
Article https://doi.org/10.1038/s41467-024-50291-3

Single-cell total-RNA profiling unveils
regulatory hubs of transcription factors

Yichi Niu 1,2,7, Jiayi Luo1,3,7 & Chenghang Zong 1,2,3,4,5,6

Recent development of RNA velocity uses master equations to establish the
kinetics of the life cycle of RNAs from unspliced RNA to spliced RNA (i.e.,
mature RNA) to degradation. To feed this kinetic analysis, simultaneous
measurement of unspliced RNA and spliced RNA in single cells is greatly
desired. However, the majority of single-cell RNA-seq chemistry primarily
capturesmatureRNA species tomeasure gene expressions.Here,wedevelop a
one-step total-RNA chemistry-based single-cell RNA-seq method: snapTotal-
seq. We benchmark this method with multiple single-cell RNA-seq assays in
their performance in kinetic analysis of cell cycle by RNA velocity. Next, with
LASSO regression between transcription factors, we identify the critical reg-
ulatory hubsmediating the cell cycle dynamics.We also apply snapTotal-seq to
profile the oncogene-induced senescence and identify the key regulatory hubs
governing the entry of senescence. Furthermore, from the comparative ana-
lysis of unspliced RNA and spliced RNA, we identify a significant portion of
genes whose expression changes occur in spliced RNA but not to the same
degree in unspliced RNA, indicating these gene expression changes aremainly
controlled by post-transcriptional regulation. Overall, we demonstrate that
snapTotal-seq can provide enriched information about gene regulation,
especially during the transition between cell states.

The rapiddevelopment of single-cell RNA-seq (scRNA-seq)has enabled
large-scale characterization of different cell states, which provides
valuable information about the changes that occurred during the cell-
state transitions, such as development and differentiation processes.
Following this characterization, it is desired to decode the underlying
regulatory mechanisms. We reason that this regulatory information
couldbederivedbasedon the comparative analysis betweenunspliced
RNAs and spliced RNAs (i.e., mature RNAs) detected in single cells.
Here, our study shows that effective detection of unspliced transcripts
by total-RNA-based scRNA-seq methods indeed renders them sig-
nificant advantages for kinetic and regulatory analyses, besides the
ability to detect all RNAbiotypes (protein coding, long non-coding and
short non-coding RNAs). It is worth noting that the majority of scRNA-

seq methods, including the high-throughput platform of 10× chro-
mium, primarily capturemature RNA with oligo-dT primers1–5, making
them less ideal for the comparative analysis due to inefficient detec-
tion of unspliced RNA species6.

So far, three main single-cell total-RNA methods have been
developed in recent years, including MATQ-seq7 by Sheng et al. in
ref. 7, Smart-seq-total method8 by Isakova et al. in ref. 8, and VASA-
seq by Salmen et al. in ref. 9. Total-RNA-seq chemistry has also been
applied to profile the transcriptome of individual neuronal
synaptosomes10. Despite the advantage of the single-cell total-RNA
sequencing approach for RNA velocity analysis11,12, the chemistries
of current total-RNA-based methods are generally more compli-
cated thanmature RNA-basedmethods, especially in comparison to
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SMART-seq chemistry4,13,14. Here, by combining multiple annealing
chemistry allowed by MALBAC primers15 and the template-
switching chemistry4,13,14,16 (Supplementary Fig. 1), we develop a
one-step single-cell total-RNA-seq chemistry. We refer to this assay
as snapTotal-seq, which can be easily implemented on liquid-
handling platforms.

Next, we benchmark the performance of snapTotal-seq, SMART-
seq3, CEL-Seq2, SMART-seq-total, and VASA-seq in their ability to
capture the cell cycle dynamics through RNA velocity analysis. As a
result, in comparison to mature RNA-basedmethods, total-RNA-based
methods demonstrate substantial improvement in recapitulating the
transcriptional dynamics of the cell cycle, with snapTotal-seq achiev-
ing the best performance.

With the trajectory data from RNA velocity, we show that by
LASSO regression of the unspliced RNA expressions of a transcription
factor (TF) against the spliced RNA expressions of the rest of TFs, we
identify the important TF hubs that mediate the cell-state transitions
during the cell cycle. Furthermore, the comparative analysis between
unspliced RNA and spliced RNA expression also reveals the substantial
role of post-transcriptional regulation in the expression of a significant
portion of cell cycle genes.

Besides the cell cycle, we further expand the application of
snapTotal-seq to investigate the regulatory network in oncogene-
induced senescence (OIS). As a result, we successfully identify the key
regulatory components that orchestrate cell-state transition during
OIS. Overall, these findings underscore the ability of snapTotal-seq to
characterize the transcription/splicing/degradation dynamics of RNAs
and, with greater significance, to identify the key transcription hubs
driving cell-state transitions.

Results
Chemistry of snapTotal-seq
The overall chemistry of snapTotal-seq is shown in Fig. 1a and Sup-
plementary Fig. 2. After the lysis of single cells; we used MALBAC
primers15 to initiate the reverse transcription at low temperature,
which allows the random but efficient primer binding to multiple
sites on RNAs, therefore warranting the total-RNA detection ability.
Next, we gradually ramped up the temperature to promote the
reverse transcription. Once the reverse transcription stopped at the
sites with difficult secondary structures or reached the 5′ end of RNA,
template switching then occurred with the existing MALBAC primers
serving as the template-switching oligos. In total, we performed ten
cycles of multiple annealing and extension (without melting steps),
during which cDNA amplicons were successfully generated by tem-
plate switching. With the special design of MALBAC primers, the
primer dimer is not detectable in the final product even when the
annealing steps reach as low as 8 °C. After cDNA amplification, cell-
specific barcodes were introduced to the amplified products by a
double-strand conversion step. Next, the cells with different bar-
codes were pooled together for the library construction (Supple-
mentary Fig. 2). It is worth emphasizing that all the reads in our
method have UMI sequences.

We first performed the cross-species experiment using HEK293T
cells and 3T3mouse cells. We observed that the crosstalk between the
two species was rare (Supplementary Fig. 3a). Next, we performed two
technical replicates to show that technical variations were minimal as
the single-cell data of different batches were completely overlapped in
the principal component analysis (PCA) (Supplementary Fig. 3b). With
the total-RNA approach, our method is able to detect different classes
of non-coding RNA alongside protein-coding genes (Supplementary
Fig. 3c). Overall, we were able to detect 10,400 ± 500 (mean ± sd)
genes based on exon reads and 10,400 ± 900 (mean ± sd) genes based
on intronic reads with ~1 million uniquely mapped reads per cell
(Fig. 1b), which confirms the effective capture of both spliced RNA and
unspliced RNA by snapTotal-seq.

Benchmarking comparison of single-cell RNA-seq methods in
RNA velocity analysis
Besides the ability to efficiently detect different RNA biotypes, the
primary advantage of total-RNA-based methods lies in their ability to
provide the data that facilitate the modeling of gene expression pro-
cesses, from transcription to splicing and RNA decay, as described by
the master equations of the RNA velocity11,12. We first applied RNA
velocity analysis to the snapTotal-seq data. As shown in Fig. 1c–e, we
observed that the velocities clearly captured the dynamic transitions
between different cell cycle phases (G2/M to >G1 to >S to >G2/M) with
high confidence scores (0.93 ± 0.073, Supplementary Fig. 3d).

To verify the result of RNA velocity analysis, we applied another
algorithm: reCAT17 to analyze the cell cycle dynamics using the same
data. Different from ab initio based analysis by RNA velocity, reCAT
determines the cell cycle dynamics based on the known cell cycle
genes. The pseudotime derived from reCAT is shown in Supplemen-
tary Fig. 3e. And the latent time fromRNA velocity and the pseudotime
from reCAT were highly correlated with Pearson’s coefficient larger
than 0.9 (Supplementary Fig. 3f).

To further examine the cell–cell heterogeneity unveiled by our
method, we then performed dimensionality reduction by using UMAP.
Interestingly, through the unsupervised clustering, we identified five
distinct cell cycle sub-stages in our data, as evidenced by the expres-
sion profiles of a set of well-known cell cycle marker genes (Supple-
mentary Fig. 4a–d). We also observed the differential expression of
non-coding RNAs across different cell cycle sub-stages (Supplemen-
tary Fig. 4e). The dynamic transitions between these sub-stages were
also recapitulated by RNA velocity analysis (Supplementary Fig. 4f).
These results further demonstrate that our method can effectively
recapitulate the intrinsic dynamic heterogeneity.

Next, we performed a benchmark comparison between
snapTotal-seq and four scRNA-seq methods: Smart-seq34, CEL-Seq25,
VASA-seq9 (plate version), and Smart-seq-total8. Among them, Smart-
seq3 and CEL-Seq2 employ oligo-dT-based reverse transcription
strategy, while VASA-seq and Smart-seq-total are two recently devel-
oped total-RNA-based scRNA-seqmethods. First, we observed that the
gene detection rate of snapTotal-seq is similar to VASA-seq based on
either exon reads or intronic reads. And they are substantially higher
than the two dT-based methods (Supplementary Fig. 5a, b). Con-
sistently, compared to dT-based methods, both snapTotal-seq and
VASA-seq exhibit amore uniform read distribution over the gene body
(Supplementary Fig. 5c), and have a higher proportion of intronic
reads (Supplementary Fig. 5d). Interestingly, we noticed Smart-seq-
total has a lowgenedetectionwith either exonor intron reads,which is
potentially due to the dominant detection of a few genes, specifically
RN7SK, RMRP, RPS29, and KIAA0907 in their data8 (Supplementary
Fig. 5e). Due to this significant detection difference, we excluded
Smart-seq-total from the downstream benchmark analyses.

Next, we investigated the technical features of our method in
detail. First, we showed that the improvement in gene detection by
both snapTotal-seq and VASA-seq was consistently observed in dif-
ferent RNA biotypes (Supplementary Fig. 5f), suggesting that the total-
RNA strategy improved the gene detection across all categories of
genes. Furthermore, we showed that both total-RNA-based methods
significantly improve the capturing efficiency of the transcripts with
moderate or low expression levels at both exon and intron levels
(Supplementary Fig. 5g). At last, similar to VASA-seq, snapTotal-seq
exhibits a clear correlation between the gene detection rate and RNA
length (Supplementary Fig. 5h), suggesting it is a common feature of
total-RNA-based approaches. In dT-based methods, although only a
slight bias was observed in exon reads, a clear dependence was noted
in intron reads, given that the capture of unspliced RNA by dT-based
methods relies on the binding of oligo-dT primer to the polyA
sequence in introns11. Furthermore, it is worth noting that the overall
capture efficiency for short RNA in our method (81.4% for exon reads,
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68.2% for intron reads) is also higher than the capture efficiency of
both dT-basedmethods (CEL-Seq2: 75.5% for exon reads and 53.8% for
intron reads; Smart-seq3: 74.5% for exon reads and 45.7% for intron
reads) for the same class of RNA (Supplementary Fig. 5h).

Next, we performed PCA analysis and RNA velocity analysis on
each dataset. We observed that the connections between different cell
cycle stateswere notwell positioned for both dT-basedmethods in the
PCA plots (Fig. 1f–k). In contrast, both snapTotal-seq (Fig. 1c–e) and
VASA-seq (Fig. 1l–n) showed a clear circular distribution describing
different cell cycle phases. As a result, the velocity confidence scores of
Smart-seq3 and CEL-Seq2 were significantly lower than those of
snapTotal-seq and VASA-seq. We also noticed that snapTotal-seq has a
better confidence score than VASA-seq (Fig. 1o).

Next, we also employed reCAT analysis to infer the cell cycle
trajectory based on the expression of known cell cycle genes

(Supplementary Figs. 3e and 6). As a result, our method achieved the
highest correlation coefficient between the results of the unsu-
pervised and supervised analysis (Fig. 1p), confirming the consistent
performance of the two independent analyses using snapTotal-
seq data.

At last, we performed dimensionality reduction on these datasets
to investigate whether additional information could be unveiled in
highdimensions. As a result, despite the enhanced separation between
different cell cycle stages with the inclusion of more dimensions, the
cell cycle sub-stages were not identified in these datasets with unsu-
pervised clustering (Supplementary Fig. 7), in contrast to the obser-
vations in snapTotal-seq data (Supplementary Fig. 4). Based on
the systematic comparison described above, we concluded that
snapTotal-seq outperformed other methods in characterizing the
dynamic heterogeneity and the underlying gene expression kinetics.
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Fig. 1 | Development of snapTotal-seq and benchmark analysis. a Schematic of
snapTotal-seq. b The number of detected genes by exon reads, or intron reads in
single HEK293T cells by snapTotal-seq. Center lines show median, box limits show
the upper and lower quartiles, andwhiskers show the 1.5× interquartile range (IQR).
c PCA plot of the HEK293T cells. The cells are colored by their corresponding cell
cycle phases. d The velocity trajectory projected by RNA velocity analysis. e Latent
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Comparative analysis between unspliced and spliced RNAs
identified three types of cell cycle genes (CCGs)
Based on the constructed cell cycle trajectory as described above, we
then performed the trajectory-based differential gene expression
analyses on exon reads (representing spliced RNA) and intron reads
(representing unspliced RNA) using tradeSeq18, respectively. We
identified 1325 genes with significant changes at the spliced RNA level
(FDR <0.1) and 962 genes with significant changes at the unspliced
RNA level (FDR <0.1) along the cell cycle (Fig. 2a and Supplemen-
tary Data 1).

We noticed that there are 390 genes that showed significant
changes in both unspliced and spliced RNA, which we denoted as
Type I CCGs, and 935 genes that showed only significant changes in

spliced RNA, which we denoted as Type II CCGs, and 572 genes that
showed only significant changes in unspliced RNA, which we
denoted as Type III CCGs. For Type II CCGs, the lack of significant
changes in unspliced RNA suggests that gene expression changes
that occurred in the spliced RNAs are mainly contributed by post-
transcriptional regulation (Supplementary Fig. 8a, b and Supple-
mentary Data 2). In comparison, gene expression changes in Type I
CCGs are mainly contributed by transcriptional regulation. For a
large number of genes in the Type III CCGs, it is interesting to see
the transcriptional variations that occurred to these genes are
effectively buffered out at the spliced RNA level, likely also through
post-transcriptional regulation-based mechanisms, which is worth
future investigation.
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cycle in HEK293T cells. b Gene expression heatmap of Type I CCGs along the cell
cycle. Genes were clustered into five kinetic modules using k-means clustering
algorithm based on their transcriptional dynamics along the cell cycle. c The
smoothedgene expression curves along the cell cycle for each kineticmodules. The
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between the expression of unspliced RNA and spliced RNA. Cross-correlation was
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shown. One-wayANOVAwas performed. Source data are provided as a Source Data
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Benjamini–Hochberg procedure. m Functional classification of the transcription
factors belonging to noncanonical CCGs. n Functional classification of the RNA
processing factors belonging to noncanonical CCGs.
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Identification of five kinetic modules and noncanonical genes in
Type I CCGs
For Type I CCGs, we identified five kinetic modules (Fig. 2b; Supple-
mentary Fig. 8c–g and Supplementary Data 3). As shown in Fig. 2b, c, a
clear time delay occurs between the changes in unspliced RNA and
spliced RNA, which mainly corresponds to the splicing process. We
quantified the coupling between the dynamics of unspliced RNA and
spliced RNA by the cross-correlation between two expression curves
(Fig. 2d). The close coupling confirms that the changes in the expres-
sion of these genes mainly originated from the regulation at the
transcription step.

To validate the detected differentially expressed genes (DEGs) by
snapTotal-seq along the cell cycle, we used HEK293T cells with the
expression of FUCCImarkers19 to collect the cells at G1, S/G2 andG2/M
phases (Fig. 2e). We then randomly chose eight genes from the
detected Type I CCGs and performed qRT-PCR to measure their gene
expression levels. As a result, the differential expression of these genes
at different cell cycle stageswas confirmed for both unsplicedRNAand
spliced RNA (Fig. 2f, g).

Besides the genes with known functions in cell cycle regulation
(i.e., canonical CCGs), we observed that over 50% of Type I CCGs (199
out of 390) had not been associated with cell cycle regulation pre-
viously (here we refer to them as noncanonical CCGs) (Fig. 2h and
Supplementary Fig. 8h). In contrast to canonical CCGs, which are sig-
nificantly enriched with mitosis related structures, the noncanonical
CCGs are significantly enriched in the endomembrane system,
including endoplasmic reticulum, Golgi apparatus, and intrinsic com-
ponent of plasma membrane (Fig. 2I, j). Functional enrichment shows
that these genes are involved in the synthesis of organonitrogen
compounds, metabolism of carbohydrate derivatives, ion transporta-
tion, and maintenance of chemical homeostasis (Fig. 2k).

Next, the second major subset of noncanonical CCGs (74 out of
199) reside in the nucleus (Fig. 2j). In contrast to the canonical CCGs
in the nucleus that are enriched with microtubule binding, single-
strand DNA binding and ATPase activity, the noncanonical CCGs are
enriched in transcriptional regulators and RNA processing factors
(Fig. 2l). The related pathways of these noncanonical CCGs are
shown in Fig. 2m for transcriptional regulators and Fig. 2n for RNA
processing factors. The identification of the abundant noncanonical
cell cycle genes directly shows the advantage of our method in
transcriptional kinetics analysis.

Identification of TF hubs regulating the five kinetic modules
along the cell cycle
Next, we sought to identify the transcription factors (TFs) that could
govern the five kinetic modules observed in Type I CCGs. To do so, we
utilized LASSO regression20 to identify the associations between the
spliced RNA changes of TFs and the unspliced RNA changes of the rest
of the genes in different modules (Fig. 3a). It is worth noting that, in
comparison tooligo-dT-basedmethods, the simultaneous detection of
both unspliced RNA and spliced RNA by our method allows us to
directly link the expression of TFs (spliced RNA levels) to the tran-
scriptional dynamics of their target genes (unspliced RNA levels)
through this analysis. As a result, we identified 23 TFs with their
potential downstream genes being significantly enriched in Type I
kinetic modules (Fig. 3b). Furthermore, based on the transcriptional
activities of these 23 TFs (i.e., the changes in the unspliced RNA levels
of their target genes), we successfully identified four TF hubs (Fig. 3c).
The correlation matrix between these hubs is shown in Fig. 3d.

Next, to identify the potential connections between these 23 TFs,
we performed the LASSO regression between the changes in the
unspliced RNAof a TF and the changes in the spliced RNAof the rest of
the expressed TFs using LASSO regression. This analysis produces the
TF association network as shown in Fig. 3e. Interestingly, we noticed
that Hub 3 (light blue gene blocks), while only composed of 3 genes,

was located in the middle of Hub 2 (yellow gene blocks) and Hub 4
(cyan gene blocks), and was connected to the genes in both Hub 2 and
Hub 4, indicating that Hub 3 plays important roles in mediating the
transition from the G1/S to G2/M state.

Validation of TF regulations based on ChIP-seq data and motif
analysis
From the LASSO regression inferred TF hubs, we next evaluate the
direct regulation based on the published ChIP-seq datasets21 andmotif
analysis22 (“Methods”). Among the candidate TFs, the ChIP-seq data
were unavailable for 12 of them. For the 11 TFs with ChIP-seq data, we
identified 6 TFs (E2F1, E2F2, KLF11, FOXM1, NFYC, and MYBL2) whose
downstream genes showed significant enrichment with the binding
targets identified by ChIP-seq (FDR <0.05, Supplementary Fig. 8i) or
displayed a significant enrichment of the corresponding motif
sequence at their promoter regions (normalized enrichment score
(NES) > 3, Supplementary Data 4), confirming the direct regulatory
relationships between these TFs and their downstream genes identi-
fied by LASSO regression.

Among the 6 TFs verified by ChIP-seq data, E2F1, E2F2, and KLF11
TFs have been known for their roles in regulating G1/S transition23,24,
and consistently, the transcriptional activities of the associated gene
modules were clearly increased in G1 and early S phases (Fig. 3f). The
regulation relation between KLF11, E2F1, and E2F2 is shown in Fig. 3g–i.
Next, for both FOXM1 and NFYC, their associated gene modules were
highly activated in late S and early G2 phases (Fig. 3f). Consistent with
this observation, FOXM1 is the well-known master regulator of G2/M
phase23,25,26. Next, we observed that the MYBL2, another major reg-
ulator of G2/M gene expression27,28, was clearly activated prior to the
activation of FOXM1module (Fig. 3f), implying thatMYBL2 functions as
an intermediate TF that could play important roles in the transition
fromG1/S toG2/Mstate. It is worth noting thatMYBL2 is located inHub
3. The detailed regulation relation between MYBL2 and KLF11, E2F1,
E2F2, and FOXM1 are shown in Fig. 3j, k.

Overall, we observed that the G1/S TFs formed a positive feedback
loop to promote G1/S phase gene expression (Fig. 3l). Consistent with
previous findings by Skotheim et al.29, the positive feedback loops
ensure the stability of G1/S state. Interestingly, our data unveiled that
all of these G1/S TFs positively regulated the expression of MYBL2
(Fig. 3j, l). The upregulated MYBL2 subsequently activated the
expression of FOXM1 (Fig. 3k, l), leading to the activation of G2/M
phase gene expression. This observation shows the pivotal role of
MYBL2 in driving the cell-state transition from G1/S toward G2/M. To
further verify the generality of this observation, we sequenced another
two cell lines (U2OS andHPNE) using snapTotal-seq, and similar results
were observed (Supplementary Figs. 9, 10).

In summary, our results demonstrated the ability of snapTotal-seq
to recapitulate the TF regulatory network that drives the cell-state
transition. For the 5 TFs (5 out of the 11 TFs with ChIP-seq data) that
lack significant enrichment in their ChIP-seqdata, it couldbe causedby
either the binding targets revealed by ChIP-seq being cell line specific
or the identified downstreamgenes being indirect targets of theseTFs.
Future studies are required to further investigate the regulatory roles
of these TFs in cell cycle progression.

TF analysis with non-parametric approach of GENIE3
To further verify the results obtained through LASSO regression, we
employed GENIE322,30, a non-parametric method, as an alternative
approach to infer TF modules based on the covariation between the
spliced and unspliced RNA of different genes. As a result, 12 out of 23
TF modules identified by LASSO regression were also captured by
GENIE3, which includes all of six core TFsmodules verified by ChIP-seq
data andmotif enrichment analysis (Supplementary Fig. 11a–c).Within
these shared TF modules, 295 out of 439 TF-gene links identified by
LASSO-based analysis were confirmed by GENIE3 (Supplementary
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Fig. 11f). In addition, the TFmodules and the TF-gene links detected by
both approaches exhibit significantly higher coefficients/weight than
those detected by only one approach (Supplementary Fig. 11c–h),
suggesting that most of the TF-gene links with high confidence have
been captured in LASSO-based analysis. At last, we examined the
regulatory relationships between different TFs using GENIE3, and,
consequently, all the regulatory relationships among the core TFs
described above were also verified by GENIE3-based analysis (Supple-
mentary Fig. 12).

Identification of noncanonical CCGs under post-transcriptional
regulation
Type II CCGs were featured by their significant changes at the spliced
RNA level but not at the unspliced RNA level (Supplementary Fig. 5a, b
and Supplementary Fig. 13), indicating the involvement of post-
transcriptional regulation of these genes. Based on their dynamic
changes along the cell cycle, we also identified five kinetic modules
(Fig. 4a, b and Supplementary Data 3). The cross-correlation analysis
shows that the coupling between the gene expression changes in

unspliced RNA and spliced RNA is not as significant as Type I CCGs
(Figs. 2d and 4c).

Gene ontology (GO) enrichment analysis was then carried out on
each kinetic module. Module 2 has significant enrichment with DNA
replication and repair pathways. Modules 1, 4, and 5 were significantly
enriched with pathways that are not directly associated with cell cycle
progression (Fig. 4d). These pathways include RNA metabolism, RNA
processing, vesicle transportation, etc. These results suggest that the
activities of many biological processes are coordinated with cell cycle
progression by post-transcriptional regulations.

To evaluate the important roles of the noncanonical Type II CCGs
in the cell cycle, we examined the essentiality of these genes by using
the genetic screening datasets from Project Achilles31. As a result, we
found that the pan-essential genes were significantly overrepresented
among the noncanonical CCGs in Modules 1, 4, and 5 (Fig. 4e). This
observation indicates that the functions of thesepost-transcriptionally
regulated kinetic modules are also important for cell proliferation.

Next, we exploredwhether these genes play critical roles in cancer
progression since cancer is a disease of dysregulation of the cell cycle.
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Interestingly, we found that except for Module 4, the noncanonical
CCGs in the rest of the modules were significantly enriched with the
prognostic markers of different cancer types32, further indicating that
cancer cells likely need to alter post-transcriptional regulations to fit
with the abnormal cell proliferation (Fig. 4f).

At last, to rule out the possibility that the noncanonical CCGs
identified in our study might be biasly detected by snapTotal-seq, we
examined the changes of their gene expression across the cell cycle in
VASA-seq data. As a result, despite the noted differences in culture
conditions between VASA-seq study and ours, similar patterns of cell

cycle dependent gene expression changes were consistently observed
for these noncanonical CCGs in VASA-seq data, which verified our
findings (Supplementary Note 2 and Supplementary Fig. 14).

Multiple post-transcriptional regulation mechanisms under-
lying Type II CCGs
Next, we investigated the potential mechanisms that drive the differ-
ential expression of Type II CCGs. Considering that RNA binding pro-
teins (RBPs) have been reported as a class of proteins regulating the
fate of RNA at different post-transcriptional processing steps33–35, we
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Fig. 4 | Post-transcriptional regulation in Type II cell cycle genes (CCGs). aGene
expression heatmapof Type II CCGs at spliced RNA and unspliced RNA levels along
the cell cycle. Genes were clustered into five kinetic modules using k-means clus-
tering algorithm based on the expression patterns of their spliced RNA along the
cell cycle. b The smoothed gene expression curves along the cell cycle for five
kinetic modules. c The cross-correlation between the expression curves of
unspliced RNA and spliced RNA. The cross-correlation was calculated by using
numpy.correlate function in Python. d GO enrichment in five kinetic modules of
Type II CCGs. e Significant enrichment of pan-essential genes in different gene
modules. Canonical CCGs are excluded in this analysis. f Significant enrichment
(FDR<0.1) of cancer prognostic markers in different gene modules. Canonical
CCGs are excluded in this analysis.g Significant enrichment (FDR <0.1) of the target
genes of the RNA binding proteins in Type II CCGs. hGene expression dynamics of
BCLAF1, G3BP1, PUM1 and their target gene modules along the cell cycle. Only the

gene modules whose expression patterns were significantly correlated (r > 0.4 or
r < −0.4)with the corresponding RBPswere considered as the target genemodules.
i Cell proliferation was significantly decreased in PUM1 knockdown cells compared
to the cellswith non-target sgRNA. jCell proliferationwas significantly decreased in
G3BP1 knockdown cells compared to the cells with non-target sgRNA. For the gene
expression curves in (b, h), the center line represents the average and the shade
represents 0.95 confidence interval. The smoothed curves were derived by using
Loess function. For the enrichment analyses in (e–g), one-sided Fisher’s exact tests
were performed and FDR was calculated using Benjamini–Hochberg procedure.
The enrichment folds were shown in the figure. For the bar plots in (i, j), three
biological replicates were performed for each measurement. Mean and standard
deviation were shown. Two-sided student’s t-tests were performed and P values
were shown in the figure. Source data are provided as a Source Data file.
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examined their potential roles in regulating the differential expression
of Type II CCGs. Among the known 150 RBPs whose binding targets
have been thoroughly examined36, 22 RBPs were differentially
expressed along the cell cycle in our data.

To evaluate their functions in cell cycle progression, we then
compared their binding targets to Type II CCGs. As a result, we iden-
tified eight RBPs whose binding targets were significantly enriched in
at least one Type II CCG module (Fig. 4g). It is worth pointing out that
four out of these eight RBPs (UPF1, BCLAF1, PUM1, and G3BP1) have
already been reported to regulate RNA stability and decay36. To further
substantiate the potential regulatory roles of these RBPs, we examined
the correlation between the expression patterns of the four RBPs and
their target genes. For BCLAF1 and G3BP1, known to enhance RNA
stability37,38, we successfully identified the target gene groups exhi-
biting a positive correlation with the expression patterns of these two
RBPs (Fig. 4h). For PUM1, which has been reported to promote RNA
decay39–41, we identified its target gene groups showing a negative
correlation with its own expression pattern (Fig. 4h).

Next, to validate ourfindings,weknockeddown twonon-essential
genes: PUM1 and G3BP1 (Fig. 4i, j and Supplementary Fig. 15a). We did
not test the knockouts of BCLAF1 since it has been classified as a pan-
essential gene31. As a result, we observed that the cell growth was
significantly decreased in PUM1 knockdown cells (Fig. 4i), which sug-
gests that PUM1 indeed plays a critical role in regulating cell pro-
liferation in the HEK293T cell line. The knockdown ofG3BP1 also led to
decreased cell proliferation with statistical significance (Fig. 4j).

It is also worth pointing out that we identified 14 genes whose
binding targets were not significantly enriched in Type II CCGs.
Interestingly, these genes are mainly composed of splicing factors,
rRNA processing factors, and miRNA processing factors (Supple-
mentary Fig. 15b). For the splicing factors, the lack of target
enrichment in Type II CCGs suggests that they regulate the general
splicing process to adapt to different cell cycle phases or modulate
periodic alternative splicing along cell cycle, which is consistent
with previous studies42,43.

Besides RBPs, N6-methyladenosine (m6A) modification, one of
themost abundantmodifications onmammalianmRNA, has also been
shown to regulate the fate of RNA by recruiting different readers44–46.
One of the well-known readers of m6A modification is YTHDF2, and it
has been shown to affect the RNA stability47,48. Here, we observed that
YTHDF2 target genes48 are significantly enriched in the genes withm6A
modification49,50 in Modules 3, 4, and 5 (Supplementary Fig. 15c), and
meanwhile, the gene expression of YTHDF2 is also cell cycle dependent
(Supplementary Fig. 15d). These results showed that besides RBPs,
RNA modification is also associated with the regulation of Type II
CCGs. Overall, our analysis suggested that RNA binding proteins and
m6A modification of RNA play important roles in regulating the
expression of Type II CCGs along the cell cycle.

RNA velocity analysis of oncogene-induced senescence
To further test the ability to dissect the gene expression kinetics and
gene regulation underlying cell-state transition, we applied snapTotal-
seq to characterize the gene regulation in the entry into the oncogene-
induced senescence (OIS). Here, we utilized the HPNE cells with
inducible KRASG12D expression51. After the activation of KRASG12D,
we collected the cells on Days 1, 2, 3, and 5 (Fig. 5a), and in total, we
sequenced 642 cells using snapTotal-seq. The cells were plotted on the
UMAP and were labeled by the time points (Fig. 5b) and the assigned
cell cycle stages (Fig. 5c). Interestingly, we observed that the cells are
distributed in two clusters. One cluster (top right cluster in Fig. 5c) is
mainly composed of G1, S, and G2/M phases, while the other one
(bottom-left cluster in Fig. 5c) is mainly composed of the G0 popula-
tion based on reCAT analysis. By comparing the percentage of differ-
ent cell cycle stages at each timepoint, we observed a gradual increase
of the G0 cells from days 1 to 5 (Supplementary Fig. 16a), suggesting

that the cells continuously entered the G0 phase following the
induction of oncogenic KRAS.

Next, we applied RNA velocity analysis to construct the trajectory
of OIS. We observed a clear trajectory within the G0 population indi-
catedby the bold arrow inFig. 5d. The trajectory follows the timeorder
of days 1, 2, 3, and 5 (Fig. 5d and Supplementary Fig. 16b). Therefore,
the bottom-left region of the G0 cluster (dashed circle in Fig. 5d)
corresponds to the endpoint: the senescent state. The successful tra-
jectory inference was confirmed by the velocity confidence scores
(0.88± 0.050) (Supplementary Fig. 16c). The inferred latent time also
agreed with the experimental time points (Supplementary Fig. 16d).

Comparative analysis between unspliced and spliced RNAs
along OIS
Next, to investigate the gene expression dynamics during OIS, we
performed the differential gene expression analysis for both spliced
RNA and unspliced RNA based on the trajectory within the G0
population established by RNA velocity analysis (Fig. 5e and Sup-
plementary Data 6). Similar to cell cycle analysis, we define the genes
with significant changes in both spliced RNA and unspliced RNA as
Type I DEGs, the genes with only significant changes in spliced RNA
as Type II DEGs, and the genes with only significant changes in
unspliced RNA as Type III DEGs. In total, we identified 2113 genes as
Type I DEGs, 2738 genes as Type II DEGs, and 1087 genes as Type III
DEGs (Fig. 5e).

Identification of five gene expression kinetic modules in OIS
We focused on the transcriptional regulation of the Type I DEGs
during OIS. Through an analysis of their transcriptional dynamics, we
first detected five kinetic modules among Type I DEGs (Fig. 5f, g and
Supplementary Data 7). We noticed that Modules 1 and 2 were sig-
nificantly downregulated along the senescence entry, and they were
significantly enriched with the genes involved in cell adhesion and
extracellular matrix organization (Fig. 5f, g and Supplementary
Fig. 16e). Conversely, the expression level of Module 3 was tran-
siently downregulated at the early stage, followed by a rapid rebound
to its original level (Fig. 5f and Supplementary Fig. 16f). Lastly, the
expression of Modules 4 and 5 demonstrated significant upregula-
tion along the trajectory, underscoring their pivotal roles in estab-
lishing OIS (Fig. 5f and Supplementary Fig. 16g). Specifically, Module
4 that is enriched with the genes involved in the immune response
(Supplementary Fig. 16g), was quickly activated after the induction of
oncogenic stress, followed by a linear increase in their expression
levels. In contrast, the proteotoxic stress response pathway (i.e.,
Module 5, Supplementary Fig. 16g) exhibited an initial slow activa-
tion, which was succeeded by a rapid elevation in expression levels at
the middle time point.

Identification of TF Hubs underlying the kinetic modules by
LASSO regression
To identify the TF hubs that regulate these kinetic modules, we
established the association between TFs and their target genes based
on the LASSOanalysis, the sameas analyzed in the cell cycle (Fig. 3a). In
total, we identified 112 TFs whose linked genes were significantly
enriched with Type I kinetic modules (FDR <0.01). Among them, 88
out of 112 TF modules and 4428 out of 5413 TF-gene links were also
captured by GENIE3 (Supplementary Fig. 17), suggesting the high
confidence of the TF modules identified here. These TFs were then
grouped into 3 distinct regulatory hubs based on their activities along
the trajectory of OIS (Fig. 5h–I and Supplementary Data 8). We
observed that Hub 1 is mainly associated with kinetic Modules 1 and 2,
Hub 2 is mainly associated with kinetic Module 3, and Hub 3 is mainly
associated with kinetic Modules 4 and 5.

Next, we identify TF–TF associations within the TF hubs or
between the TF hubs using LASSO analysis. In Fig. 5j, we colored
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TFs based on their hubs as determined above. As a result, we
observed that TFs from the same hub tend to form densely inter-
connected sub-networks (Student’s t-test, p < 2.2e − 16 for all TF
hubs). More interestingly, we observed that Hub 2 is located
between Hubs 1 and 3 (Fig. 5j), indicating their important roles in
the shifting process from one regulatory controller to another
regulatory controller.

Validation of specific regulations based on ChIP-seq data and
motif analysis
To further pin down the regulatory relationships between the TFs, we
examined whether associated genes were significantly enriched with
either the ChIP-seq validated binding targets or the gene promoters
carrying the corresponding bindingmotif. As a result, we found 25 TFs
with significant enrichment (Supplementary Data 9). We also labeled
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these 25 verified TFs based on their respective TF hubs described
above (Fig. 6a).

Notably, based on the gene expression kinetics of the 25 TFs, Hub
3 can be further divided into two sub-hubs (Hub 3.1 and Hub 3.2).
Intriguingly, Hub 3.1 predominantly consisted of TFs regulating the
immune response pathway, while Hub 3.2 was comprised of TFs linked
to the integrated stress response pathway (Fig. 6a). This observation
highlights the distinct and specific functional roles of different TF hubs
during the entry into the OIS.

In Hub 3.1, we identified REL as a critical player that orchestrates
the activities of both theNF-kBpathwayand the STAT1/STAT2pathway
(Fig. 6b, c). Interestingly, we also observed that the TFs belonging to
Hub 2 (colored in yellow in Fig. 6c)were also involved in the regulation
of RELB and STAT1 through the direct binding to their promoter
regions, confirming the previous observation of the regulatory con-
nection between Hubs 2 and 3.

In Hub 3.2, ATF4 was identified as the most upstream regulator
within this regulatory network. Our data revealed that ATF4 directly
regulated the expression of CEBPG and ATF3 (Fig. 6d, e), both of which
play critical roles in regulating cellular stress response52,53. The

activation ofCEBPG andATF3, in turn, led to the upregulation ofDDIT3,
which is involved in the regulation of ER stress response54,55, and
NFE2L2, which regulates the oxidative stress response56 (Fig. 6d, e).
This cascade of regulatory events underscores ATF4’s central role in
orchestrating the stress response pathway through the regulation of
key downstream genes, aligning with previous findings57–60. Overall,
our data unveiled the core TF network that governs the entry into
cellular senescence after the induction of oncogenic stress.

RNA binding proteins (RBP) and alternative polyadenylation
(APA) based post-transcriptional regulations during OIS
As shown in Fig. 5e, a substantial proportion of genes were Type II
DEGs, whose gene expression is dominantly affected by post-
transcriptional regulation. Based on the dynamic changes in their
spliced RNA abundance, we classified these genes into five kinetic
modules with significant enrichment of different pathways (Supple-
mentary Fig. 18 and Supplementary Data 7).

Next, we examined the potential mechanisms driving the differ-
ential gene expression of Type II DEGs. We first compared the binding
targets of the known 150 RBPs with these 5 kinetic modules, and we
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identified the significant enrichment of the binding targets of certain
RBPs in Modules 1, 2, and 3 (Supplementary Fig. 19a). Interestingly, a
notable proportion of the RBPs enriched in Modules 1 and 2 are spli-
cing regulators36 (Supplementary Fig. 19b), indicating that the splicing
of the target genes detected in these two modules was regulated
during oncogene-induced senescence.

Besides the regulation of RNA fate by RBPs, alternative poly-
adenylation (APA) has also been reported as a commonmechanism to
regulate gene expression in response to cellular stress42. The length-
ening of 3′UTR associated with the usage of distal polyA sites could
increase the binding sites for RBPs ormiRNAs and hence promote RNA
degradation61–63. Interestingly, Chen et al. have reported a global
lengthening of 3′UTR in replicative senescence64. To test whether APA
is also involved in the post-transcriptional regulation in OIS, we evenly
separated the cells into five time windows (intervals) along the tra-
jectory and usedDaPars265 to derive the preference of polyA site usage
within each interval. Indeed, a substantial proportion of the geneswere
found to use multiple polyA sites (Supplementary Fig. 20a), which
makes them qualified for APA analysis.

As a result, we observed different trends in alternative poly-
adenylation among the five kinetic modules. In Module 1, we observed
an increase in the usage of distal polyA sites in intervals 2 and 5, which
corresponds to the decrease in gene expression at the corresponding
intervals (Supplementary Fig. 20b, c). In Modules 3, 4, and 5, we
observed a clear decrease in the usage of distal polyA sites at the
late intervals (Supplementary Fig. 20g–i), which is consistent with
the significant increase in the expression levels of these genes at the
late time points (Supplementary Fig. 20f). It is worth noting that in
Module 2, we only observed slight changes in the usage of polyA sites
along the trajectory (Supplementary Fig. 20d, e), suggesting that the
expression of these genes was not mainly regulated by APA. Overall,
these observations confirm APA as a general post-transcriptional reg-
ulation during oncogene-induced senescence and it can be captured
by snapTotal-seq.

Discussion
In summary, we developed a high-sensitivity single-cell total-RNA-seq
method (snapTotal-seq) by combining the multiple annealing chem-
istry and template-switching chemistry into a one-step reaction.
Benchmark analysis showed that our method, with a simplified
chemistry, achieves a gene detection sensitivity similar to VASA-seq,
while significantly surpassing thewidely usedoligo-dT-basedmethods,
particularly for moderately and lowly expressed genes.

Furthermore, by taking the intrinsic cell cycle as an example, we
conducted a comprehensive analysis to compare both oligo-dT-based
and total-RNA-based scRNA-seq methods for their performance in
characterizing gene expression dynamics through RNA velocity ana-
lysis. As a result, with the efficient detection of both unspliced RNAs
and spliced RNAs, snapTotal-seq demonstrated significant advantage
in reconstructing the underlying dynamic process of cell cycle pro-
gression, in comparison to oligo-dT-based methods.

With the established cell trajectory by RNA velocity, we success-
fully identified a large number of noncanonical cell cycle genes and
unveiled the related biological processes intricated with cell cycle
progression. It is also worth noting that a small fraction of the cano-
nical cell cycle genes were not captured in our data. First, the genes
regulated at the protein level throughput the cell cycle were not
detected by our analysis. For instance, cyclin D and CDK4/6, which
drive G1/S transition, undergo tight regulation by either ubiquitin-
proteasomal pathway66,67 or inhibitory protein binding68–70. Con-
sistently, no significant changes at the RNA level were detected in our
data for these genes. Second, previous studies have shown that some
regulators of cell cycle are cell-type specific69,71,72. Since the list of
canonical cell cycle gene list is curated from previous studies based on

a variety of biological contexts, it could include cell-type specific cell
cycle regulators which may not participate in the cell cycle regulation
in HEK293T cell line we characterized here.

Beyond the identification of differentially expressed genes, we
were able to directly link the expression of TFs to the transcriptional
activities of their target genes. Here we performed LASSO regression
of the transcriptional dynamics of a specific TF against the expression
of other TFs. As a result, we demonstrated the ability of snapTotal-seq
to derive the inference hubs of TFs and identify the key TFs that con-
trol the cell-state transition. In contrast, withmethods that only profile
the spliced RNAs, this type of analysis is unfeasible.

Besides the regression-based approach used here, non-
parametric algorithms have been developed to infer gene regulatory
network (GRN) through gene expression data30,73–75. In comparison to
regression-based approaches, these non-parametric methods aim to
capture more intricate dependencies between different genes,
including non-linear ones. To evaluate the performance of different
approaches on identifying TF-gene regulation from our data, we
employed GENIE322,30, a non-parametric method, to compare with the
regression-based method. Overall, most of high confidence TF-gene
links were captured by both methods, suggesting the robustness of
GRN inference on our data. Consistent with the features of non-
parametric approaches, GENIE3 identified more TF-gene links com-
pared to LASSO regression, potentially representing non-linear
dependencies due to overall lower scores. Although further analyses
were not conducted here, future investigations on these non-linear
dependencies are greatly desired to unveil the intricacies of gene
regulation.

To further illustrate the performance of snapTotal-seq,we applied
it to theprocess of oncogene-induced senescence. Andwe successfully
pinpointed the key TF regulatory hubs that drove the cells into the
senescent state. In summary, our work demonstrates the versatility
andpotential of snapTotal-seq in advancingourunderstandingof gene
expression dynamics and, more importantly, the regulatory hubs
underlying cell-state transition.

Methods
Cell cultures
HEK293T (CRL-3216, obtained from ATCC) cells were cultured in
DMEM with 10% fetal bovine serum (FBS, Life Technologies) and were
passaged every 2 days with 0.05% trypsin (Corning®). hTERT-HPNE
(CRL-4023, obtained from ATCC) cell line was cultured in the medium
with 75% DMEM without glucose (Sigma), 25% Medium M3 Base
(INCELL Corp.), 2mM L-glutamine (Sigma), 1.5 g/L sodium bicarbonate
(Sigma), 5% FBS (Life Technologies), 10 ng/mL human recombinant
EGF (ThermoFisher), 5.5mM D-glucose (Sigma) and 750 ng/mL pur-
omycin (InvivoGen), as recommended by ATCC. The cells were pas-
saged every 2–3 days with 0.25% trypsin (Corning®).

The inductionof oncogene-induced senescencewasperformedas
described in previous publicaiton51. Briefly, wild-type HPNE cells with
inducible KRASG12D (iKRAS-HPNE) were cultured with doxycycline
(6μg/mL) to activate the expression of KRASG12D. The cells were col-
lected on days 1, 2, 3, and 5 after the induction of KRASG12D expression
for single-cell RNA-seq experiments.

U2OS (HTB-96, obtained from ATCC) cell line was cultured in
McCoy’s 5a medium (ATCC) supplemented with 10% FBS (Life Tech-
nologies), and the cells were passaged every 2–3 days with 0.25%
trypsin (Corning®). NIH/3T3 (CRL-1658, obtained from ATCC) cell line
was cultured in DMEM with 10% fetal bovine serum (FBS, Life Tech-
nologies) and was passed every 2 days with 0.25% trypsin (Corning®).
To perform single-cell RNA-seq experiments, the cells were trypsinized
and resuspended in PBS (Corning®). The cells were then sorted into the
96-well plates with 1μL lysis buffer per well by using BD Aria II with a
130μm nozzle.

Article https://doi.org/10.1038/s41467-024-50291-3

Nature Communications |         (2024) 15:5941 11



Cell lysis, reverse transcription, and amplification by
snapTotal-seq
The cell lysis buffer consisted of 0.7μL of 1.8% Triton-X (Sigma),
0.025μL of 0.1M DTT (Invitrogen), 1 U RNaseOUT (Invitrogen),
0.05μL of dNTP (10mMeach) and 0.2μL of primermix (1.5μMofGTG
AGT GAT GGT TGA GGA TGT GTG GAG N5 T12, 5 μMof GTG AGT GAT
GGT TGA GGA TGT GTG GAG N5 T3, 5μM of GTG AGT GAT GGT TGA
GGA TGT GTG GAG N5 G3). 10μL of mineral oil (Sigma) was added to
prevent the evaporation in the following steps. The lysis was per-
formed at 42 °C for 3.5min. After lysis, the plate was immediately
placed on the ice for 1min. Reverse transcriptionmix which contained
0.4μL of 5X M-MLV reverse transcriptase buffer (250mM Tris-HCl,
375mM KCl, 15mM MgCl2, Invitrogen), 0.1μL of 0.1M DTT (Invitro-
gen), 2 U RNaseOUT (Invitrogen), 10U Maxima H Minus Reverse
Transcriptase (Thermo Scientific) and 0.4μL of 0.1% Triton-X (Sigma),
was then added to each well. The reverse transcription and template-
switching step was carried out with 10 cycles of 8 °C for 12 s, 15 °C for
45 s, 20 °C for 45 s, 30 °C for 30 s, 42 °C for 2min, and 50 °C for 3min,
followed by 50 °C for 15min. The reverse transcriptase was inactivated
at by incubating at 74 °C for 25min.

After that, PCR amplification mix, which consisted of 10μL of 5X
GoTaq Flexi buffer, 4μL of 25mM MgCl2, 1μL of dNTP (10mM each),
0.25μL of 100μMGATprimer (GTGAGTGATGGTTGAGGATGTGTG
GAG), 1.75 UGoTaq Flexi DNApolymerase, 2.5 μL of 20X EvaGreenDye
(Biotium) and 29.9μL of RNase-free H2O, was added to each well. The
amplification was carried out on a Real-time PCR machine. The PCR
programwas as follows: 95 °C for 2min, 23–26 cycles of 95 °C for 20 s,
63 °C for 20 s and 72 °C for 2min, 72 °C for 5min.

Purification was carried out with 1.2X Ampure XP beads (Beckman
Coulter). The samples were mixed with Ampure XP beads and incu-
bated for 10min at room temperature. Then, the plate was placed on a
96-well magnetic stand, and the supernatant was removed. To remove
the residual mineral oil, we washed the beads with 2-propanol (Sigma)
twice, followed by the wash with 100% ethanol (Koptec). Next, the
beads were washed twice with 80% ethanol. Finally, the amplified
products were eluted in 25μL of RNase-free H2O.

Next, the amplified products from each cell were tagged with cell-
specific barcodes by double-strand conversion (DSC). Specifically, for
each cell, 10μL of amplified product was mixed with 2μL 10X Ther-
moPol Buffer, 0.4μL of dNTP (10mM each), 1μL of 10μMDSC primer
with cell barcode (GTGTGCTCTTCCGATCT NNNNNNNN AGGAG AGT
GTG AGT GAT GGT TGA GGA TGT GTG GAG), 0.4 U Deep Vent (exo-)
DNA polymerase (New England BioLabs) and RNase-free H2O to 20μL.
The DSC programwas as follows: 95 °C for 1min, 15 cycles of 63 °C for
25 s and 72 °C for 1min, 72 °C for 3min. 1μL of 0.2MEDTA (Sigma)was
then added to each cell to stop the reaction.

Here, we would like to point out the design principle for adding
cell barcode sequence after the PCR amplification. Since the adapter
sequences of our cDNA amplicon products have complementary on
both ends, if we introduce the cell barcode during the PCR amplifica-
tion step, it will result in the cell barcode being added to both ends of
the amplicon products. As a result, it would create a substantial stem
loop structure that essentially hinders the efficient amplification. In
contrast, when we introduce cell barcode via the extra double-strand
conversion step after the PCR amplification, the cell barcode is only be
added to one end of the amplicon.

Sequencing library construction
The cells with different cell barcodes were pooled together (4μL of
reaction product per cell) and were purified with 1.1X Ampure XP
beads. For each pooled library, ~350ng of purified DNA products were
then sonicated to 150–250bp (Covaris S220). The sonicated DNA was
purified with 1.8X Ampure XP beads. Following that, another step of
DSC was performed to enrich the DNA fragments with UMI and cell
barcode. Briefly, the sonicated product was mixed with 3μL of 10X

ThermoPol Buffer, 0.6μL of dNTP (10mM each), 1.5μL of 10μM
primer (GCACGACATCTGCTAACGCAGTA GTGTGCTCTTCCGATCT),
0.6U Deep Vent (exo-) DNA polymerase and H2O to 30μL. The reac-
tion was carried out as follows: 95 °C for 1min, 6 cycles of 56 °C 25 s
and 72 °C 30 s, 72 °C for 3min. The products were then purified with
1.4X Ampure XP beads. The purified products were subjected to dA
tailing with 2μL of 10X NEBuffer 2 (New England BioLabs), 0.1μL of
100mM dATP, and 2.5 U Klenow Fragment (3′ to >5′ exo-) (New Eng-
land BioLabs) and H2O to 20μL, by incubating at room temperature
for 30min.

After purifying the products with 1.4X Ampure XP beads, we
performed the ligation at room temperature for 20min. The ligation
reaction mix included 13μL of 2X Quick Ligase reaction buffer, 0.5μL
of 50mM Y-shape adapter, 0.5μL of Quick Ligase (New England Bio-
Labs), and 12μL of dA-tailing product. The ligation reaction was
quenched by adding 5μL of 0.2M EDTA (Sigma) and was purified by
1.2X Ampure XP beads. The amplification of the ligation products was
then performed with the program as follows: 95 °C for 2min, 10 cycles
of 95 °C 20 s, 61 °C 20 s and 72 °C for 1min, and 72 °C for 3min for final
extension. The amplification mix consisted of 5μL of ThermoPol Buf-
fer, 1μL of dNTP (10mM each), 2μL of 10μM forward primers (GCA
CGA CAT CTG CTA ACG CAG TA), 2μL of 10μM reverse primers (AAT
GAT ACG GCG ACC ACC GAG A), 1 U of Deep Vent (exo-) DNA poly-
merase, 33.5μL of H2O and 6μL of ligation products.

After the amplification products were purified with 1.2X Ampure
XP beads, duplex-specific nuclease (DSN) treatment was applied to
remove ribosomal reads. Specifically, 100 ng of amplified products
was mixed with 2 μL of 10X DSN buffer (Evrogen) and H2O to 20μL.
The DNA was denatured at 95 °C for 30 s, followed by incubation at
80 °C for 3 h. After that, 1μL of preheated duplex-specific nuclease
(Evrogen) was added to the reaction and incubated at 80 °C for 15min.
To quench the reaction, 4μL of 0.2M EDTA was added at 80 °C, and
the reaction was then put on ice immediately. The products were
purified with 1.2X Ampure XP beads.

Following that, an enrichment PCR was carried out to enrich the
undigested DNA fragments. The reaction mix consisted of 2.5μL of
10X ThermoPol Buffer, 0.5μL of dNTP (10mM each), 0.75μL of 10μM
forwardprimers (GCACGACATCTGCTAACGCAGTAGTGTGCTCTT
CCG ATC T), 0.75μL of 10μMreverse primer (AATGAT ACGGCGACC
ACC GAG A), 0.5 U Deep Vent (exo-) DNA polymerase, 12.25μL of H2O
and 8μL of DSN treatment product. The programwas as follows: 95 °C
for 2min, 5 cycles of 95 °C for 20 s, 63 °C for 20 s and 72 °C 1min, 72 °C
3min for final extension. The amplified products were purified with
1.2X Ampure XP beads.

A final PCR step, which consisted of 2.5μL of 10X ThermoPol
Buffer, 0.5μL of dNTP (10mMeach), 0.75μL of 10μM forward primers
(CAA GCA GAA GAC GGC ATA CGA GAT GCA CGA CAT CTG CTA ACG
CAG TA), 0.75μL of 10μM reverse primers (AAT GAT ACG GCG ACC
ACC GAG A), 0.5 U Deep Vent (exo-) DNA polymerase, 19.25μL of H2O
and 1μL of purified DNA product, was performed to add the sequen-
cing adapter. The program runs as follows: 95 °C for 2min, 5 cycles of
95 °C for 20 s, 61 °C for 20 s and 72 °C 1min, 72 °C 3min for final
extension.

The libraries were sequenced on NextSeq 500 machine with cus-
tomized sequencing primers as follows: Read 1 sequencing primer:
ACA CTC TTT CCC TAC ACG ACG CTC TTC CGA TCT (the same as
Illumina Tru-seq i5 sequencing primer), Read 2 sequencing primer:
AGA GGT GAG TGA GTG ATG GTT GAG GAT GTG TGG AG, Index
i5 sequencing primer: AGA TCG GAA GAG CGT CGT GTA GGG AAA
GAG TGT, Index i7 sequencing primer: CTC CAC ACA TCC TCA ACC
ATC ACT CAC TCA CCT CT. Read 1 sequenced the captured RNA
sequence, while Read 2 sequenced the UMI.

Alternatively, the snapTotal-seq libraries can be constructed into
Illumina standard libraries by replacing the forward primer in the final
PCR step with Truseq-P7 primer (CAAGCAGAAGACGGCATACGAG

Article https://doi.org/10.1038/s41467-024-50291-3

Nature Communications |         (2024) 15:5941 12



ATCGAGTAATGTGACTGGAGTTCAGACGTGTGCTCTTCCGATCT). The
PCR program runs as follows: 95 °C for 2min, 5 cycles of 95 °C for 20 s,
55 °C for 20 s and 72 °C 1min, 72 °C 3min for final extension. The
libraries can then be sequenced with Illumina standard sequencing
primers. Read 1 sequenced the captured RNA sequence, while Read
2 sequenced the cell barcode (bases 1–8) and UMI (bases 44–48). The
sequence of DNA oligos used in snapTotal-seq is provided in Supple-
mentary Data 12.

Reads alignment and gene expression calculation
Read 1 was mapped to human genome assembly (GRCh37) by using
STAR (v2.5.3a)76. The uniquelymapped readswere thenmapped to the
gene annotations of GENCODE (v19) by using htseq-count77 with
“intersection-strict” mode and with option “--stranded = no”. To dis-
cern the amplicons from exons and introns, the “transcript” feature
and the “exon” featurewereused respectively. TheUMI sequences (the
first five bases of Read 2) of the reads mapped to the gene regions
(either the “transcript” feature or the “exon” feature) were extracted.
The reads were then grouped by the UMI sequence and the gene that
they were mapped to, as these reads were derived from the same
original cDNA amplicon. If all the reads within the groupweremapped
to the exon regions of the corresponding gene, the original amplicon
was classified as an exonic amplicon. Otherwise, the original amplicon
was classified as an intronic amplicon. The number of exonic ampli-
cons and intronic amplicons were then counted for each gene, and the
exonic UMI count matrix and intronic UMI count matrix were
generated.

Normalization, PCA, cell cycle analysis, and RNA velocity
analysis
The genes that were detected with more than one UMI in at least five
cells in exon data were kept. The rest of the genes were defined as
lowly expressed genes and were discarded in the following analysis.
The mitochondria genes were also removed before the normalization
step. To normalize the gene expression data across different cells, we
divided the count of UMIs of each gene by the total UMIs detected in
each cell and multiplied by the average UMI number of all cells. The
normalization step was performed on exonic data and intronic data
separately. PCA was performed on exon-based gene expression data
by using Seurat package78. Briefly, the exonic normalized gene
expression data were log-transformed and scaled. The top 500 most
variable genes were selected by using “FindVariableFeatures” function
to perform PCA. Elbow plot was then used to determine the dimen-
sionality of the dataset. The percentage of variance explained by PC1
and PC2 was then calculated. UMAP was performed for dimensional
reduction. Unsupervised clustering was performed by constructing
the KNN graph (“FindNeighbors” function) with k.param= 10 and then
clustering with Louvain algorithm (“FindClusters” function) with
resolution = 0.4. The cell cycle analysis was performed with reCAT17 by
using the exon-based gene expression data. The log-transformed
normalized gene expression was used as the input. RNA velocity ana-
lysis was performed by using scVelo package12. The raw countmatrices
were used as the input. To filter the lowly expressed genes, the
“min_shared_counts” was set as 30 and the “min_cells_u” as 5. After
normalization and log-transformation, the velocities were projected
by using the top 2000 most variable genes and the “dynamical mod-
eling” mode with the following parameters: n_pcs = 2, n_neighbors =
20, fit_basal_transcription = True. Latent time was calculated based on
the projected RNA velocities.

Cell cycle trajectory-based differential gene expression analysis
The differential gene expression analysis was performed on exonic
data and intronic data, respectively, by using tradeSeq package18. The
exonic or intronic raw count matrix was used as the input. The pseu-
dotime of each cell was derived from the cell cycle trajectory inferred

by RNA velocity. The parameter “nknots” in function “fitGAM” was set
as 5. The “associationTest” function was used to identify the genes
which were differentially expressed along the pseudotime. The genes
whose exonic normalized gene expression values and intronic nor-
malized gene expression values were ≥3 in at least 10 cells were kept.
To perform themultiple test correction, the false discovery rate (FDR)
was calculated by using p.adjust function in R. The differentially
expressed genes (DEG) were identified using FDR <0.1 to facilitate the
detection of the genes with moderate changes during cell cycle. The
DEGs identified with a more stringent criteria (FDR <0.05) are exam-
ined in Supplementary Note 3. To verify the results of DEG analysis, we
calculated the fold changes in gene expression along the cell cycle for
all genes. To account for the variations in single-cell data, we evenly
separated the cells into six intervals along the cell cycle, and the
average expression levels were calculated for each interval. The fold
changes between the highest expression level and the lowest expres-
sion level among these intervals were then calculated. The lowly
expressed genes with maximum expression lower than 1 were
excluded.

Analysis of Smart-seq3, CEL-Seq2, VASA-seq, and Smart-
seq-total
To perform the benchmark analysis on Smart-seq3, we reanalyzed the
published HEK293FT dataset generated by Smart-seq3. The raw fastq
files were first demultiplexed based on the cell indexes. The UMI reads
were identified based on the adapter sequence. The adapter sequence
and the UMI sequencewere first trimmed by using seqtk. The trimmed
reads were then mapped to human genome assembly (GRCh37) by
using STAR (v2.5.3a). Following that, the uniquely mapped reads were
assigned to exon or intron regions by using htseq-count as described
above. The reads were collapsed if the hamming distance of UMIs ≤ 1,
and the exonic UMI count matrix and intronic UMI count matrix were
generated. Two potential outliers that were identified based on the
PCA plot in the initial analysis were discarded. The normalization, PCA,
cell cycle analysis, and RNA velocity analysis were then performed as
described above.

To perform the benchmark analysis on CEL-Seq2, we reanalyzed
the published HEK293 dataset generated by CEL-Seq2. To avoid
potential batch effects, only the cells collected in the mixture 2
experiment, as described in the original study, were used. The
demultiplexed reads were mapped to human genome assembly
(GRCh37) by using STAR (v2.5.3a). Next, the uniquely mapped reads
were assigned to exons or introns, as described above. The reads that
were mapped to the same gene were collapsed based on their UMI
sequences, which generated the exonic UMI countmatrix and intronic
UMI count matrix. The potential outliers that were identified based on
the PCA plot in the initial analysis were discarded. The normalization,
PCA, cell cycle analysis, andRNAvelocity analysiswere thenperformed
as described above.

To reanalyze the published HEK293T dataset generated by VASA-
seq (plate version), the raw fastq files were first demultiplexed based
on the cell indexes. The demultiplexed reads were mapped to human
genome assembly (GRCh37) by using STAR (v2.5.3a). Next, the
uniquely mapped reads were assigned to exons or introns, as descri-
bed above. The reads that were mapped to the same gene were col-
lapsed based on their UMI sequences, which generated the exonic UMI
count matrix and intronic UMI count matrix. The cells with low
sequencing depth (total exon UMI < 7500) or high genomic DNA
contamination were discarded. The potential outliers which were
identified based on the initial PCA were also discarded. The normal-
ization, PCA, cell cycle analysis, and RNA velocity analysis were then
performed as described above.

To analyze the published HEK293T dataset generated by Smart-
seq-total, we first trimmed the poly(A) sequences from the raw reads
using Cutadapt (v3.4)79. The trimmed reads were then mapped to
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human genome assembly (GRCh37) by using STAR (v2.5.3a). The
uniquely mapped reads were assigned to exon or intron regions by
using htseq-count as described above.

Benchmark analysis on gene detection sensitivity
Gene annotation was obtained from GENCODE (v19). To evaluate
the gene detection of different RNA biotypes, we classified all genes
into protein coding, non-coding (including lincRNA, pseudogene
and antisense genes), small RNA (including snRNA, snoRNA and
miRNA), and other types. To evaluate the detection of genes with
different expression levels, for each dataset, we discarded the genes
expressed in <20% of cells and grouped the rest of genes based on
their average expression levels. All the datasets were normalized
using a common scaling factor of 100,000 UMIs, to enable the
application of a common cutoff for gene classification. Detection
rates for each groups of genes were then calculated. To evaluate the
detection bias towards RNA length, genes were evenly categorized
into three categories based on their length. In exon-read analysis,
only the length of mature RNA (i.e., the sum of all exons) was con-
sidered. In intron-read analysis, the entire gene length was con-
sidered. Read distribution analysis was carried out using RseQC80

package with hg19 RefSeq gene model.

Validation of the identified cell cycle dependent genes by
qRT-PCR
HEK293T-FUCCI cell line was established by using the FastFUCCI
plasmid (addgene #86849). The cells with successful transduction
were selected by culturing the cells with puromycin (1μg/mL) for
4 days. After collecting the cells of different cell cycle phases by FACS,
RNA was extracted by using TRIzol reagent (Invitrogen) according to
the manufacturer’s instructions. The reverse transcription reaction
andqPCRwere then carried out byusing iScript™ reverse transcription
supermix (Bio-Rad) and iTaq universal SYBRgreen supermix (Bio-Rad),
respectively. The qPCR program was as follows: 94 °C for 2min, 40
cycles of 94 °C for 20 s, 58 °C for 20 s, and 72 °C for 20 s. ATP5F1 was
used as the internal control, as its expression remained unchanged
along the cell cycle. The primer sequences used for qRT-PCR are
provided in Supplementary Data 10.

Calculation of cross-correlation
To quantify the coupling between the gene expression changes in
unspliced RNA and spliced RNA, we borrowed the metrics of “cross-
correlation” from the field of signal processing, which is defined as a
measure of similarity between two signals. For each gene module, the
average z-score of gene expression along the cell cycle trajectory was
calculated for unspliced RNA and spliced RNA, respectively. Following
that, the cross-correlation between the expression curves of unspliced
RNA and spliced RNA was calculated by using numpy.correlate func-
tion in Python.

Functional analysis on cell cycle genes (CCGs)
The list of canonical CCGs was obtained by combining the gene list
of the cell cycle pathway in the Gene Ontology database81, the gene
list of the cell cycle pathway in the Reactome database82 and the
genes reported in Cyclebase83. The Gene Ontology enrichment
analysis was performed by using “Hypergeometric” model in
“goseq”R package84. The cellular localization was obtained from the
cellular compartment category of the GO database. Fisher’s exact
test was used to determine the differential enrichment of canonical
CCGs and noncanonical CCGs in different cellular compartments.
The “endomembrane system” consisted of “GO:0031226”,
“GO:0005887”, “GO:0031224”, “GO:0016021”, “GO:0000139”,
“GO:0098791”, “GO:0098588”, “GO:0005783”, “GO:0005794”,
“GO:0031090”, “GO:0031982” and “GO:0012505”. The list of genes
localized in the nucleus was obtained from “GO:0005634”.

Identify the regulatory links between TFs and their target genes
The links between TFs and their target geneswerefirst identifiedbased
on co-expression analysis. The list of annotated TFswas obtained from
RcisTarget package22 and human TF database85. Only the TFs anno-
tated in both databases were selected. The gene expression at the
spliced RNA and unspliced RNA levels were calculated as described
above. The normalized expression values were log-transformed, cen-
tered, and scaled. For each gene, the correlation coefficients between
its expression at the unspliced RNA level and the expression of all TFs
at the spliced RNA level were calculated. The TFs with r > 0.15 were
selected to construct the LASSO regression model with glmnet pack-
age. The LASSO regression model was constructed to predict the
unspliced RNA expression of the gene of interest based on the
expression of selected TFs. As a negative correlation could be caused
by the mutual exclusive gene expression patterns, only a positive
correlationwas considered here. Different criteria were also evaluated,
and the majority of TF-gene links can be reproducibly captured with
the parameters within the appropriate interval (Supplementary Note 4
and Supplementary Fig. 21). The links with regression coefficients
>0.03 were considered. The linked genes of each TF were then com-
pared to Type I kinetic modules. The significant enrichment was
determined by FDR <0.01, enrichment fold >2, and the number of
overlapped genes >10. The enrichedTF-gene linkswere then subjected
to ChIP-seq verification or motif enrichment analysis.

Establishing TF regulatory network
The links between different TFs were identified based on the expres-
sion covariance as described above. All of the identified linkswere then
verifiedbypublishedChIP-seqdata. The verifiedTF–TF linkswere used
to establish the TF regulatory network with Cytoscape86. For the TF
association network in Fig. 5j, all TF–TF links were used.

ChIP-seq analysis and motif enrichment analysis
The peak files were downloaded fromCistromeDB21. The samples with
median mapping quality ≥25, unique mapping rate ≥0.6, PCR bottle-
neck coefficient ≥0.8, a fraction of reads in peaks ≥0.01, peak number
(fold > 10) ≥150, and high consistency with DNase-seq data (percen-
tage of top 5k peaks overlapped with DNase-seq ≥0.85) were kept. The
rest of the datasets were not used due to potentially low quality. The
qualified datasets were then grouped based on their target TFs. For
each TF, the peaks (fold > 10) identified in corresponding datasets
weremerged, and the peak annotationwas performedusingHOMER87.
Thebinding targetswere identified if thepeakwaswithin 1 or 5 kb from
the transcription start site. These two different cutoffs corresponded
to the scenarios of binding to the promoter region or binding to the
enhancer region, respectively.

For ChIP-seq peak visualization, the raw data or the processed data
were downloaded. The processed data were directly used for visuali-
zation in Integrative Genomics Viewer (IGV)88. Rawdata weremapped to
human genome assembly (GRCh37) using Bowtie289 after removing the
adapter sequences with Cutadapt. After deduplication, BAM files were
converted to bigwig files using bamCoverage function in deepTools
package90. Bigwig files were then used for visualization in IGV.

Motif enrichment analysis was carried out within 500bp upstream
of TSS or 5 kb around the TSS using RcisTarget package22. The sig-
nificant enrichment in motif analysis was determined by normalized
enrichment score (NES) >3 and the number of enriched genes ≥10.

Identify TF-gene links using GENIE3
The catalog of humanTFswas acquired as described above. Next, gene
expression at the spliced RNA and unspliced RNA levels were nor-
malized and log-transformed. An expression matrix consisting of the
exon expression data for TFs and intron expression data for the rest of
genes was constructed, which was used as the input for GENIE3 algo-
rithm. GENIE3-based co-variation analysis was performed using
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SCENIC R package22. The TF-gene links with positive correlation (with
“corrthr = 0.05” option) and with weight falling within the top 5% are
considered in the following analysis. The linked genes of each TF were
then compared to Type I kinetic modules, and the significant enrich-
ment was determined as described above.

Gene knockdown with CRISPR interference (CRISPRi)
HEK293T-CRISPRi cell line was established by using dCas9-KRAB-
MeCP2 plasmid (addgene #122205). The cells that were successfully
transduced were selected with 10μg/mL Blasticidin (InvivoGen) for a
week. The sgRNA vectorwas generated based onCROPseq-Guide-Puro
(addgene #86708). To enable the measurement of the cell population
transduced with sgRNA vector via fluorescence, we replaced the pur-
omycin resistance gene (PuroR) with RFP. Briefly, the CROPseq-Guide-
Puro vector was digested by using MluI (NEB) and SmaI (NEB), which
was then ligated with the RFP sequence from pLKO5.sgRNA.EFS.tRFP
plasmid (addgene #57823). To clone the sgRNA sequence into the
sgRNA vector, the sgRNA vector was digested by using Esp3I (Ther-
moFisher), and the digested vector was next ligated with the annealed
sgRNA oligo by using T4 ligase (New England BioLabs). The lentivirus
was prepared, and the sgRNA was then transduced into the HEK293T-
CRISPRi cell line. After 3 days of transduction, the transduced cells
were 1:1 mixed with uninfected HEK293T-CRISPRi cells. The rest of the
cells were harvested for RNA extraction, and qRT-PCR was performed
to verify the knockdown efficiency by using ACTB as the internal
control. After 5 days of transduction, the initial percentage (referred to
as day 0) of RFP+ cells in the mixed cell population was measured by
using flow cytometry. The mixed cell population was further cultured
for 14 days, and the percentage of RFP+ cells was measured by using
flow cytometry after 14 days of culturing to determine the effects of
the target gene on cell proliferation. The relative proliferation was
calculated as RFP+% (day 14)/RFP+% (day 0). The sgRNA sequences are
provided in Supplementary Data 11.

Data analysis of thegene expressiondynamicsduringoncogene-
induced senescence
After mapping and UMI counting, lowly expressed genes were filtered
out, and normalization was performed as described above. PCA was
carried out with the top 1000 most variable genes. The first five prin-
cipal components were selected to generate UMAP. Cell cycle analysis
wasperformedon the cells collected at each timepoint respectively by
using reCAT. RNA velocity analysis was performed by using the scVelo
package. The raw count matrices were used as the input. To filter the
lowly expressed genes, the “min_shared_counts” was set as 50 and
the “min_cells_u” as 10. After normalization and log-transformation,
the velocities were projected by using the top 2000 most variable
genes and the “dynamical modeling” mode with the following para-
meters: n_pcs = 5, n_neighbors = 20. G0 cells were then ordered based
on the latent time to establish the trajectory towardoncogene-induced
senescence. The differential gene expression analysis was performed
based on the established trajectory by using tradeSeq as described
above. The Gene Ontology enrichment analysis was performed on
each kinetic module by using “Hypergeometric” model in “goseq” R
package.

Statistics & reproducibility
All statistical analyses were performed using R (4.1.0). All in vitro
experiments were repeated at least three times unless otherwise sta-
ted. No data were excluded from the analyses. Comparisons between
the twogroupswereperformedbyusing unpaired two-tailed Student’s
t-tests. ANOVA tests were performed for the comparisons between
three or more groups. The statistical significance of enrichment ana-
lysis was determined by using one-tailed Fisher’s exact test.
Benjamini–Hochberg procedure was used for multiple testing cor-
rection. The details on statistical analyses, tests used, size of n and

definition of significance are included in the corresponding figure
legend and the “Results” section.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The raw data and the processed datasets generated in this study have
been deposited in GEO under the accession number GSE202126. The
raw data of Smart-seq3 were obtained from EMBL-EBI ArrayExpress
under the accession number E-MTAB-8735. The raw data of CEL-Seq2
were obtained fromGEO under the accession number GSE132044. The
raw data of the VASA-plate were obtained from GEO under the
accession number GSE176588. The raw data of Smart-seq-total were
obtained from GEO under the accession number GSE151334. The
publicChIP-seqdatawereobtained fromGEOunder accession number
GSM2132552 for E2F1, GSE59703 for KLF11, GSE55105 for REL and
NFKB2, GSE71848 for GTF2B, GSE43036 for STAT1, GSE69309 for
ATF4, and from ENCODE under the accession number ENCFF826PYA
for E2F2, ENCFF487KQK for MYBL2, ENCFF437PEU for KLF10,
ENCFF133YDB for STAT2, ENCFF937HON for ELF1, ENCFF783IOJ for
ATF3, ENCFF182SSK for CEBPG. Source data are provided with
this paper.

Code availability
The analysis pipeline customized for snapTotal-seq sequencing data is
available at https://github.com/zonglab/snapTotal-seq.git91.
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