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Aperiodic approximants bridging
quasicrystals and modulated structures

Toranosuke Matsubara 1, Akihisa Koga 1 , Atsushi Takano2,
Yushu Matsushita 3 & Tomonari Dotera 4

Aperiodic crystals constitute a class of materials that includes incommen-
surate (IC) modulated structures and quasicrystals (QCs). Although these
two categories share a common foundation in the concept of superspace,
the relationship between them has remained enigmatic and largely unex-
plored. Here, we show “any metallic-mean” QCs, surpassing the confines of
Penrose-like structures, and explore their connection with IC modulated
structures. In contrast to periodic approximants of QCs, our work intro-
duces the pivotal role of “aperiodic approximants”, articulated through a
series of k-thmetallic-mean tilings serving as aperiodic approximants for the
honeycomb crystal, while simultaneously redefining this tiling as a metallic-
mean IC modulated structure, highlighting the intricate interplay between
these crystallographic phenomena. We extend our findings to real-world
applications, discovering these tiles in a terpolymer/homopolymer blend
and applying our QC theory to a colloidal simulation displaying planar IC
structures. In these structures, domain walls are viewed as essential com-
ponents of a quasicrystal, introducing additional dimensions in superspace.
Our research provides a fresh perspective on the intricate world of aperiodic
crystals, shedding light on their broader implications for domain wall
structures across various fields.

Prior to the discovery of quasicrystals (QCs) as the advent of aper-
iodicity in materials science, incommensurate (IC) modulated struc-
tures and IC composite structureswere investigated,wherein IC spatial
modulations were added to the background crystalline structures1,2.
Then, the concept of superspace and additional degrees of freedom
known as phasons were introduced. After Shechtman’s discovery3,
aperiodic crystals, including IC modulated structures and QCs,
emerged as an important class of materials4–8. Aperiodicity is char-
acterized by irrational numbers, therebymaking a distinction between
the two. In QCs, the irrational numbers are locked by two-length
scales9–12 in geometry, whereas in IC modulated structures, these
numbers remain unlocked. QCs typically consist of concentric shell
clusters arranged quasiperiodically, locking in the golden mean in

icosahedral QCs. In certain alloys, such as Au-Al-Yb13, periodic
approximants are synthesized, where the clusters are arranged peri-
odically. Consequently, “periodic approximants” have been exten-
sively studied to gain abetter understandingofQCs.A crucial aspectof
periodic approximants is that they exhibit local quasiperiodicity
(resembling QCs), but globally display periodicity. Moreover, as the
degree of approximation increases, these periodic approximants
converge towards QCs14.

A complementary treatment has been explored where a quasi-
periodic structure approaches the periodic one by varying the char-
acteristic irrational. Such treatments are known as “aperiodic
approximants”15. An elementary example of aperiodic approximants is
the generalized Fibonacci sequence, which comprises two letters, A
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and B. The sequence is generated by the substitution rules:
A→AA⋯ AB( =AkB) and B→A, where k is a natural number. The num-
bers of the letters A and B at iteration n (NðnÞ

A and NðnÞ
B ) satisfy

Nðn+ 1Þ
A

Nðn+ 1Þ
B

 !
=

k 1

1 0

� �
NðnÞ

A

NðnÞ
B

 !
, ð1Þ

where the maximum eigenvalue of the matrix is given by the metallic-

mean: τk = ðk +
ffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 + 4

p
Þ=2. When k = 1, the sequence is the conven-

tional Fibonacci one with the golden mean. The eigenvector of the

matrix is given by ðτk ,1ÞT , indicatingNðnÞ
A =NðnÞ

B ! τk as n→∞, where the
sequence is filled with the letter A for large values of k. In the limit
k→∞, the sequence converges to a crystal consisting of consecutive
“A”s. Hence, the generalized Fibonacci sequence with the metallic
mean can be considered as the aperiodic approximants of the one-
dimensional crystal AAA⋯ .

Similarly, aperiodic approximants of triangular lattices were pro-
posed. These metallic-mean quasiperiodic tilings start from the

bronze-mean tilings11. The majority of tiles increase with increasing k,
and eventually, the systems converge to the triangular lattices in the
limit k→∞. A crucial aspect of these is that they are locally periodic but
globally quasiperiodic; in other words, they are considered planar IC-
modulated structures.

Here, we present hexagonal metallic-mean approximants of the
honeycomb lattice, which bridge the gap between QCs and IC modu-
lated structures. A schematic of our view is presented in Fig. 1. As the
metallic mean increases, the size of honeycomb domains bounded by
the parallelograms also increases, and the whole tiling converges to
the honeycomb lattice. Conversely, themetallic-mean ICmodulation is
introduced to the honeycomb crystals in terms of the metallic-mean
tilings. The domain walls composed of parallelograms in the honey-
comb crystal are regarded as ingredients of a quasicrystal adding
superspace dimensions. Significantly, we show that the metallic-mean
tiling scheme is applicable to a polymer system16 and colloidal
systems17,18 in soft-matter self-assemblies.

Results
Metallic-mean tilings
We construct the metallic-mean approximants of the honeycomb lat-
tice, which are composed of large hexagons (L), parallelograms (P),
and small hexagons (S) shown in Fig. 2a. The ratio between the long (ℓ)
and short (s) lengths is given by the metallic-mean τk( = ℓ/s). Conse-
quently, the ratio of areas for the three tiles is given by 3τ2k : τk : 3. We
elaborate the substitution rules for these tiles as a natural extension of
those for the hexagonal golden-mean tiling12 (Fig. 2b). The substitution
rules for k = 2 and k = 3 are illustrated in Fig. 2c, d respectively. The
details of the substitution rules are shown in Suppl. Note 1. Notice that
thematching rule of the tilings is introduced by solid and open circles.
When the deflation rule is applied to an L tile, an S tile is generated at
the center of the original L tile, thereby, six zigzag chains of P tiles
emanate from the central S tile, which is clearly found in the case with
k = 3. The rest of the region is filled with L tiles. Upon one deflation
process, a P tile is changed to one P tile and L tile, and an S tile is
changed to one L tile. Hence, one can construct the substitution rules
of three tiles for any k, which are subjected to the substitution rule for
the generalized Fibonacci sequence: ℓ→ ℓks and s→ ℓ. See also Suppl.
Fig. 1 showing how these rules are extended to the cases of k = 4
and k = 5.

HoneycombMetallic-mean modulationMaxmal modulation

Golden-mean QC kth metallic-mean QC Crystal

ABAABABAABAAB ABAAAABAAAAAB AAAAAAAAAAAAA

Fig. 1 | Aperiodic approximants. Schematic showing the role of aperiodic
approximants as a link between quasicrystals and periodic crystals. The link is a
series of k-th metallic-mean tilings as an aperiodic approximant of the honeycomb
crystal (top arrow), which is simultaneously regarded as a metallic-mean (incom-
mensurate) modulated honeycomb crystal (bottom arrow). Strings consisting of A
and B represent the generalized Fibonacci sequences.

Fig. 2 | Metallic-mean tilings. a Large hexagons (L), parallelograms (P), and small
hexagons (S) with edge lengths ℓ and s. Vertices are decorated with open and solid
circles alternatively to introduce the matching rule of the tiling. b–d Substitution
rules for the golden-mean tiling (k = 1)(b), silver-mean tiling (k = 2)(c), and bronze-
mean tiling (k = 3)(d). e Golden-mean tiling. f Silver-mean tiling. g Bronze-mean

tiling. hHoneycomb lattice. i Frequencies of L (blue), P (red), and S tiles (orange) as
a function of k. Inset with the same axis labels shows the corresponding frequency
for each area. The convergence to the periodic honeycomb lattice is assessed.
Source data are provided as a Source Data file.
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Two-dimensional space is covered without gaps after iterative
deflation processes, as shown in Fig. 2e–g and Suppl. Fig. 2 for k = 1 − 5.
Because of the deflation process, self-similarity is an inherent property
of the metallic-mean tilings: Suppl. Fig. 3 exemplifies exact self-
similarity for k = 2 and k = 3. We find that a finite number of adjacent L
tiles are bounded by the P tiles, which can be regarded as an isolated
“honeycombdomain”. For example, in the case with k = 2, the domains
are composed of one, three, or six L tiles, as shown in Fig. 2f. We
confirm that each honeycomb domain bounded by the P tiles is
composed of ak−1, ak, or ak+1 adjacent L tiles in the kth metallic-mean
tiling, where ak = k(k + 1)/2, see Suppl. Note 3. Therefore, by increasing
k, the number of the L tiles in each honeycomb domain quadratically
increases. On the other hand, the S and P tiles are located around the
corners and edges of the honeycomb domains, and thereby their
numbers should beO(1) andO(k), respectively. These suggest that the
L tiles become the majority in the large k case, and the single honey-
comb domain is realized in the limit k→∞, as shown in Fig. 2h. Using a
deflationmatrix described in theMethods section, it is easy to evaluate
the frequencies of tiles (fL, fP, and fS) and the ratio of the corresponding
areas (SL, SP, and SS) rendered in Fig. 2i and its inset. For k = 5, more
than ninety percent of the two-dimensional space is occupied by L tiles
(see “Methods”).

The tiling has eight types of vertices, as shown in Fig. 3a, classified
by their coordination numbers and their circumstances. The frequency
of each type can be exactly computed, and the explicit formulae for
any k are presented in Suppl. Note 2. Figure 3b shows the frequencies
of the vertex types as a function of k. As expected, the frequencies of
the C0 and C1 vertices monotonically increase and approach 1/2,
implying the convergence to the honeycomb lattice.

The vertices of the hexagonal metallic-mean tiling can be occu-
pied alternativelyby open and solid circles, corresponding to theAand
B sublattices, respectively. This property is called bipartite. As shown
in Fig. 3a, the vertex types C1-C3 belong to the A sublattice, and the
others belong to theB sublattice, as depicted by open and solid circles,
respectively. We find that the sublattice imbalance in the system given
as Δ= f A � f B = 1=ð3 +

ffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 + 4

p
Þ, where f Að= f C1

+ f C2
+ f C3

Þ and
f Bð= f C0

+ f D0
+ f D1

+ f E + f FÞ are the frequencies of the A and B sub-
lattices, respectively. This distinct property is in contrast to those for
the bipartite Penrose, Ammann-Beenker, and Socolar dodecagonal
tilings where each type of vertices equally belongs to both
sublattices19.

As shown in Fig. 3c, we candistinguish twokinds of L tiles denoted
by L△ and L▽, introducing up and down triangles located at their
centers so that three corners of each triangle point to the filled circles
on the vertices of the L tile. In Fig. 3d, we find the following properties:
(1) Two kinds of honeycomb domains composed of L△ or L▽ tiles are
alternatively arranged. (2) The shape of L△ domains is up-triangular,
and that of L▽ domains is down-triangular. (3) Domain walls are
composed of consecutive zigzag P tiles. (4) Three domain walls should
meet at a point of S hexagons. (5) Intervals between domain walls are
not periodic, but metallic-mean incommensurately modulated (see
“Methods” and Suppl. Fig. 6).

Superspace representation
To provide a theoretical basis for the metallic-mean tilings, we con-
struct their higher-dimensional description. In this method, the
superspace is divided into the physical space and its complement,
knownas theperpendicular space. A tiling is viewed as aprojectionof a
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Fig. 3 | Vertex types. Vertices are alternatively decorated with open and solid
circles to define A and B sublattices, respectively. a Eight types of vertices. b The
blue, red, purple, light blue, green, and cyan lines represent the frequencies of C0,
C1, C2, D0, E, and F vertices, respectively. The magenta line represents the fre-
quencies of the C3 and D1 vertices. The dashed line represents the sublattice
imbalance Δ. c Two kinds of the L tiles, L△ and L▽. d Honeycomb domain

structures for the hexagonal bronze-mean tilings. L△ tiles form up-triangular
domains, and L▽ tiles form down-triangular domains. e Projected basis vectors ei
(i =0,⋯ , 5) from fundamental translation vectors in six dimensions. fWindows in
the perpendicular space. Each area shows the vertex types. Source data are pro-
vided as a Source Data file.
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hypercubic crystal in the superspace onto the two-dimensional phy-
sical space. The projections onto the perpendicular space are densely
filled in specific areas, as illustrated in Fig. 3f, which are referred to as
windows. These windows are derived from sections perpendicular to
the threefold axis of a rhombohedron (octahedron), which is the
projection of the hypercubic unit cell, showcasing hexagonal and tri-
angular shapes (see details in “Methods”). The figure also highlights
the regions associated with the eight vertex types, as detailed in the
Methods section and Suppl. Fig. 8.

Application to soft matter
The metallic-mean tilings are physical entities in two soft-matter sys-
tems. We consider self-assembled crystalline structures obtained in
softmaterialswith the P31mplane group, as illustrated in Fig. 4a, which
belongs to the two-dimensional hexagonal Bravais lattice but lacks
hexagonal rotational axes. Further crystallographic description is
given in Suppl. Notes 8 and 9 for colloidal particles and polymer
blends, respectively.

The first application of the metallic-mean tiling is a polymer
system reported by Izumi et al., who found a complex ordered
structure in an ABC triblock terpolymer/homopolymer blend
system16 (for sample preparation, see Methods). Figure 4b illustrates
the decoration of L, P, and S tiles by three kinds of polymers. In the
previous study, regular large domains consisting of only L tiles were
observed. It is noticed that the triangle inside a hexagon has two
directions, up and down. In the present study, we searched samples
again and found P tiles in a transmission electron microscopy (TEM)
picture rendered in Fig. 4c. In Fig. 4c, a regular region of an extended
L▽ area in the center and a domain wall represented by a row of
zigzag P tiles on the left-hand side. We can interpret the rows of P
tiles within the L sea as twin boundaries, which mark a transition
between different crystal orientations, L△ and L▽. It’s worth
emphasizing that a row of P tiles physically changes the crystal

orientations, demonstrating the tangible properties of P tiles beyond
mathematical concepts.We note that the decoration of S tile (Fig. 4b)
is hypothetical and it has not been observed in the samples.

The second application of the metallic-mean tiling is a colloidal
particle simulation in two dimensions conducted by Engel17. It utilizes
a Lennard-Jones-Gauss (LJG) potential20 that has two distinct length
scales. We have reproduced his result and find that the LJG particles
occupy the same positions as the dark gray circles in Fig. 4a–c.
Moreover, in Fig. 2 of the Engel’s paper and his Suppl. Fig. S1 in
particular, it was shown to form twin-boundary superstructures on a
scale much larger than the potential range: the size of super-
structures depends on the temperature reversibly; the lower the
temperature, the larger the size. One finds that regular L△ or L▽
domains form triangle shapes of several sizes, which property is also
characteristic of the metallic-mean tiling. In addition, it was observed
that twin boundaries only intersect at triple junctions, which situa-
tionmimics the metallic-mean tilings, where triple rows consisting of
the P tiles meet at the location of an S hexagon, though the corre-
spondence between the P tiles and domain walls in the LJG system is
not always exact. Nonetheless, the metallic-mean scheme mimics
Engel’s modulated superstructures with changing scale ratios or k
values.

In Fig. 4d, an ideal decoration model for the particle system is
generated by the higher-dimensional quasicrystal theory with the
bronze-mean modulation (Suppl. Note 12). In these cases, as shown in
Fig. 4e, f, the structure factor SðqÞ= ∣ 1N

P
ie

iq�ri ∣2 theoretically calcu-
lated in terms of the superspace representation dramatically repro-
duces thenumerical Fourier transformations for the diffraction images
shown in Fig. 3 of Engel’s paper. As clearly shown in the magnified
views (Fig. 4f), the prominent peaks appear at almost the same posi-
tions, while the aperiodicmodulation of themetallic-mean tiling yields
the satellite peaks in the vicinity of the main peaks, which is the
characteristic property of IC structures.
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Fig. 4 | Application to soft matter. a Diagram of the P31m plane group.
b Schematic decoration of L, P, and S tiles by ABC triblock terpolymer/homo-
polymer blend ISP-III/S. Dark gray circles indicate polyisoprene (PI), light gray cir-
cles indicate poly(2-vinylpyridine) (PVP), and the othermatrix region is polystyrene
(PS). cTEM image from theABC triblock terpolymer/homopolymer ISP-III/S.d Ideal
particle decoration for a colloidal system generated by the bronze-mean tiling. Up
and down triangles form blue and yellow triangular domains reproducing colloidal

simulations. e Each sector shows the structure factor for the decorated k-th
metallic-mean tiling when k = 1, 3, 5, 7, 9, and ∞. f Magnified views of slices of the
structure factor indicated by a dashed rectangle in (e). In the vicinity ofmain peaks,
the aperiodic modulation yields satellite peaks characterizing IC structures. g Six
reciprocal vectors qi (i =0, 1,⋯ , 5) for k = 1, 3, 5, 7, and 9. Source data are provided
as a Source Data file.
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Discussion
Our previous study has covered the multiples-of-3 metallic-means,
through the hexagonal aperiodic approximants of the triangular
lattice15. The present work broadens the scope of aperiodic approx-
imants. Firstly, our tiling serves as the approximant of the honeycomb
lattice. Secondly, it enables an inflation ratio of any metallic mean,
thereby enhancing the applicability.

In fact, we have applied the tiling concept to explore real mate-
rials, such as polymer and colloidal systems. Our analysis identifies
large hexagons as regular structures and parallelograms as twin
boundaries. It is noted that similar IC triangular domain structures
were discovered in quartz and aluminum phosphate a long time
ago21,22, known as Dauphiné twins in trigonal quartz. We surmise that
there is a similar mechanism behind the formation.

We emphasize that the decorated perpendicular space windows
in 6D generate the 2D IC structures, whose method has been devel-
oped in the field of QC studies. It is important that the satellite peaks
can be calculated not by direct real-space Fourier transform but by
perpendicular-space Fourier transform of the windows. By comparing
these peaks with those observed in two-dimensional IC modulated
structures, we establish a foundation for the analysis of IC structures in
terms of the QC methodology.

One of the origins of the P31m plane group demonstrated here is
the aggregation tendencyof pentagons. Regular pentagons cannot tile
the entire plane without gaps, as shown by Dürer-Kepler-Penrose,
however, there are pentagon-related tilings if we abort five-fold sym-
metry. In Suppl. Note 10, we demonstrate the accommodation of
pentagonswithin both a square and ahexagon.Using4-fold symmetry,
the Cairo pentagonal tiling and its dual, i.e., the 32. 4.3. 4 Archimedean
tiling with the P4gm has been considered23. The latter Archimedean
tiling is associatedwith the σphase found in complexmetallic and soft-
matter phases, which is recognized as a periodic approximant of
dodecagonal QCs24–29. It is noteworthy that the P31m plane group
structure is a 3-fold variant of the Cairo tiling and the σ phase.

Our study highlights the effectiveness of aperiodic approximants
in inducing modulations within self-assembled soft-matter systems
employing the P31mplane group. Specifically, we utilized the rows of P
tiles as domain boundaries in the honeycomb lattice, thereby bridging
metallic-mean hexagonal QCs and IC modulated honeycomb lattices.
The dynamic movement of domain walls while maintaining triple
junctions can be explained by the phason flips of L, S, and P tiles, as
illustrated in Fig. 5 and Suppl. Note 4. In this context, the colloidal
system appears to be a phason-random tiling version of the metallic-
mean tiling system. Lastly, applying the deterministic growth rules,
known as Onoda-Steinhardt-DiVincenzo-Socolar (OSDS) rules30,
reveals that dead surfaces consist of these domain walls. Overall, our

researchprovides insights into the realmofboth aperiodic crystals and
their broader implications for domain wall structures across var-
ious fields.

Methods
Deflation matrix of the metallic-mean tiling
The metallic-mean tilings are regarded as the aperiodic approximants
of the honeycomb lattice. To discuss quantitatively how the metallic-
mean tilings approach the honeycomb lattice with increasing k, we
construct the deflation matrix. At each deflation process, the increase
of the numbers of L, P, and S tiles is explicitly given by vn+1 =Mvn with

vn = ðNðnÞ
L ,NðnÞ

P ,NðnÞ
S ÞT and

M =
k2 k

3 1

6k 1 0

1 0 0

0
B@

1
CA, ð2Þ

where NðnÞ
α is the number of the tile α, which stands for L, P, or S at

iteration n. The maximum eigenvalue of the matrix M is τ2k , and the
corresponding eigenvector is given as ðτ2k ,6τk ,1Þ

T
. We evaluate the

frequencies for these tiles in the large k limit approach f L = τ
2
k=Z ,

fP = 6τk/Z, fS = 1/Z, where Z = τ2k +6τk + 1. The k-dependent frequencies
for three tiles are shown in Fig. 2i. Increasing k, the frequency of the L
tiles monotonically increases and approaches unity.

Domain boundaries
The domain boundaries composed of consecutive zigzag P tiles
intersect at small hexagons and pass through the opposite edge of the
small hexagons while keeping alternating directions of P tiles. If we
ignore these slithering configurations of P tiles, there are three sets of
parallel domain walls, as displayed in Fig. 3d. Focusing on a set of
parallel domain walls, we observe two types of intervals between the
domain walls denoted bySS and SL, as shown in Suppl. Fig. 6 for silver-
and bronze-mean tilings. There are intriguing properties for the
intervals. First, for the k-thmetallic-mean tilings, the interval SS and SL

consists of k and k + 1 consecutive L tiles. Second, upon the deflation,
we find the substitution rules: SL ! S 1

2
LSk

SS
1
2
L, and SS ! S 1

2
LSk�1

S S 1
2
L. The

numbers of intervals NðnÞ
SS

and NðnÞ
SL

of the n-th generation satisfy

Nðn+ 1Þ
SS

Nðn+ 1Þ
SL

0
@

1
A=

k � 1 k

1 1

� � NðnÞ
SS

NðnÞ
SL

0
@

1
A, ð3Þ

where the maximum eigenvalue of the matrix is given by the
metallic-mean τk. The eigenvector of the matrix is given by

a

b L   S S   L

c

Fig. 5 | Phason flips. a Schematic phason moves in a self-assembled pattern from
ABC triblock terpolymer/homopolymer blend. Colored circles and triangles
represent the same as in Fig. 4a, b. b Two types of phason flips in themetallic-mean

tiling. c Move of a twin boundary by a row of phason flips. The difference is
explicitly shown in color.
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ðτk � 1=τk ,1 + 1=τk ,ÞT , indicating NðnÞ
SS
=NðnÞ

SL
! τk as n→∞, where the

sequence is filled with SS intervals for large k values. Therefore, we
conclude that the intervals between domain walls are metallic-mean
modulated.

Superspace representation
We outline the main steps of the construction of the metallic-mean
tiling by the projection of a higher-dimensional hyperlattice onto the
physical space. Let ℓ and s be the lengths of the long and short edges of
the tiling.We here assume that the ratio η = s/ℓ is a variable to apply the
tiling to soft-matter systems,while the ratio in the perpendicular space
is set to be 1/τk to keep the arrangement of the metallic-mean tiling.
When η = 1/τk, the tiling is the exact self-similar metallic-mean tiling
generated by the deflation rules.

Each vertex site in the tiling is described by a six-dimensional

lattice point ~n= ðn0,n1, � � � ,n5ÞT , labeled with integers nm. Let the six-

dimensional lattice point~rh in the six-dimensional space Sh as~rh =R~n:

R=

‘c6 �‘c6 0 sc6 �sc6 0

‘s6 ‘s6 �‘ ss6 ss6 �s

τ�1
k c6 �τ�1

k c6 0 �c6 c6 0

τ�1
k s6 τ�1

k s6 �τ�1
k �s6 �s6 1ffiffiffi

2
p

τ�1
k

ffiffiffi
2

p
τ�1
k

ffiffiffi
2

p
τ�1
k 0 0 0

0 0 0 �
ffiffiffi
2

p
�

ffiffiffi
2

p
�

ffiffiffi
2

p

0
BBBBBBBBB@

1
CCCCCCCCCA
, ð4Þ

where R is the mapping matrix and c6 = cosðπ=6Þ, s6 = sinðπ=6Þ.
Namely, thematrix is represented by the six-dimensional basis vectors

~ehi ði = 0,1, � � � ,5Þ: ð~ehi Þj =Rji. The vertex site r in the physical space S
is given by the first two components of the vector: r= ðð~rhÞ0,
ð~rhÞ1Þ=

P5
m=0nmem, where the projected vectors of the form

em = (R0m,R1m) with lengths ℓ and s are displayed in Fig. 3e. The
remaining perpendicular space is split into two-dimensional spaces
~S and S?, and the corresponding coordinates ~r and r⊥ are given as

~r= ðð~rhÞ2,ð~rhÞ3Þ=
P5

m=0nm~em, r? = ðð~rhÞ4,ð~rhÞ5Þ=
P5

m=0 nme
?
m, where

~em = ðR2m,R3mÞ and e?m = ðR4m,R5mÞ.

Note that ~r points are densely filled on four planes with
r? = fð

ffiffiffi
2

p
τ�1
k ,0Þ, ð0,0Þ, ð

ffiffiffi
2

p
τ�1
k ,�

ffiffiffi
2

p
Þ, ð0,�

ffiffiffi
2

p
Þg denoted by {(1,0),

(0,0), (1,1), (0,1)}, having polygonal windows shown in Fig. 6. Notice
that the windows are faces and sections for a regular octahedron. This
octahedron is the middle part of a rhombohedron of edge lengthffiffiffi
3

p
ð1 + τ�1

k Þ, which is the projectionof the hypercubic unit cell. In Fig. 6,
~r is plotted in the (x, y)-directions, while for r⊥ both ð~rhÞ4 and ð~rhÞ5 are
projected onto the z component. We find that in the limit k → ∞, the
upper and lower hexagons get closer to the top and bottom faces,
respectively, andfinally, they becomeequilateral triangles. The explicit
sizes of hexagonal windows are presented in Suppl. Fig. 8.

The six-dimensional reciprocal lattice vectors ~qh
i are defined to

have the following property ~ehi �~q
h
j =2πδij with δij is the Kronecker

delta. It is easy to find ð~qh
j Þi =Qij , where RQT = 2πδij and

Q=C

c6 �c6 0 τ�1
k c6 �τ�1

k c6 0

s6 s6 �1 τ�1
k s6 τ�1

k s6 �τ�1
k

sc6 �sc6 0 �‘c6 ‘c6 0

ss6 ss6 �s �‘s6 �‘s6 ‘

ψ ψ ψ 0 0 0

0 0 0 �ψτ�1
k �ψτ�1

k �ψτ�1
k

0
BBBBBBBBB@

1
CCCCCCCCCA

ð5Þ

with C =4π=½3ð‘+ sτ�1
k Þ� and ψ= ð‘τk + sÞ=ð2

ffiffiffi
2

p
Þ. q= ðð~qh

i Þ0, ð~q
h
i Þ1Þ=P5

m=0 nmqm, where the projected vectorsqm = (Q0m,Q1m) with lengths
1/ℓ and 1/(ℓτk) are displayed in Fig. 4g. The remaining four-dimensional
perpendicular space is split into two-dimensional reciprocal
spaces and the corresponding reciprocal vectors ~q and q⊥ are given

as ~q= ðð~qh
i Þ2, ð~q

h
i Þ3Þ=

P5
m=0 nm~qm, q? = ðð~qh

i Þ4, ð~q
h
i Þ5Þ=

P5
m=0 nmq

?
m,

where ~qm = ðQ2m,Q3mÞ and q?
m = ðQ4m,Q5mÞ. The detailed procedure

is given in Suppl. Note 5.
When computing the fast Fourier transforms (FFT), we rely

on the following identity for any pair of vectors in the

superspace lattice~rh and in the corresponding reciprocal lattice ~qh:

1 = expði~qh �~rhÞ= expðiq � xÞ expði~q � ~xÞ expðiq? � x?Þ: If particle’s posi-
tions are described by δ-functions so that the density reads

f ðrÞ= PN
j = 1 δðr� rjÞ, then the Fourier transform of the density is cal-

culated as

Z
dre�iq�rf ðrÞ=

XN
j = 1

e�iq�xj =
XN
j = 1

ei~q�~xjeiq
?�x?

j , ð6Þ

in the last step, we resorted to the above identity.
To construct decorated tilings (Fig. 4d) for soft-matter systems,

we set η = s/ℓ =0.6249. In this case, we employ sections of a rhombo-
hedron as extensional windows. Detailed procedures are presented in
Suppl. Notes 8 and 12.

Polymer details
An ISP (I: polyisoprene, S: polystyrene, P: poly(2-vinylpyridine)) tri-
block terpolymer sample was prepared by a sequential monomer
addition technique of an anionic polymerization from cumyl-
potassium as an initiator in tetrahydrofuran (THF), while styrene
homopolymer was synthesized anionically with sec-butyllithium in
benzene. The average molecular weight of the terpolymer is
161 kgmol−1 and the composition isϕI/ϕS/ϕP = 0.25/0.53/0.22, whereas
that of the styrene homopolymer is 9 kgmol−1. The overall composi-
tion of the blend sample is ϕI/ϕS/ϕP = 0.17/0.68/0.15, where poly-
styrene block/styrene homopolymer ratio of wS(b)/wS(h) = 1.4. The
sample film was obtained by casting for two weeks from a dilute
solution of THF, followed by heating at 150 ∘C for two days. The spe-
cimens for morphological observation were cut by an ultramicrotome

Fig. 6 | Superspace perspective. a the perpendicular space for the bronze-mean
tiling. b Four windows on the right-hand side are obtained from a regular octahe-
dron (middlepart of a rhombohedron) of edge length

ffiffiffi
3

p
ð1 + τ�1

k Þ. The top (1, 0) and
bottom (0, 1) windows are equilateral triangular faces of the solid, and hexagonal
windows indicated by (0, 0) and (1, 1) are the sections of the octahedron. In the
solid, blue and red colors correspond to honeycomb domains with L△ and L▽,
respectively. In each window, each color corresponds to the vertex type rendered
in Fig. 3b.
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of Leica model Ultracut UCT into ultrathin sections of about 100nm
thickness and stained with OsO4 for the TEM observation. Further
details are provided in ref. 16.

Simulations of colloidal particles
WeusedNPT (constant number of particlesN, external pressure P, and
temperature T) Monte Carlo simulations of N = 10,000 colloidal par-
ticles interacting with the Lennard-Jones-Gauss potential17,20 given by

V ðrÞ= 1
r12

� 2
r6

� ϵ exp � ðr � r0Þ2
2σ2

 !
, ð7Þ

with parameters σ2 = 0.042, ϵ = 1.8, r0 = 1.42 at T =0.270, P =0.0. There
are slight differences between simulations (Fig. 7) and the metallic-
mean tilingmodel (Fig. 4): (1)Dynamically, P tiles arenot always perfect.
(2) There are five particles in an S tile in simulations, while six particles
in the latter. The effect of these is negligible in the structure factor.
Further data including diffraction images is provided in Suppl. Note 11.

Phasons
Domain walls dynamically move with keeping triple junctions can be
explained by the phason flips of L, S, and P tiles, as shown in Fig. 5. In
this sense, the colloidal system appears to be a phason-random tiling
version of the metallic-mean tiling system. The existence and the
conservation of S tiles in the phason flips is the key of triple junctions of
domain walls at moderate thermal excitations (see also Suppl. Note 4).

Data availability
The data that support the findings of this study are available from the
corresponding author upon request. Source data are provided with
this paper.

Code availability
The codes used to construct the tilings and the projectionwindows are
available from the corresponding author upon request.
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