2PKS generated 52 core structures, resulting in 9,845,760
mature compounds for this PK BGC. Searching the constructed mature
compounds by spectral dataset using Variable Dereplicator+, we found
one PK-spectrum match with a score of 46. We compared the matched
spectrum against the PubChem* database and observed a high simi-
larity to oasomycin A (Fig. 8). The predicted structure shares the
identical core structure as oasomycin A with its unusual pattern of
macrocyclization. Despite the initial failure to capture the cycloaddi-
tion modification during the compound construction process, it has
been successfully identified through the variable search algorithm.
Since no BGC has been reported for the biosynthesis of oasomycin A,
we hypothesize that the identified BGC is a putative BGC for the con-
struction of this fascinating natural product (Fig. 8).

Experimental validation of the monazomycin BGC

To further corroborate the BGC identified for monazomycin, we
extensively annotated the BGC (Supplementary Table 1). The annota-
tion results confirmed the necessary biosynthetic machinery to pro-
duce monazomycin.

We cultivated Streptomyces cinnamoneus NRRL B-24434 and col-
lected LC-MS/MS data on the butanolic extracts of its growth medium.
Comparison with the authentic standard in both retention time (Sup-
plementary Fig. 11) and tandem mass spectrometry data (Supple-
mentary Fig. 12) was consistent with monazomycin production by
Streptomyces cinnamoneus NRRL B-24434.

Identification of actiphenol variant 2-aminobenzamide-
actiphenol

We applied Seq2PKS to the Streptomyces actiphen genome available
through the University of Michigan Natural Product Discovery Core
and identified a long PK system with 55% similarity to the previously
proposed actiphenol BGC. Seq2PKS generated one core structure,
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Fig. 5| The list of PK modifications obtained in this study. We constructed this database in a computer-readable format by mining the literature for known BGCs from

the MIBIG database*’. The modification sites are highlighted in red. In each case, the

enzyme responsible for the modification is also shown.

resulting in 258 mature compounds for this PK BGC. By searching the
constructed molecules in a spectral dataset using Dereplicator+, we
identified two PK-spectral matches with scores of 21 and 28. We
extensively annotated the BGC for these molecules (Supplementary
Table 2) and compared it with the reported BGC for actiphenol from

MiBIG database (Supplementary Fig. 13). The former molecule is a
previously reported variant of actiphenol called Nong-Kang 101-G
(Supplementary Fig. 14)**, while the latter is an actiphenol congener in
which the cyclohexanone unit is substituted by a phenol moiety
(Fig. 9)*.
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Table 1| Seq2PKS identifies the correct compound structure of 23 BGCs

Compound name BGC ID Mass Starter unit Correct pathway rank # of Core structures Best Tanimoto similarity
4-Z-annimycin BGC0001298 331.40 False 1/2 30 1.0
Abyssomicin C BGCO000001 346.40 False 1/6 16 1.0
Chalcomycin A BGC0O000035 700.82 False 1/120 4 1.0
Chlorothricin BGC0O000036 941.46 False 1/120 128 1.0
Concanamycin BGC0O000040 692.90 False 1/720 16 1.0
Halstoctacosanolide A BGCO000073 845.12 False 1/5040 42 1.0
Herboxidiene BGC0001065 438.60 False 1/6 16 1.0
Lasalocid BGCO000086 612.80 False 1/5040 2 1.0
Methymycin BGC0O000094 469.62 False 1/24 2 1.0
Nystatin BGC0000115 926.10 False 1/720 80 1.0
Pimaricin BGC0O000125 665.70 False 4/120 32 1.0
Pladienolide B BGC0000126 536.70 False 1/24 15 1.0
Salinomycin BGC0000144 751.00 False 1/362,880 2 1.0
Spinosad A BGC0000148 731.97 False 1/120 15 1.0
Streptoseomycin BGC0001784 599.60 False Al 26 1.0
Tetrocarcin A BGC0000162 782.90 False 22/120 128 1.0
Ansamitocin P-3 BGC0O000020 635.15 True 1/24 8 0.69
Aureothin BGC0000024 397.43 True 1/6 2 0.58
Mycinamycin BGC0O000102 727.89 True 1/120 8 0.56
Phenylnannolone A BGC0000122 278.35 True (YAl 4 0.74
Soraphen A BGC0000147 520.70 True 1/2 2 0.46
Spinosad A BGC0000148 731.97 True 1/120 15 0.86
Vicenistatin BGC0000167 500.70 True 2/24 30 0.72

For compounds with uncommon starter unit, Seq2PKS can recover the compound structure except for the starter unit.
The column # of Core Structures shows how many theoretical core structures are being generated by Seq2PKS. The top compounds do not have starter units, while the bottom ones have.

Threshold

201 —— seq2PKS
—— Seq2PKS-basic-sugar
Seq2PKS-cyclization
151 — PRISM 4
—— antiSMASH

10 4

T T
1 0.9 0.8 0.7 0.6 0.5
Tanimoto Coefficient Thresholds

# of Compounds with Tanimot Coefficient >

Fig. 6 | Tanimoto similarity coefficient between the mature compounds pre-
dicted from 80 MiBIG BGCs. Seq2PKS-cyclization and Seq2PKS-basic-sugar
represent versions of Seq2PKS that only consider cyclization, or cyclization plus
addition of basic sugars as post-translational modifications, respectively. The
similarity is obtained from Skinnider et al. Note that Seq2PKS and PRISM generate
multiple structures per BGC (which are further refined using mass spectrometry
data), while antiSMASH generates a single core structure (solely based on
genomics data).

The actiphenol molecule was isolated as a yellow solid with a
molecular formula of C,,H,3N50s, derived from an HRESIMS ion peak
of C5,H55N305 [M-H]™ (m/z: found 408.1455, calcd 408.1559; NMR data
for the molecule is shown in Supplementary Figs. 15, 16, 17, 18, 19, 20
and Supplementary Table 3). Careful analyses of the 1D and 2D NMR
spectra confirmed the actiphenol moiety, however, the C-4 methyl
group is absent. Instead, we observed a methylene (6;=4.30) at C-15
(6c=45.9) that correlates with (6-=136.9), C-5 (6c=127.6), and an
aromatic carbon C-16 (chemical shift of (6-=149.9) atypical of the

actiphenol spin systems. Further examination revealed the presence of
an additional aminobenzamide moiety attached to the actiphenol
through an N-C bond. The HMBC correlations between the triplet H-18
(6y=7.23)/C-16 (6c=149.9) and the doublet H-20 (6y=7.61)/C-16
(6c=149.9) and C-22 (6.=171.9) confirmed the relative position of the
secondary amine (6y=7.23) and the primary amide on this aromatic
ring. Based on its structure, we named this molecule 2-
aminobenzamide-actiphenol (Supplementary Fig. 21).

We tested the molecules against two cancer cell lines, SW-48
(CCL-231, colon cancer) and HCT15 (CCL-225 colon cancer), based on
the initial strong cytotoxic activity observed (Supplementary Fig. 22)
from the crude extracts generated by the producing strain (Strepto-
myces actiphen) during the initial isolation. However, the isolated
molecule 2-aminobenzamide-actiphenol did not show appreciable
activity upon isolation and characterization (Supplementary Fig. 23).

Discussion

This study presents Seq2PKS, a machine learning approach aimed at
enhancing the process of polyketide discovery. Seq2PKS utilizes large-
scale mass spectral and genomic datasets generated from diverse
microbial isolates. Seq2PKS addresses various complexities involved in
predicting and characterizing polyketide structures from biosynthetic
gene clusters. By constructing an extensive tailoring modification
database and applying it to the cyclized core structure, Seq2PKS
achieves the correct mature structure for 16 molecules. In the case of
polyketides with uncommon starter units, Seq2PKS successfully
recovers the compound structures for seven molecules, with the
exception of the starter units.

In addition to genomic-driven structural predictions, Seq2PKS is
also an automated method that integrates the power of metabolomics
(mass spectrometry) with the genomics data for scalable polyketide
identification. Searching the paired genomics and metabolomics
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applied to the core structure to form hypothetical molecules. e Annotation of
monazomycin’s spectrum using the Dereplicator+ model. Fragments of mon-
azomycin matching a peak in the spectrum are highlighted. f The annotated
spectrum of monazonmycin with peaks matching fragment masses is shown in red.

dataset of Streptomyces strains with this feature, Seq2PKS correctly
identified three known polyketides that lacked starter units. Two
additional known polyketides with starter units were identified using
Dereplicator+ in variable search mode on the Seq2PKS outputs. In
addition, Seq2PKS identified potential BGCs for two polyketides,
monazomycin and oasomycin A, whose BGCs were unknown. Further,
Seq2PKS identified an actiphenol variant 2-aminobenzamide-
actiphenol that was missed by previous bioactivity-driven efforts due
to the lack of cytotoxic activity.

Polyketides, a significant class of natural products with numerous
compounds in clinical use, have a myriad of therapeutic applications.
However, accurately predicting their chemical structures can be chal-
lenging due to the intricacies of polyketide biosynthesis and the
occurrence of complex modifications and cyclization patterns.
Seq2PKS offers several innovative enhancements over the existing
methodologies. First, it utilizes an extra-tree-based classification
algorithm for domain specificity prediction, which improves the clas-
sification of domains that are not closely related to known ones. This
approach increases the accuracy of substrate specificity predictions
based on AT domain signatures.

Moreover, Seq2PKS introduces an innovative approach for pre-
dicting the assembly pathway. By considering the gene order in the
genome, Seq2PKS accounts for the similarities between substrate
order in polyketides and gene order in their BGCs, enabling more
precise predictions of the substrate order. Also, by calculating the
probabilities instead of predictions, Seq2PKS can evaluate multiple
candidates from the output result.

Post-assembly modifications constitute a crucial step in polyke-
tide biosynthesis that transforms the polyketide core structure into
mature, bioactive molecules. Existing methods, such as antiSMASH*,
are designed to predict the core structures, rather than the final

compounds, of various natural products. While PRISM" incorporates
post-modifications into its analysis, its focus is primarily on different
cyclizations, overlooking other complex modifications. In contrast,
Seq2PKS predicts multiple mature polyketide compounds by con-
sidering a range of potential modifications and refines these predic-
tions with mass spectrometry data. To do this, Seq2PKS relies on a
curated dataset of 78 enzyme-enabled modifications derived from the
literature. These modifications are stored as SMILES strings and graph
modifications and enable Seq2PKS to construct hypothetical struc-
tures of mature polyketides by applying diverse combinations of
identified accessory enzyme modifications. This holistic approach
broadens the chemical space explored and improves the accuracy of
predicted polyketide structures.

Compared to other methods, in AT domain specificity prediction,
Seq2PKS achieves over 94% accuracy, comparable to the accuracy for
antiSMASH. However, Seq2PKS improves prediction accuracy for AT
domain specificity by using an extra-tree-based model optimized to
achieve high accuracy for test data points that are far from training
data. For testing samples that are at least six Hamming distances away
from any training data points, Seq2PKS achieves an accuracy of 51%,
compared to 38% for antiSMASH. During the assembly line order
prediction process, Seq2PKS employs a logistic regression algorithm,
taking the docking domain sequences as input to predict the optimal
assembly pathway for candidate core structures. This method achieves
92% accuracy for non-colinear polyketide BGCs, while DDAP and
antiSMASH achieve 55% and 74% accuracy, respectively. Furthermore,
Seq2PKS uses a subgraph isomorphism algorithm to consider a more
comprehensive set of post-assembly modifications. Overall, Seq2PKS
correctly predicts eight out of 80 polyketides in the benchmark
dataset (16 if counting polyketides without PRISM result), while PRISM
and antiSMASH do not predict any of the polyketides correctly. The

Nature Communications | (2024)15:5356



Article

https://doi.org/10.1038/s41467-024-49587-1

i i 1 S i S 0 I R 0
(a) mmal mal mal mal mal mmal mmal mal mal mmal mal  mmalmmal mal mmal Tmal  mal mmal mmal

OH OH OH OH

Ks
@1
Ace
oKr
®on
® R

mmal o

=]
mal

OH OH

R e e AR

(c) WV\WWYW\W

(yLllthIOn

(d) (e)

C28H54010 551.37

OH OH

OH

OH

o o C34H60010 629.42 oH !
y . |
A ; o q HO N
)/\ \/\‘/\(\/S i
0=
o \H\(K)\‘ , /,4 ]

HO'

—> OH OH
NN P
HO /\L oHOHoH OH OH
() RS
¢ lxmxoo 397.24 / .
,
’/ OH OH AN oH
N\
HO/L\ OH OH OH OH o (\)H\‘ A
HO/\‘}T)\ L\)\%\;\‘\o ] Ho OHOMoH oH OH 0 HO,‘j/
o,—:<o ~ S HO™ Y A \O)K[/\/
— ‘ o,—:<‘\‘ |
C25H44010 505.30 J
C44H78015 847.55
gan 505,381 37629 42 705,47 84755 |||
I l P B 8 il

Fig. 8 | Identification of oasomycin A BGC by Seq2PKS. a Domains and modules
in the biosynthetic genes are identified. b Substrate specificity for each domain is
predicted. ¢ Assembly order is predicted, and the core structure is constructed by
using the predicted substrates for each module. d Corresponding modifications are

applied to the core structure to form hypothetical molecules. e Annotation of
oasomycin A spectrum using the Dereplicator+ model. Fragments of oasomycin A
matching a peak in the spectrum are shown in red (f). The annotated spectrum of
oasomycin A with matched peaks is shown in red.

highest Tanimoto similarity that PRISM and antiSMASH achieve are
0.65 and 0.30.

Seq2PKS integrates mass spectrometry data into the polyketide
discovery process. Mass spectrometry is a powerful tool for analyzing
metabolites produced by organisms. Currently, two types of tools
bridge metabolomics and genomic data. Correlation-based approa-
ches like NPlinker®, NPOmix®, and other metabolomics methods®
focus on linking gene cluster families (GCFs) with molecular families
(MFs) or spectra, based on co-occurrence of molecular features and
BGCs. Conversely, feature-based approaches like GNP'®, MetaMiner*°,
Seq2RiPP*, and NRPminer*’ strive to associate BGCs with mass spectra
by predicting the hypothetical structure of BGC products, followed by
in silico mass spectral database search. Seq2PKS is a feature-based
method that integrates metabolomics and genomics data capabilities
for the efficient and scalable identification of polyketides. By inte-
grating mass spectrometry data, Seq2PKS can identify polyketides
with unknown modifications and validate their presence in microbial
samples. Seq2PKS produces multiple molecular structures per BGC
and ranks them against paired mass spectrometry data, resulting in
increased accuracy and reliability of polyketide structure predictions.

Currently, there is no accurate method for predicting structures
of starter units. In contrast to other polyketide substrates, starter unit
structures are very diverse and can even be unique to specific poly-
ketides and their homologs. This makes it infeasible to design machine
learning models for accurately predicting the starter unit of polyke-
tides without overfitting to training data. To overcome this challenge,

Seq2PKS relies on variable mass spectral database search methods that
can identify the overall mass of the starter unit.

Actiphenol, a prominent member of the glutarimide-containing
polyketide family, has long been recognized for its role as a eukaryotic
translation inhibitor. Seq2PKS unveiled a variant of actiphenol, named
2-aminobenzamide-actiphenol, from Streptomyces actiphen. This
molecule diverges notably from classical actiphenol structures by
lacking a methyl group at C-4 and introducing both a methylene group
and an aminobenzamide moiety. Although initial tests revealed pro-
mising cytotoxic effects in crude extracts against colon cancer cell
lines, the isolated variant did not exhibit substantial activity in further
assays. Further studies are needed to explore the bioactive properties
of this compound.

The insights obtained from this study provide a foundation for
further exploration and advancement in the field of polyketide dis-
covery. We showed that Seq2PKS is a powerful tool for exploring the
immense potential of polyketides as sources of drugs. The ongoing
integration of advanced computational techniques, machine learning,
genomics, and mass spectrometry data enable continued innovations
in the discovery and development of polyketide-based therapeutics.

Despite the promising advancements brought about by Seq2PKS,
it faces limitations that warrant further attention. Firstly, while the
curated dataset of modifications is comprehensive, it is not exhaustive.
There may still be unknown or uncharacterized modifications in
polyketide biosynthesis that are not accounted for in the current
version of Seq2PKS. Secondly, the current approach only focuses on
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Fig. 9 | Identification of 2-aminobenzamide-actiphenol by Seq2PKS. a Domains
and modules in the biosynthetic genes are identified. b Substrate specificity and
mature substrate for each module are predicted. c Assembly order is predicted, and
the core structure is constructed by connecting the predicted mature substrates
for each module. d Cyclization and dehydroxylation modifications are applied

by two enzymes from the BGCs (shown in pink and orange, respectively). While
Seq2PKS cannot predict the presence of 2-aminobenzamide, it correctly predicts its

molecular formula from the difference between the precursor mass spectrum and
the total mass of the hypothetical molecule. e Fragments from the hypothetical
molecule (shown in black) that match a peak in mass spectra are highlighted
(shown in red). Fragments are generated by one or two rounds of fragmentation
of the hypothetical molecule. f The annotated spectrum of the hypothetical
molecule is shown in red.
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Cis-AT polyketides and might not accurately predict the structures of
other types of polyketides. Lastly, Seq2PKS pipeline relies heavily on
mass spectrometry and is limited by the availability and quality of this
data. These limitations highlight areas for potential improvement and
provide avenues for future research in the field of polyketide
discovery.

Methods
Seq2PKS mines the microbial genomes to identify BGCs, and predicts
millions of hypothetical molecular structures per BGC. Afterward,
these structures are searched against mass spectral data collected
from the extracts of microbial cultures using Dereplicator+*. These
steps are described below:
(a) Annotating PK domains and enzymes. The polyketide BGCs are
identified using antiSMASH*. Given a genome (or a set of con-
tigs), antiSMASH uses HMMER® to find enzymes that are specific
to PK gene clusters. The portion of the genome within 10,000 bp
upstream and downstream of these enzymes are defined as
polyketide BGCs. Seq2PKS detects domains and tailoring
enzymes in polyketide BGCs by searching for their hidden Markov
model profiles*.
Predicting substrates. Previous studies have shown that the
substrate specificity of AT domains is largely determined by
specific amino acid residues of the AT active site pocket*.
Therefore, for each AT domain, Seq2PKS extracts 24 active site
residues reported by Yadav et al.”” by aligning them to the refer-
ence sequences using MUSCLE sequence alignment®. These 24
active site residues were identified by analyzing the crystal
structure of E. coli FAS AT domain® and have proven to show
distinct patterns across different AT domain specificities.
Seq2PKS represents these signatures as one-hot encoded vectors,
where each amino acid maps to a unique twenty-dimensional
binary vector containing nineteen zeros and a single one. An
extra-tree-based model is trained to predict the domain specificity
based on these vector representations. The number of trees in the
forest is set to 150 and the max depth of the tree is set to 10 to
achieve optimal performance.
Following the initial substrate identification from an AT domain,
other domains within the same module, including ketoreductase
(KR), dehydratase (DH), and enoylreductase (ER) domains, can
modify the substrate further. Specifically, the KR domain cata-
lyzes the reduction of the substrate carbonyl group to a hydroxy
group. A DH domain then removes a water molecule from the
hydroxy substructure, leading to the formation of an olefin
substructure. Finally, an ER domain reduces the double bond
introduced by the DH domain, resulting in saturation of the
polyketide chain. This sequence of modifications contributes to
the remarkable structural diversity and complexity of polyketide
compounds. Based on this logic, Seq2PKS recruits a rule-based
approach (Supplementary Fig. 3) that predicts each substruc-
ture, i.e.,, modified substrate, using the substrate specificity of
the AT domain and the presence of substrate-modifying
domains in the module).
Predicting the assembly pathway. A single helical segment from
the C-terminal linker of one MTIPKS open reading frame (ORF)
and three helical segments from the N-terminal linker of the
subsequent MTIPKS ORF represent structures known as docking
domains which direct the interactions of neighboring MTIPKS
proteins in the assembly pathway*. An ORF can follow another
ORF in the assembly line only if the docking domain at the
C-terminus of the former MTIPKS ORF can interact with the
N-terminal docking domain of the latter MTIPKS ORF. Therefore,
interactions between docking domains can be used to infer the
order of ORFs in the assembly line. Seq2PKS calculates a docking
interaction score between terminal modules in a BGC. Each

(b)

(c)

module’s head (i.e., N-terminal) and tail (i.e., C-terminal) docking
domains are extracted as the first 100 amino acid residues from
the C-terminus and the first 50 amino acid residues from the N-
terminus, respectively. The head domain from the first module
and the tail domain from the last module of the MT1PKS pathway
are excluded.
For each head (tail) docking domain in the training set, Seq2PKS
calculates the BLAST bit-score between that head (tail) docking
domain and every head (tail) docking domain. The distance
between any two head-tail pairs is defined as the sum of the bit-
score between heads and between tails.
For each head-tail pair in the training set, n top-scored
interacting training pairs with the largest scores (denoted as
interacting neighbors), and the n top-scored non-interacting
training pairs (denoted as non-interacting neighbors) were
selected (n=3). Then, for each interacting/non-interacting
neighbor, the bit-score between the neighboring heads and
the input head, and the bit-score between the neighboring tails
and the input tail were used as features, resulting in 2n features.
We used 382 pairs of head and tail sequences from interacting
(consecutive) modules as positive training data points, and the
remaining 1622 pairs from non-interacting modules in the same
BGC were used as negative samples. 382 negative samples were
randomly selected from all the negative samples to balance the
training set. These training samples were used to train a logistic
regression model that predicts whether a pair is interacting.
Given a BGC, first the interaction scores between each pair of
head and tail from different genes in the BGC are calculated
using the trained model. Then, the candidate pathways are
generated by calculating all possible permutations of genes in
the BGC, and the overall interaction score for each pathway is
calculated as follows:

> St

peNon—adj

N

pathway =

>

peBackward

Z Sp' Wforward +

peForward

Sp' Wbackward
@

Where Non-adj, Forward, and Backward represent the set of gene pairs
in the pathway that are not adjacent, in forward order, and in backward
order in the BGC, respectively, S, is the interaction score of pair p.
Parameters Wrwara and Wiackwara are set to one by default. The can-
didate pathways are then ranked by their overall interaction scores
(Supplementary Fig. 24).
(d) Incorporating post-assembly modifications. Once the polyke-
tide core structures are synthesized, they undergo various post-
assembly modifications. These modifications are chemical altera-
tions driven by tailoring enzymes that affect the properties and
functionalities of the polyketides. Key modifications include the
addition or removal of phosphate groups (phosphorylation and
dephosphorylation)”’, the attachment of acetyl groups
(acetylation)*®, and the incorporation of sugar molecules
(glycosylation)*’. Seq2PKS predicts hypothetical structures of
mature polyketides by applying various combinations of mod-
ifications corresponding to the identified tailoring enzymes. To
this end, we extracted polyketide tailoring enzymes and their
corresponding modifications by literature mining and parsed
them in a computer-readable format (Supplementary Fig. 25). For
each modification, the reaction motif is stored as a SMILES string,
along with a series of graph modifications (addition/removal of
nodes/edges) that are applied to the motif.
Given a polyketide BGC, Seq2PKS extracts all the tailoring
enzymes in the BGC using HMMER. For each enzyme, it searches
for the corresponding motif in the core polyketides using the
Uliman algorithm®. Afterward, for each core structure, all the
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combinations of possible reactions are applied to the matched
motifs to generate candidate products. This approach generates
atotal of k x (my+1) x (m, +1) x ... x (m, + 1) hypothetical mature
polyketides, where k is the number of core polyketides, n is the
number tailoring enzymes, m,, is the number of motifs present in
the core polyketide for each enzyme.

(e) Searching mature structures against mass spectra using Dere-
plicator+ and Variable Dereplicator+. Seq2PKS searches the
hypothetical polyketide structures predicted in the previous steps
against mass spectral data using the exact search method Dere-
plicator+ and variable search method Variable Dereplicator+>.
Using variable spectral search with Variable Dereplicator+,
Seq2PKS can identify polyketides with unknown substrates and
modifications.

Cross-validation for machine-learning model
During the substrate specificity prediction and the assembly line order
prediction process, standard machine learning models are employed.
These models include Logistic Regression, Support Vector Machine, K
Nearest Neighbor, Multilayer Perceptron, Random Forest, Decision
Tree, Bernoulli Naive Bayes, Gaussian Naive Bayes, and Extremely
Randomized Trees. To ensure there is no sample overlap, fivefold
cross-validation is utilized, where the datasets are randomly split into
five subsets with the same number of samples. In each step, four of the
subsets are used for training, and the remaining one serves as test data.
Fivefold cross-validation offers a more accurate estimation of
model performance, particularly when the training data is limited. This
process is executed five times for each selected model, with the
dataset being randomly shuffled each time. The accuracies are calcu-
lated by averaging across these cross-validations.

Validation of monazomycin BGC

We cultivated liquid cultures of Streptomyces cinnamoneus NRRL
B-24434 in ISP2 medium for 7 days at 28 °C. The shaking speed is 220
rpm with a flask size of 1L and medium content of 100 mL. This was
followed by extraction of the broth with 1-butanol, rotary evaporation
of the 1-butanol extract, resuspension of the extract in 80% methanol,
followed by LC-MS/MS analysis. LC-MS data was collected on a Thermo
QExactive Orbitrap connected to a Vanquish LC system. LC settings
were as follows: injection volume 5 pL; Phenomenex Kinetex 2.6 pm
Cys reverse-phase 100 A 150 mm x 3 mm LC column; LC gradient, sol-
vent A, 0.1% formic acid; solvent B, acetonitrile (0.1% formic acid);
0 min, 10% B; 5 min, 60% B; 5.1 min, 95% B; 6 min, 95% B; 6.1 min, 10% B;
9.9 min, 10% B; 0.5 mL/min. MS settings were as follows: positive ion
mode; full MS, resolution 70,000; mass range 400-1200 m/z; dd-MS2
(data-dependent MS/MS), resolution 17,500; AGC target 1 x 10°, loop
count 5, isolation width 1.0 m/z, collision energy 25eV, dynamic
exclusion 0.5s.

Genome extraction, sequencing, assembly, and annotation

The genomic DNA for 44321-A2 was extracted using BIOSEARCH
Technologies MasterPure Complete DNA and RNA purification kit
following the manufacturer’s protocol with some modifications,
including additional lysis steps using EDTA (50 mM) and lysozyme
(10 mg/mL) and one more step of heat treatment at 95 °C before RNase
A treatment. The genomic DNA was sequenced at the University of
Minnesota, Genomics Center, Minneapolis, MN. The sample library
was prepared using PacBio Sequel Il HiFi—the SMRT Cell 8M typically
generates ~-4-5 million raw reads with flexible sequencing run times of
up to 30 h, yielding a 1.04 GB fastq file. Demultiplexing and quality
control were done using PATRIC service which obtained a total of
90,490 read pairs. The 44321-A2 was assembled using Canu version
1.7.1 and 2 rounds of polishing done as iteration using Racon version
2.4.13 as a part of the comprehensive genome analysis service at
PATRIC. QUAST version 5.0.2, minimap2 (2.17-r974-dirty), samtools

Version 1.11, and Bandage 0.8.1 with default parameters were used for
assembly quality assessment and visualization. The resulting assem-
bled genome has an estimated length of 8,799,402 bp and an average
GC content of 72.18%. Two contigs generated for this genome have
7647 protein-coding sequences (CDS), 68 transfer RNA (tRNA) genes,
and 18 ribosomal RNA (rRNA) genes. The annotation included 2918
hypothetical proteins and 4729 proteins with functional assignments.
The proteins with functional assignments included 1270 proteins with
Enzyme Commission (EC) numbers, 1111 with Gene Ontology (GO)
assignments, and 1007 proteins that were mapped to KEGG pathways.
Then the assembled contig FASTA file is used to extract the 16S frag-
ments with the help of ContEst16S tool at Ezbiocloud. Whole-genome
similarity metrics, including average nucleotide identity (ANI) and
DNA-DNA hybridization (DDH), were obtained to estimate genetic
relatedness and define phylogeny. FastANI showed 86% genome-
relatedness of our microbial strain genome to Streptomyces atratus
ASM333086v1 and Streptomyces gelaticus ASM1464953v1. A whole-
genome-sequence-based phylogenetic tree was built using the TYGS
analysis method further supporting the genetic closeness between
44321-A2 and the Streptomyces as mentioned above. The TYGS data-
base confirmed that 44321-A2 might potentially be an unknown spe-
cies and, therefore, named the strain Streptomyces actiphen based on
its ability to produce varied actiphenol analogs.

General NMR and LC-HRMS/MS materials and methods

Nuclear magnetic resonance (NMR) spectra were acquired utilizing
either a Bruker 600 NMR spectrometer (*H: 600 MHz, *C: 150 MHz)
featuring a Magnex 600/54 active shielded premium magnet, a Bruker
liquid N2 cooled Prodigy cryoprobe, and a Bruker NEO600 console, or
a Bruker 800 NMR (*H: 800 MHz, *C: 200 MHz) equipped with an
Ascend magnet with active shield, a 5mm triple-resonance inverse
detection TCI cryoprobe, and a Bruker NEO console. MestReNova NMR
software was employed for all NMR data analyses. Residual solvent
peaks were used as references for chemical shift values ['H (DMSO-dé6):
2.50 ppm; ®C (DMSO-d6): 39.51 ppm].

LC-HRMS/MS analyses of Biotage fractions, HPLC fractions, and
purified compounds were conducted using an Agilent 1290 Infinity II
UPLC coupled to an Agilent 6545 ESIQ-TOF-MS system operating in
both positive and negative modes. A Phenomenex Kinetex 1.7
Phenyl-Hexyl 100 A (2.1 x 50 mm) column was utilized for chromato-
graphy, with a 2 pL injection volume per sample. Samples were eluted
using a gradient starting with a 1 min isocratic wash step consisting of
90% A (95% H,0/5% MeCN with 0.1% formic acid) and 10% B (100%
MeCN with 0.1% formic acid), followed by a 6 min linear gradient step
from 10% B to 100% B, and ending with 2 min of 100% B wash at a flow
rate of 0.4 mL/min. The divert valve was set to MS for 0-7.4 min and to
waste from 7.4 to 9 min. The dual AJS ESI conditions were: gas tem-
perature at 320 °C, sheath gas temperature at 350 °C, sheath gas flow
rate at 11 L/min, and source capillary voltage at 3500 V. The mass range
of MS was set to 100-2000 my/z, with an acquisition rate of 10 spectra
per second. The mass range of MS/MS was set to 50-2000 m/z, with an
acquisition rate of 6 spectra per second and an isolation width of - 1.3
myz. The collision energy was calculated using the formula: collision
energy = (5 x m/z)/100 + 10. The maximum precursor per cycle was set
to 9, and the MS/MS mass error tolerance was +20 ppm. Reference
masses for positive mode were purine C;8H;8F,4N504P5 [M + H]" ion
(m/z 121.050873) and hexakis(1H,1H,3H-terafluoropropoxy)phospha-
zine C;8H;8F,4N;04P5; [M + H]" ion (m/z 922.009798), while for
negative mode, trifluoroacetic acid (TFA) C,HF;0, [M-HI (m/z
112.985587) and hexakis(1H,1H,3H-terafluoropropoxy)phosphazine
C;8H;8F,4N304P; [M + TFA - HJ (m/z 1033.988109) were used. ACS
grade solvents were used for Biotage fractionation, and HPLC grade or
better solvents were used for HPLC purification and LC-HRMS/MS
analyses, unless otherwise stated. All LC-MS/MS chromatograms,
extracted base peak chromatograms (BPCs), and UV traces at 254nm
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were subtracted from the chromatograms of the methanol (MeOH)
blank. GraphPad Prism version 9.4.1 for Mac OS X (GraphPad Software)
was used for data visualization and plotting.

Fermentation of Streptomyces actiphen

Streptomyces actiphen 44321-A2 was streaked onto R2YE agar con-
taining 5 g of yeast extract, 103 g of sucrose, 10 g of dextrose, 0.1g of
casamino acid, 0.25g of K,S0,, 10.12 g of MgCl, - 6 H,0, 5.73 g of TES
buffer, 2mL of trace element solution (containing 10 mg of
(NH4)6MO7024 -4H,0, 10 mg of Na,B,0,-10H,0, 10 mg of
MnC_2 - 4 H,0, 10 mg of CuCl, - 2 H,0, 200 mg of FeCl; - 6 H,0, 40 mg
of ZnCl,, and 1L of deionized water, filter sterilized), 10 mL of 0.5%
KH,PO,4, 4 mL of 5M CaCl, -2 H,0, 5 mL of 20% r-proline, 7mL of 1IN
NaOH, 25 pg/mL nalidixic acid, 10 pg/mL benomyl, 15 g of agar, and 1L
of double-distilled water. Plates were incubated for 5-7 days at 28 °C.
For the strain, 3 mL seed cultures in 14-mL dual-position cap tubes
were inoculated with a loopful of vegetative cells from R2YE plates and
incubated for 5 days at 28 °C, 200 rpm; 3 mL seed cultures were then
inoculated into 100 mL seed cultures in 250 mL baffled flasks and
incubated for 7 days at 28 °C, 200 rpm; 50 mL of seed cultures were
inoculated into 1L of fermentation media in 2.8 L baffled Fernbach
flasks and grown for 7 days at 28 °C, 200 rpm.

On day 7 of the fermentation, 25g of Amberlite XAD16 resin
contained within a polypropylene mesh bag was added to each fer-
mentation culture and agitated overnight at 28 °C, 200 rpm. On day 8,
all resin bags were removed and thoroughly washed with deionized
water to remove any water-soluble media components and residual
cell mass adsorbed on the resin bags. Each washed resin bag was
extracted with 250 mL of methanol (MeOH) and 250 mL of ethyl
acetate (EtOAc). The combined organic fractions were dried under
vacuum and redissolved in a minimal amount of MeOH. The solutions
were then centrifuged, and the supernatants were loaded onto C18
resin and dried under vacuum prior to Biotage C18 fractionation.

Purification of 2-aminobenzamide-actiphenol
Preparative RF-HPLC fractionation was performed using the same
Shimadzu LC-20AP system equipped with a reverse-phase Phenom-
enex Kinetex® 5pum C18 100A (250 mm x21.2mm) column. The
materials of strain Streptomyces actiphen (brought up in methanol at
~100-200 mg/mL) were eluted with a flow rate of 20 mL/min and a
linear gradient starting with a 2min isocratic wash step using 10%
acetonitrile/H,O (with 0.01% TFA), then a 30 min linear gradient step
from 10% acetonitrile/H,O (with 0.01% TFA) to 100% acetonitrile/H,O
(with 0.01% TFA), and then a 5 min wash with 100% acetonitrile/H,O
(with 0.01% TFA) followed by an 8 min equilibration with 10% acet-
onitrile/H,O (with 0.01% TFA). Less than 0.05 mg of the compound is
isolated per liter of broth.

Preparative HPLC (Prep HPLC) HF16-18 was fractionated using
40 minutes of an isocratic method with 33% acetonitrile solvent B in H,O
(both solvents A/B with 0.01% TFA) elution. The following compounds
were purified using the same semi-preparative system with a reverse-
phase Phenomenex Luna® 5 pm Phenylhexyl 100 A (250 mm x 10 mm)
column. 2-Aminobenzamide-actiphenol (-0.05 mg/L) was purified from
HF16-18 F24-28 using 30 min of an isocratic 35% acetonitrile/H,O (with
0.01% TFA) elution.

Compound entries

2-Aminobenzamide-actiphenol: yellow solid UV (MeOH) A, (log ¢€):
218 nm (8.9), 267 nm (6.1), 355 nm (3.35); Mp: 197-201 °C: 'H NMR (600
MHz, DMSO-dg): 6 2.17 (s), 2.39 (d, /=16.5, 10.7 Hz), 2.58 (d, /=16.5,
10.7 Hz), 2.58 (dd, /=16.5,10.7 Hz), 10.76 (s), 3.18 (d,/= 6.4 Hz), 3.18 (d,
J=6.4Hz), 2.62 (m), 2.39 (dd, /=16.5, 10.7 Hz), 4.30 (s), 4.30 (s), 8.47
(brs), 6.54 (t,/=7.5Hz), 6.69 (d, /J=8.4 Hz), 7.17 (br s), 7.23 (t,/=7.9
Hz), 7.45 (s), 7.61 (d, /=7.8 Hz), 7.82 (s), 7.86 (br s), 12.33 (s) *C NMR
(150 MHz, DMSO-dg): 6 112.1 (CH), 114.9 (C), 114.9 (CH), 118.7 (C), 127.0

(C),127.6 (CH), 129.5 (CH), 130.0 (C), 132.8 (CH), 136.9 (CH), 15.8 (CH,),
171.9 (C), 173.4 (C), 205.6 (C), 37.5 (CH,), 37.5 (CH,), 37.5 (CH,), 173.4
(C), 42.9 (CH,), 42.9 (CH,), 26.6 (CH), 37.5 (CH,), 45.9 (CH;), 45.9 (CH,),
149.9 (C) HRESIMS: lon peak of C5,H»,N305 [M-H] m/z: found 408.1455,
calcd 408.1559 (Supplementary Table 3).

Cell-based bioactivity analysis

HCT15 (CCI-225) and SW-48 (CCL-231) cells were purchased from ATCC.
All cell lines were Mycoplasma free and independently authenticated by
short tandem repeat profiling, performed by ATCC. Cells were grown
and cultured according to ATCC recommendations. HCTIS cells were
cultured in RPMI1640 (30-2001) supplemented with 10% FBS (30-2020).
SW-48 cells were cultured in Leibovitz's L-15 medium (30-2008) con-
taining 10% FBS. SW-48 cells were grown and treated in an incubator set
for atmospheric conditions (no supplemental CO, addition). For cell-
based assays, cells were expanded and frozen into single-use aliquots.
For each assay, cells were thawed at 37 °C for 1 min and then immedi-
ately resuspended in 10 mL of complete growth medium. Cells were
then spun down at 300xg for 5min and then resuspended in cell-
specific growth medium and plated at 2500 cells per well into Greiner
781080 white cell culture 384-well plates with a total volume per well at
40 pL. Natural product extracts or fractions were dissolved in DMSO at
15 mg/mL and delivered into the assay plates using Echo 655 acoustic
liquid handler instrumentation (Beckman Coulter). Extract and fraction
testing concentrations were at 0.25%. For primary screening assays,
extract testing was performed n=1 at 0.25% final extract testing con-
centration (where the original fraction is defined at 100%). Validation
assay and fraction studies were performed in triplicate at similar testing
concentrations. Negative controls (medium only plus matching 0.25%
DMSO) were included in columns 1 and 2. The positive control for these
studies was a 10 uM treatment with staurosporine in columns 23 and 24
of each assay plate. Samples were interrogated in wells AO3 to P22. The
high-throughput data software Mscreen was utilized for the primary hit,
validation selection, and analysis of concentration-response curve
results (1). Following compound addition, cells were cultured for 48 h at
either 5% CO, at 37 °C for HCT15 cells or atmospheric air at 37 °C for SW-
48 cells. Cell viability was measured using a CellTiter-Glo luminescent
kit (catalog no. G7571) from Promega as directed using a PHERAstar
instrument from BMG Labtech.

Estimating false discovery rate

The false discovery rate (FDR) is estimated with a target-decoy
approach. We select nystatin as the testing molecule. The target
database is generated by applying all the detected modifications to the
correct core structures. Decoys are generated via a fixed number of
edge-switching steps on target database molecules. The edge-
switching operation selects two edges in a graph and randomly
swaps their endpoints. To operate on molecules, we model a molecule
as a connected multigraph and enforce that there is only a single
connected component after an edge-switching operation. We gener-
ated decoys for the target database by applying 25 edge-switching
steps on each compound and filtering out generated decoys that
appear in the target database by InChiKey. The P value for all the
matching in the decoy and target database is shown in Supplementary
Figs. 22 and 23. Given a p-value threshold, let Ngecoy and Nearge: denote
the number of peptide-spectrum matches in the decoy database and
the target database, respectively. The FDR can be estimated as follows:

N
FDR = —9e& @)

target

Data availability
The MS datasets used in this study are publicly available from the GNPS
infrastructure under the following accession code: MSV00083738. The
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MS data for Streptomyces cinnamoneus NRRL B-24434 has been
uploaded to MassIVE under the following accession code:
MSV000094063. The MS data for Streptomyces actiphen has been
uploaded to MassIVE under the following accession code:
MSV000094894.

Code availability
Seq2PKS is available at https:/github.com/mohimanilab/Seq2PKS*.
The Seq2PKS server is available at https://run.npanalysis.org/.
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