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As vast histological archives are digitised, there is a pressing need to be able to
associate specific tissue substructures and incident pathology to disease
outcomes without arduous annotation. Here, we learn self-supervised repre-
sentations using a Vision Transformer, trained on 1.7 M histology images
across 23 healthy tissues in 838 donors from the Genotype Tissue Expression
consortium (GTEXx). Using these representations, we can automatically seg-
ment tissues into their constituent tissue substructures and pathology pro-
portions across thousands of whole slide images, outperforming other self-
supervised methods (43% increase in silhouette score). Additionally, we can
detect and quantify histological pathologies present, such as arterial calcifi-
cation (AUROC = 0.93) and identify missing calcification diagnoses. Finally, to
link gene expression to tissue morphology, we introduce RNAPath, a set of
models trained on 23 tissue types that can predict and spatially localise indi-
vidual RNA expression levels directly from H&E histology (mean genes sig-
nificantly regressed = 5156, FDR 1%). We validate RNAPath spatial predictions
with matched ground truth immunohistochemistry for several well char-
acterised control genes, recapitulating their known spatial specificity. Toge-
ther, these results demonstrate how self-supervised machine learning when
applied to vast histological archives allows researchers to answer questions
about tissue pathology, its spatial organisation and the interplay between
morphological tissue variability and gene expression.

Histology is a relatively inexpensive and effective technique that is
commonly used to diagnose and characterise a multitude of diseases,
most notably, cancer. Classically, glass histology slides are examined
by a pathologist under a microscope; however, recently, there has
been considerable momentum in digitising pathology workflows, as
histology slides can be quickly scanned at high resolution (40x) to
generate Whole Slide Images (WSI). This digitisation provides an

opportunity to leverage several advances in computer vision and
machine learning (ML). Indeed, multiple ML methods have been
developed, largely for malignant pathological entities, to segment
specific cell types, tissue structures, diagnostic features of interest'™,
predict the mutation status of tumours® and diagnostically classify
histology tissue sections’. Whilst such supervised learning algorithms
have proved successful, they rely on expert crafted labels. Recently,
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self-supervision has proven to be a useful methodology to learn rich,
low-dimensional representations of imaging data that have shown
competitive performance to supervised methods, but can be used for a
wide variety of downstream tasks.

In parallel, there are ongoing large-scale research efforts to collect
both histology and paired molecular data from thousands of samples,
including RNA sequencing (RNA-seq) and Whole Genome Sequencing
(WGS)*’. Such datasets provide an opportunity to learn how tissue
structure and function vary in a population, and how constituent ele-
ments of tissue, in both health and disease, are impacted by both
common genetic variation and gene expression. Previous efforts have
focused on supervised approaches, by extracting and quantifying the
size and distribution of specific cell-types of interest and characteris-
ing them epidemiologically and genetically. However, this requires the
manual collection of binary segmentation labels of cells which is time
consuming and therefore does not scale to multiple tissue types.
Supervised methods utilising ImageNet pre-trained models have also
been developed that aim to predict tissue of origin®, or gene expres-
sion directly from histology image tiles, but have not sought to
decompose gene expression contributions from underlying tissue
substructures and pathological features present in the tissue’ ™.
Seminal work on unsupervised approaches that have aimed to couple
histology, gene expression and genetic variation have focused on the
use of latent factor models”'*. These approaches have been able to
characterise both shared and specific sources of gene expression and
histological variation and have described “image QTLs”, in which
genetic variants drive changes in tissue morphology. Finally, the extent
to which specific histological tissue substructures and pathological
features vary naturally in a population, as quantified computationally,
and hence objectively, from large numbers of WSI, has not been widely
addressed, nor how such variation can be associated to common
genetic variants or changes in gene expression related to tissue
morphology.

We advance previous work by exploiting several recent ML
innovations, namely Vision Transformers (ViT)® coupled with self-
supervised learning'® to combine histology, gene expression and
common germline genetic variation in 13,898 samples, representing 23
distinct tissues, from 838 donors and a total of 1.7 M histology tiles
(Fig. 1). We start by learning low-dimensional representations of his-
tology tissue tiles using DINO, demonstrating that our representations
are able to identify and cluster specific tissue substructures, cells and
pathological features without labels (Fig. 1A, B).

We utilise the ability of these representations to identify sub-
structures and pathological features to automatically segment all
GTEx"™ WSI, with limited manual labelling of specific features (< 0.5% of
the data used) obtaining substructure and pathology proportions per
donor sample (Fig. 1C). Next, using these derived substructures
and pathological features, we characterise profound tissue variability
across donors that drives substantial differential gene expression,
as well as characterise common germline genetic variants associated
with specific histopathological features through both genome-wide
association analysis (GWAS) and interaction eQTL analyses. Despite
not being trained specifically for this task, as our representations are
rich morphological descriptors of tissue histology both within and
across donors, we are able to predict and spatially localise individual
RNA expression levels with superior performance to competing
methods (Fig. 1D). We validate our spatial RNA expression predictions
using positive control immunohistochemistry (IHC) for several cano-
nical marker genes and subsequently characterise the specific loca-
lised expression signatures of 29 individual substructures and
pathological features (accuracy > 80%). Finally, we evaluate both
our histology tile representations and RNAPath on an held-out
external validation cohort, TCGA-BRCA and demonstrate we can seg-
ment carcinoma from benign tissue. Here, we have shown that learning

self-supervised representations of histology is a powerful approach for
understanding the molecular characteristics of tissue and its collective
organisation.

Results

Histology tile representations learnt via self-supervision distin-
guish tissue substructures and pathological features

without labels

We utilised 13,898 Whole Slide Images (WSI) across 23 tissues collected
from 838 donor individuals as part of GTEx’. WSI are gigapixel images
(e.g. 50,000 x 150,000 pixels), in which much of the image does not
contain tissue. To obtain only tissue containing sections of the WSls,
we segmented the tissue from background using a previously pub-
lished U-net (Supplementary Fig. 1). Self-supervised models have been
recently shown to be effective in learning compact, rich image
representations”’?%, Therefore, we sought to learn relevant features
present in histology images by training a Vision Transformer (ViT-S) on
1.7M GTEx histology tiles using the self-supervised DINO
framework'®* (see Methods). Despite being trained with no labels, we
see that learnt representations clearly capture and separate cell types
(e.g. adipocytes), pathological features (e.g. arterial calcification) and
tissue substructures (e.g. tibial vessel layers: intima, media, adventitia)
(Fig. 2, Supplementary Fig. 2 for additional tissues) whilst not being
affected by confounding related to where samples was processed or
the hospital the donor enrolled at (Supplementary Fig. 3) (see meth-
ods). We compared our self-supervised representations learnt from
GTEXx, to both representations obtained from a ResNet50 model pre-
trained on ImageNet and a self-supervised Swin transformer trained on
15 million histology images, CTransPath**. We see that our repre-
sentations better capture intrinsic tissue substructures with a con-
sistent improvement in median silhouette score across a range of
k-mean clusters [3,20]: ImageNet embeddings=0.092, CTransPath
embeddings =0.137, DINO embeddings=0.196 (Tibial Artery); Ima-
geNet embeddings =0.103, CTransPath embeddings=0.138, DINO
embeddings = 0.225 (Esophagus Mucosa). (Supplementary Fig. 4).
With the aim of assessing the impact training has on DINO embed-
dings, we performed a 3-fold cross validation on a subset of the data
(500K tiles from 7 tissues each), excluding any sample that contained
annotated patches. Tile clustering was consistent across folds, as
confirmed by the silhouette scores: 0.190, 0.195 and 0.193 for fold 1, 2,
3 respectively (std = 0.003) for tibial artery and 0.219, 0.228 and 0.226
for fold 1, 2, 3 respectively (std = 0.005) for esophagus mucosa (Sup-
plementary Figs. 5, 6).

Self-supervised WSI tissue substructure and pathology
segmentation

Segmenting various tissues into constituent tissue substructures is a
time consuming task that does not scale easily to thousands of WSI.
Additionally, it has not been widely documented how normal tissue
substructures vary in a population or which genes are specific to each
substructure or pathological feature. To automate the dissection of
tissue into constituent substructures and pathological features, we
manually labelled a small subset of image tiles from a range of tissue
types, with annotations that were validated by a clinical histopathol-
ogist (see Methods). Fixing the ViT-S encoder, we performed inference
on the WSI tiles as well as the subset of labelled tiles to obtain their
corresponding representations. We trained a k-Nearest Neighbours
(KNN) model using the labelled tile representations and inferred the
class of each unlabelled tile originating from a given WSI (see Meth-
ods). First, we benchmarked our approach against Resnet and CTran-
sPath for classifying labelled tiles using a KNN. We see that the average
accuracy achieved using our DINO model embeddings outperforms
other approaches in all tissues tested: tibial artery (DINO=0.937,
CTransPath =0.897, ImageNet =0.757), esophagus mucosa (DINO =
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Fig. 1| Schematic representation of using self-supervised representations
learnt from whole slide image histology for segmentation of tissue sub-
structures, pathological features and understanding morphology-expression-
genetic associations using RNAPath. A Histology whole slide images (WSI) are
preprocessed by segmentation and tiling into 63 x 63 pm? squared regions. B Self-
supervised learning is used to extract morphological features from tiles. C By using

Gene expression prediction and localisation

learned features, tiles are classified through a K-Nearest Neighbours model and
phenotypes—in terms of extent of detected regions in the sample—are derived.

D RNAPath model takes as input tile embeddings and predicts both local (tile-level)
and global (sample-level) gene expression as output, together with the heatmap to
visualise predicted spatial gene activity.
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Fig. 2 | UMAP embeddings of tibial artery tile features from three representa-
tion learning methods. A ResNet50 with pretrained weights from ImageNet.

B CTransPath (pretrained on 15 M histology images). C Our self-supervised ViT-S
model trained using self-distillation with no labels (DINO). Tiles have been manually

labelled with tissue substructures/pathologies to interpret clusters. DINO embed-
dings show both better qualitative clustering and quantitative silhouette scores,
a 43% improvement over CTransPath.

0.909, CTransPath=0.888, ImageNet=0.786) and colon (DINO=
0.956, CTransPath = 0.949, ImageNet = 0.907). Additionally, by map-
ping annotated tiles back to the original histology, we see that our tile-
classification-based approach for tissue segmentation clearly detects
known tissue substructures and pathological features (Fig. 3). We
quantitatively evaluated the accuracy of the kNN in the tile-level clas-
sification: for each tissue, we held-out 10% of the annotated tiles of
each class from the kNN model fitting and measured its accuracy
across 10 folds. Median accuracy across all derived tissue substructure
and pathological features was 92% + 3.5%.

To further assess our automated segmentation quantitatively, we
compared calcified cases as described in the GTEx pathology notes
versus our inferred calcification labelled tiles per WSI. Tiles inferred as
belonging to the calcification class had high sensitivity in recovering
ground-truth pathologist labels, with AUROC=0.93, sensitivity =
89.7%, specificity = 79.0% (Supplementary Fig. 7), indicating that the
vast majority of true positive cases were correctly identified by the
kNN segmentation model. Additionally, when considering calcification
occupying > 5% of the tissue present in a WSI, our model identifies a
further eight cases. Upon manual inspection, five of these eight cases
were false positives containing debris that resembled calcification;
however, three WSI clearly contained calcification (false negatives)
that were not labelled as such in the GTEx pathology notes (Supple-
mentary Fig. 8). This highlights the utility of our approach to discover
unannotated pathological features, with the potential to aid patholo-
gical reporting. Finally, we evaluated the kNN robustness across the
three DINO training folds: the median accuracy was highly comparable:
0.930+0.005 for tibial artery and 0.904+0.007 for esophagus
mucosa.

The full list of tissue substructures and pathological features with
corresponding accuracy and variability across 10-folds are presented
in Supplementary Tables 1, 2.

Substantial variability in tissue substructure proportions
across donors

Whilst GTEx pathology notes contain labels of whether subjects have a
given pathological feature or not, there is no information on its extent,
i.e. the proportion of affected tissue, nor its spatial location within the
tissue. Using our kNN segmentation model, we inferred labels for all
tissue tiles across all WSI considered. By doing so, we can represent any
given sample as the proportion of its inferred tissue substructures and
pathological features, allowing us to quantify inter-subject variability.
We see that the proportion of different tissue substructures and
pathological features vary dramatically across donors within the same
tissue type (Fig. 4, Supplementary Fig. 9). For example, the proportion
of calcified tissue in tibial artery samples varies from O to 44% with a
mean of 3.3%. This pattern is true across all tissues and substructures
quantified (Supplementary Table 3). In some but not all cases, this
likely represents tissue sampling variation as opposed to true biolo-
gical or pathological variation.

An acute difficulty when dissecting tissue without laser capture
microdissection (LCM) is obtaining the correct target tissue of interest
with little to no contamination of other tissue components. This is
critical for enabling the precise characterisation of gene expression
tissue specificity or quantifying the degree of tissue sharing across
eQTLs* 7. For example in GTEX, ‘esophagus mucosa’ tissue is defined
as having mucosal epithelium present, whilst ‘esophagus muscularis’
tissue should not. To determine the presence of a contaminant or
incorrect target tissue, we assessed the degree to which squamous
epithelium was present in muscularis samples. Surprisingly, 6% of
muscularis samples (total n=950) contain mucosal tissue (>1%) (Sup-
plementary Fig. 10). To determine whether this is recapitulated at the
level of gene expression, we checked the expression level of a gene
specific to mucosal epithelium, KRT6A. We see that there is substantial
expression of KRT6A in 8.8% of GTEx esophagus muscularis samples (>
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Fig. 3 | Pathology and tissue substructure segmentation of GTEx histology
samples. A H&E WSI of tibial artery, esophagus mucosa and colonic tissue.
B Segmentation of substructures and localised pathological features via k-Nearest
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neighbours on tile features. WSI tissue types have been labelled according to their
GTEx descriptor which may not perfectly represent the specimen (e.g. the eso-
phagus mucosa example includes submucosa).

20TPM), confirming both the histology and RNA-seq contain non-
target tissue.

Similarly, varying amounts of adherent adipose tissue is com-
monly present in a variety of GTEx samples due to imperfect histolo-
gical dissection. For example, 84% of coronary arteries and 95% of
tibial nerve samples have >10% of the specimen composed of adipose
tissue. Indeed, using a highly specific gene expression marker of adi-
pocytes, PLIN1, we see that after subcutaneous adipose tissue (median
TPM =970), visceral adipose tissue (median TPM=542) and breast
mammary tissue (median TPM =310), tibial nerve (median TPM = 40)
and coronary artery (median TPM=30) have the highest PLINI
expression across all 54 tissues. These findings suggest there is sig-
nificant inter-tissue donor variability in GTEx histology and hence
derived RNA-seq, but also substantial “contamination” of tissue sub-
structure types across tissue classes in GTEx. Importantly, this affects
estimates of eQTL tissue-sharing, with tibial nerve, mammary, sub-
cutaneous and visceral adipose tissue having the largest degree of
tissue-shared eQTL effects across tissues?. Whilst tissue sharing eQTLs
between different fat compartments (i.e. subcutaneous and visceral)
and breast tissue would be expected, sharing of adipose-nerve eQTL
effects is most likely due to the adipocyte fraction present in GTEx
nerve samples rather than any underlying biological sharing of nerve-
tissue specific eQTLs with adipose tissue. Our findings suggest that
estimates of tissue sharing eQTLs are likely inflated and that LCM,

single-cell RNA-seq and spatial technologies at scale will likely revise
these estimates downwards.

Sex and age-specific variability in tissue substructure and
pathological features

Having quantitative measures of tissue substructures allows us to assess
the histological impact of age and other epidemiological variables on
tissue structure and its variability in a population. To address this sys-
tematically, we fit linear models to investigate whether variability in any
of the 29 tissue substructure or pathological features quantified with
accuracy > 80% (see Methods) across donors had sex, age, BMI or
ischemic time specific effects. We find 18 sex, 19 age, 4 BMI and 19
ischemic time significant associations (see Data and Code Availability to
download full summary statistics). For example, we see that the amount
of arterial calcification (P-value=7.2x10"5, B=0.033) and athero-
sclerosis (P-value=1.52x10", $=0.023) increase with age, and ather-
osclerosis is more common in males (P-value=1.4x10", f=-0.30).
Many of the significant associations were confirmatory and expected,
for example breast lobules being almost exclusive to female breast tis-
sue (P-value=2.5x10"%, 3=0.99), the amount of solar elastosis in sun
exposed skin increases with age (P-value=1.57x10"%, B=0.04), and
autolysed mucosa capturing ischemic time effects (P-
value=2.04 x10*, B=0.001). Interestingly, we find a link between
gynecomastoid hyperplasia and age (P-value =2.81 x 107, B = 0.01). This
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Fig. 4 | Pathology and tissue substructure segmentation and its inter-donor variability. Examples of differential tibial artery calcification (A) and its cohort variability

(B). Colonic mucosa variability (C, D) and tibial nerve adipose tissue (E, F).

is likely due to increased adiposity in older age (both sexes) and
decreased testosterone production in older men®,

Finally, adipose tissue abundance in breast tissue is known to
increase with age, and this increased adiposity is associated with risk of
breast cancer”. We demonstrate our derived adipose proportions are
associated with age in female breast mammary tissue samples (P-
value=8.5x10", B=19x107). This effect was robust to BMI adjust-
ment (P-value=3.5x107, B=5.9 x10%) whilst the same effect was not
observed in male donors, despite being better powered (P-value = 0.75,
B=-1.68x107). This demonstrates the ability of our approach to find
epidemiological links between tissue substructures and pathological
features in WSI. The integration of WSI (generated from either archival
material or through routine digital pathology workflows) with detailed
electronic healthcare records could prove useful to discover additional
novel, prognostic and epidemiologic associations.

Pervasive differential expression driven by substructure and
pathology variation across tissues

We sought to assess the extent to which gene expression is impacted
by tissue substructure variation between donors across a given tissue
by differential expression analysis (see Methods). We observe perva-
sive differential expression within tissues and their constituent tissue
substructures, with median=1753 number of genes (FDR1%) being
differentially expressed (see Data and Code Availability to download
full summary statistics). Interestingly, even for individual tissue sub-
structures that make up the majority of a particular tissue, such as

dermis in skin (1955 FDR1%), tunica media in tibial artery (12,810
FDR1%) and nerve bundles in tibial nerve (751 FDR1%), there is sig-
nificant differential expression between samples. These findings
highlight the tissue sampling variability present in GTEX, in which the
underlying proportions of each tissue has substantial inter-donor
variability. In the extremes, this can represent tissue samples within a
tissue class that do not resemble the same underlying target tissue that
was supposed to be acquired (Supplementary Fig. 11).

We first investigated differential gene expression (DE) enrichment
in substructures with known positive controls. For example, 1484 dif-
ferentially expressed genes (FDR1%) were detected for adipocyte
proportion across coronary artery samples. Reassuringly, the top dif-
ferentially expressed gene was LIPE (§=0.46, P-value=4.43x107), a
selective marker for adipocytes, as well as ADIPOQ, PLIN1, PLIN5 and
CIDEC (P-value <1x107), all genes known to be specifically expressed
in adipocytes. As expected, Gene Set Enrichment Analysis (GSEA)
confirmed adipose tissue to be the most likely tissue type (P-
value=2.33x1077). Similar results were obtained for other well-
described tissue substructures, such as submucosal glands in eso-
phagus mucosa being enriched for genes associated with gastric epi-
thelial cells (P-value =1.39 x 10"**) with top DE genes including SPDEF
(P-value=9.87x10%), a gene required for mucous cell
differentiation®, as well as MUCSB (P-value = 6.07 x107), a specific
marker of mucin secreting epithelial cells®. Similarly, levels of inflam-
mation in esophagus mucosa were enriched for peripheral blood cells
(P-value=8.68 x10°) with top DE genes representing broad
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lymphocyte markers (e.g. LTB, CDS, CD6, CD48; P-values all <1 x107%),
All these confirmatory results provide reassurance that our derived
proportions capture specific tissue substructures and that we are able
to relate inter-donor variation in such substructures to changes in RNA
levels.

Similar to quantified tissue substructures, we investigated genes
differentially expressed due to differential amounts of pathological
features across donors. For atherosclerosis proportion in tibial artery,
6121 DE genes were detected at FDR 1%. Top cell-type enrichments
were T-memory cells, NK-cells and endothelial cells (P-value <1 x 107%).
Macrophages, known as foam cells in atherosclerotic plaques, were
also enriched but to a lesser extent (P-value =1.36 x107%).

For tibial artery calcification, a co-morbid pathology of athero-
sclerosis, we identified 1794 differentially expressed genes (FDR1%).
Two of the most significant genes were DUSP4 ($=0.25, P-
value =2.19 x107%), known to play a role in calcium homeostasis and
KCNN4 (3=0.21, P-value =2.09 x10™"), a calcium activated potassium
channel shown to induce vascular calcification®’. Enrichment analysis
demonstrated macrophages (P-value=8.47 x107*°) to be the most
enriched cell-type. Macrophages are known to play an important role
both in atherosclerosis and concurrent arterial calcification, with
recruitment of macrophages shown to drive increased osteogenic
calcification whilst displaying a pro-inflammatory phenotype. Collec-
tively, these enrichments represent the known interplay in athero-
sclerosis between intima endothelial cells and the chronic
inflammation and fat deposition taking place in atherosclerotic
arteries.

Finally, as calcification is reported in the GTEx pathology notes,
we sought to compare our continuous measure of calcification derived
from the WSI with the reported presence or absence of calcification in
the GTEx pathology notes. To do so, we divided samples (n=579)
between healthy (n=442) and calcified (n=137) according to the
pathology notes and tested for differential expression in a linear
model, whilst correcting for confounders (see Methods). We identified
1025 differentially expressed genes after FDR1% correction versus 1794
when using our WSI-derived continuous measure of calcification.
Whilst 78% of the differentially expressed genes found using the GTEx
reports are shared between both analyses, our results suggest we
benefit from increased power when assessing continuous measures of
calcification rather than just its presence or absence, as well as the
identification of genes associated with amount of calcification rather
than merely its presence (Supplementary Fig. 12).

Genetic association and detection of interaction eQTLs driven
by tissue substructure and pathological variation

As pathologies such as calcification are complex traits, we assessed
whether derived pathological feature proportions are associated with
common genetic variation (see methods). To do this, we performed
GWAS on four derived pathologies: coronary and tibial artery calcifi-
cation as well as inflammation and vascular congestion in esophagus
mucosa. Whilst no variants were genome-wide significant, considering
suggestive hits (P-value <1.0 x107°), we find four variants associated
with pathological features. All variants have either been previously
described in relevant complex disease GWAS or are associated with
relevant traits through Phenome-Wide Association Studies (PheWAS).
$971292786-C (B = 0.51, P-value = 1.9 x 107) is associated with levels of
calcification in coronary arteries and in a FinnGen PheWAS (Freeze
version 8), rs971292786-C is associated with coronary angioplasty
(B=0.055, P-value =4.10 x107%), with a consistent direction of effect.
Coronary angioplasty is the primary surgical procedure used to treat
atherosclerotic arteries. For inflammation in esophagus mucosa, we
find two variants rs111402007-A (B =0.53, P-value=7.64 x107) and
1s35779991-C (B = 0.25, P-value = 8.87 x107). rs35779991-C is genome-
wide significant in a GWAS for Body Mass Index (BMI) (=0.018,
P-value=9.97 x10?) whilst rs111402007-A has been previously

associated with increased White Blood Cell Count ($=0.023,
P-value =5.8 x107). Effect directions are consistent with the known
relationship between low-grade systemic inflammation in obesity, and
WBC count™®. Finally, we find a single locus rs4364259-A (f=-0.19,
P-value =3.47 x 107) associated with vascular congestion in esophagus
mucosa which has been previously associated with hydroxyvitamin-D
levels (B =0.0158, P-value = 2.2 x 107%%) (Supplementary Fig. 13).

Similar to previous efforts'>'***¢, we carried out interaction eQTL
analyses to identify cis-eQTLs whose effect is driven by the amount of
tissue substructures and pathological features across donors. By fitting
linear models with tissue substructure or a pathological feature as an
interaction term, we identified 284 interaction eQTLs (FDR 10%) in 250
unique genes across 31 different phenotypes in eight tissues for which
annotations were available. Examples of such interaction eQTLs are
visualised in Supplementary Fig. 14. These analyses compare favour-
ably to similar work in which sparse factor models were used to dis-
cover 68 abstract image morphology QTLs (imQTLs) across 8 GTEx
tissues (FDR 10%)™, that could not be linked directly to tissue sub-
structure or function. These results provide further evidence that
many bulk-tissue eQTLs could be due to differential amounts of tissue
substructure within a tissue type due to experimental sampling var-
iation and/or due to variability and presence of pathological features
across donor tissues.

RNAPath accurately predicts and spatially localises genes in
histology WSI

As our self-supervised histology tile representations accurately sepa-
rate known tissue substructures and pathological features, and given
paired RNA-seq profiles are available for each donor from the same
RNAlater aliquot, we sought to assess whether gene expression influ-
enced by specific histomorphological features could be predicted
directly from H&E histology. To do so, we introduce RNAPath, a set of
multiple instance learning (MIL) models trained in a tissue specific way
(details about training, validation and test set size in Supplementary
Table 4), that takes as input histology tile representations and outputs
both spatial expression maps for each gene as well as their whole-
tissue expression prediction (see Methods). To assess RNAPath’s
ability to predict individual RNA abundance at the bulk level, we
evaluated the accuracy of bulk RNA-seq prediction by measuring the
Pearson correlation coefficient (r score) between predicted expression
and ground truth (see Methods). Median r score across all genes varies
substantially across tissues, with the best performance in heart
(median r score=0.65) and worst performance in pituitary gland
(median r score = 0.13) (Fig. 5, Supplementary Table 5). At the indivi-
dual gene level, we find that 4435 genes can be predicted extremely
accurately from histology alone, with an r score > 0.75 in at least one
tissue. We measured the robustness of the model through a 5-fold
cross validation on three tissues, with the smallest (coronary artery,
n=239), median (breast, n=456) and largest (skeletal muscle =797)
sample size available. The accuracy of predictions grows linearly with
the dimension of the training set (median r score =0.181+ 0.028 for
coronary artery, 0.346 + 0.038 for breast and 0.484 + 0.021 for skeletal
muscle) as well as the model robustness, with the standard deviation of
gene correlation coefficients across folds having a negative correlation
with sample size (0.187 + 0.069 for coronary artery, 0.128 + 0.051 for
breast and 0.082 +0.033 for skeletal muscle) both in the validation
and test set (Supplementary Fig. 15).

We also tested whether RNAPath results are invariant to DINO
encoders trained on different folds (Supplementary Fig. 5). We see
consistent results: the mean accuracy of predicted gene expression in
esophagus mucosa was 0.461+0.006, demonstrating little to no
impact from encoder variability; gene correlation coefficients also had
little variation across folds (std = 0.027).

Whilst our histology tile representations were not learnt with the
express intent of predicting RNA levels, we demonstrate superior
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Coronary Artery (N=19) 4
Esophagus Mucosa (N=57) 4
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Gastroesophageal Junction (N=35) 4
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Pancreas (N=36) -
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Fig. 5 | RNAPath accuracy, measured by computing the Pearson correlation
coefficient (r) between expression prediction and bulk RNA-seq, across 23
GTEXx tissues. The number of test samples used to derive statistics is reported next
to each model on the x-axis. The violin plots depict the distribution of Pearson

-0.5 0.0 0.5 1.0
Pearson correlation coefficient (r)

correlation coefficients, with the inner box showing their median and interquartile
range (25th and 75th percentile) and the tails ranging in the interval (Q1 - 1.5 X IQR,
Q3 +1.5xIQR), across the tested genes (cross-tissue average =11,327).

performance against a leading deep learning method, HE2RNA’, across
the majority of tissues analysed (+0.20 mean r score) (Supplementary
Fig. 16). Finally, we evaluated the tissue specificity and tissue sharing
nature of genes that RNAPath was able to regress well (r > 0.5). We see
that the majority of these genes are tissue-specific, meaning that they
are regressed accurately in a single tissue. However, many genes are
regressed equally well in multiple tissues, and recapitulate known tis-
sue relationships and anatomical proximity, such as esophagus mus-
cularis with gastroesophageal junction (shared genes = 837, loU = 0.35,
P-value =1.38 x107®) and transverse colon with sigmoid colon (shared
genes =1760, loU =0.33, P-value =5.83 x10™2). Whilst unrelated tis-
sues such as pituitary gland and omentum share few well regressed
genes (shared genes =11, P-value = 0.71). This enrichment reflects the
sharing of tissue substructures and cell types between biologically
related tissues (Supplementary Fig. 17).

As well as bulk level predictions, RNAPath provides tile level
(128 x 128 pixel) expression-morphology predictions which can be
used to create spatial expression maps of any specific gene across a
histology sample. To validate our spatial predictions in order to use

RNAPath for uncovering novel tissue morphology-expression rela-
tionships, we sought to examine first the spatial expression of well
known marker genes. To do this, we compared the spatial predictions
of PLINI (adipocytes), DCD (eccrine sweat glands), CRNN (mucosal
epithelium) and SLC6A19 (colonic mucosa), genes that are known to be
selectively expressed in those tissue substructures, to immunohis-
tochemistry (IHC) in matched tissues from the Human Protein Atlas”.
We see high concordance between our spatially resolved RNA
expression predictions and that of matched antibody staining, vali-
dating that we can use RNAPath to draw novel inferences between RNA
expression and specific tissue morphology (Fig. 6).

Spatial expression signatures in tissue substructures and loca-
lised tissue pathological features

We sought to detail what genes were specific to individual tissue
substructures and pathological features. To do this, we computed an
enrichment score for every gene and every quantified tissue sub-
structure and localised pathological feature measured. The enrich-
ment score quantifies the difference of a gene’s predicted spatial
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Fig. 6 | RNAPath predictions of canonical marker gene expression validated by  (C); PLINI in breast adipose tissue (D); IHC for corresponding protein expression
immunohistochemistry (IHC). From left to right: original H&E section from GTEx,  courtesy of Human Protein Atlas®. Red corresponds to high expression, blue to low
RNAPath predicted spatial expression for marker genes (DCD: Eccrine sweat glands  expression. Images available from v23.proteinatlas.org published under a CC BY-SA
in skin (A); SLC6A19 in colonic mucosa (B); CRNN in esophageal mucosal epithelium 3.0 license.
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Fig. 7 | A comparison of differential gene expression analysis and our SSES
metric across donors for submucosal gland and arterial calcification propor-
tion. A, D Esophagus mucosa and tibial artery histology images from GTEx.

B, E Differential expression analysis volcano plot for submucosal gland and arterial
calcification proportions (x-axis: linear model coefficient, y-axis: -LoglO two-sided
adjusted p-value from t-test after FDR1% correction). Blue corresponds to

significantly differentially expressed, downregulated genes, and red corresponds
to significantly differentially expressed, upregulated genes. C, F Considering genes
with a positive coefficient (up-regulated), we see that our SSES metric when applied
to RNAPath predictions is able to find genes (e.g. AZGPI and CRTACI) that are both
significant in DE analysis, but are also highly spatially restricted to submucosal
glands and calcification foci, respectively.

expression between a region of interest (ROI) and the whole tissue (see
methods). We investigated the relationship between up-regulated
genes in our differential expression analysis (e.g. those with a positive
coefficient) and our Substructure Specific Enrichment Score (SSES)
metric produced by RNAPath. Taking as an example submucosal
glands (Fig. 7A-C) and focal inflammation in esophagus mucosa, we
identified 311 and 3,471 upregulated genes respectively (FDR1%). By
comparing these genes to RNAPath SSE scores, we see that 100% and
91% have SSES>1 for submucosal glands and inflammation respec-
tively. For tibial artery calcification (Fig. 7D-F), of the 112 upregulated
genes in our differential expression results, 64% have SSES >1, high-
lighting the difference between differential expression induced chan-
ges and genes specific to calcification morphology (see Data and Code
Availability to download full summary statistics). Interestingly,
CRTACI, a gene we find enriched in areas of calcification (Fig. 7F) was
recently independently validated as a spatial calcification and athero-
sclerosis biomarker®,

Finally, as IncRNAs tend to be more tissue specific, we sought to
test whether they are also more tissue substructure specific than other
gene biotypes. We observe that IncRNAs are predicted more accu-
rately by RNAPath compared to protein-coding genes (0.35 vs 0.32
median r score, Supplementary Fig. 18) and are also more likely to be
enriched for tissue substructures and pathologies (1.49 vs 1.23 SSES)
(see Data and Code Availability to download full summary statistics).
These results suggest that RNAPath could be used to further char-
acterise and localise the expression of IncRNAs with unknown
function.

In addition to our SSES metric, we computed Moran’s I, a spatial
autocorrelation metric commonly used in spatial analysis and more
recently in spatial transcriptomics applications*“°. A low Moran’s |
score indicates a gene is not spatially autocorrelated, with diffuse
expression across a tissue section, whilst a high Moran’s I score
represents high spatial autocorrelation, with expression restricted to
specific substructures, tissue neighbourhoods or pathologies. We
computed Moran’s | score for all genes across all tissues, using the
spatial predictions of RNAPath, along with the corresponding tile
coordinates (see Data and Code Availability to download full summary
statistics). The spatial autocorrelation of genes predicted by RNAPath
varies significantly, with some genes highly restricted to tissue sub-
structures and others expressed uniformly across the tissue section
(Supplementary Fig. 19). Interestingly, as Moran’s | and our spatial
predictions are donor specific, we see examples of genes that exhibit
subject specific spatial autocorrelation (Supplementary Fig. 20). This
analysis highlights how even without substructure or pathology
annotations, using RNAPath and derived spatial statistics, it is possible
to assign gene expression to specific tissue neighbourhoods.

External validation in TCGA-BRCA

To test how well our self-supervised representations and RNAPath
predictions generalise to a held-out external dataset, we processed all
diagnostic histology slides from The Cancer Genome Atlas breast
carcinoma study (TCGA-BRCA) and annotated 15 WSI with breast and
breast cancer relevant substructures (see methods). As all GTEx slides
are acquired with 20x magpnification, using 40x TCGA-BRCA WSI
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Fig. 8 | RNAPath predictions of luminal A and Basal-like PAM50 signature
genes. RNAPath model predictions on the PAMSO0 signature, used to stratify breast
cancer at molecular level, correlates with the ground truth, with luminal A samples

(A) having low expression (blue) of CCNEI (3.52) and high expression (red) of PGR
(12.51) and basal-like samples B having high expression of CCNEI (10.86) and low
expression of PGR (2.65), as represented in the heatmaps.

demonstrates the generalisation of our approach. Whilst our ViT
model was not trained on any oncology data, we see that tile repre-
sentations of breast-cancer relevant annotations cluster into distinct
groups (median silhouette score = 0.159). We also evaluated Imagenet
and CTransPath features on the TCGA-BRCA cohort used to externally
validate RNAPath. From the qualitative clustering of annotated patches
(Supplementary Fig. 21) as well as the median silhouette scores, we see
that our model trained using DINO outperforms ImageNet (0.159 vs
0.084, +89%); however, the coefficient is slightly higher for CTransPath
than DINO (0.179 vs 0.159), which is explained by the fact that
CTransPath has been trained on TCGA. Therefore, our DINO features
trained only on GTEx show good generalisation even out of
distribution.

Using our kNN approach to segment tissue into its constituent
substructures, we see that areas of carcinoma are well segmented from
benign tissue (average loU = 0.723), allowing us to estimate carcinoma
proportion variation (0.392 +0.212) across all 986 subjects (Supple-
mentary Fig. 22). To validate RNAPath on TCGA-BRCA, we performed
two experiments. The first tests RNAPath’s ability to generalise from
normal breast to breast carcinoma. Here, we expect the model to be
able to predict the expression of genes that are similar across normal
breast versus breast carcinoma. With no fine-tuning of our mammary
tissue (GTEx) model, we see RNAPath is able to predict known marker
genes, for example, PLINI in adipocytes (r score=0.29, P-
value =2.27 x10™) (Supplementary Fig. 23) or breast cancer related
genes like AQPI (r score = 0.32, P-value =1.58 x 10"%), However, many
other genes that are correctly regressed in the GTEx dataset have a
smaller correlation coefficient when evaluated on TCGA-BRCA, like

MEOX2 (r score=0.85 in GTEx, 0.21 in TCGA-BRCA) or DLK2 (r
score=0.84 in GTEx, 0.16 in TCGA-BRCA). This likely reflects that
many relations between healthy tissue morphology and gene expres-
sion learnt by the model trained in the healthy breast GTEx cohort are
not conserved in carcinoma/tumour resection tissue and therefore
fine-tuning can be employed to learn disease-specific changes. To
account for the fact areas of carcinoma undergo significant morpho-
logical and genetic aberrations that profoundly affect gene expression
and to assess RNAPath’s ability to predict carcinoma relevant genes,
we fine-tuned the model to predict genes from TCGA-BRCA samples
using paired RNA-seq, obtaining a correlation score r>0.5 for
351 genes.

Cyclin E1 (CCNEI) and Progesterone Receptor (PGR also known as
PR), represent two well known breast cancer genes present in the
PAMS0 signatures that are used to delineate the different molecular
subtypes of breast cancer*. We see that RNAPath correctly predicts
that Luminal-A subtypes are CCNEI- PGR+, whilst Basal subtypes are
CCNEI+ PGR- (Fig. 8A, B). The median r score for the genes in the
PAMS50 signature is 0.43, and when comparing the fold change of
Luminal-A and Basal samples mean gene expression between our
predictions, we observe a high correlation (r=0.95).

Moreover, we computed SSES metrics for two genes: CAMKV and
MUC2, which have been previously reported to play an important role
in mediating proliferation, apoptosis and metastasis of breast cancer
cells*2. CAMKV and MUC2 are the most enriched genes in areas of car-
cinoma (SSES =1.37 and SSES =1.29 respectively), whilst NCRI (syno-
nym: CD335) and CLEC6A, both selectively expressed in Natural Killer
cells (NK-cells), are spatially localised to lymph nodes (SSES = 8.59 and
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SSES = 6.42 respectively). In conclusion, we demonstrate strong gen-
eralisation for both our self-supervised representations and RNAPath
gene expression predictions across both normal histology and oncol-
ogy datasets.

Discussion

Here we use Vision Transformers (ViT) trained using self-distillation
with no labels (DINO) to learn histology image representations from
13,898 WSI across 23 healthy human tissues in 838 donors. By doing so,
we are able to demonstrate that representations learnt with no labels
are able to identify tissue substructures and pathological features
present in WSI, allowing us to represent each donor’s tissue section as
a composite proportion of its underlying tissue substructures and any
pathology present. By using these proportions, we show profound
inter-tissue variability across donors, demonstrating the detection of
unannotated pathologies (e.g. calcification), incorrect target tissue
assignment (e.g. esophagus mucosa in muscularis samples), con-
taminate tissue (e.g. adjacent adipose tissue) and how such variability
can inflate eQTL tissue sharing estimates. Additionally, we use such
proportions to derive and recapitulate known epidemiological links
between breast adiposity and age, as well as novel age, sex and BMI
associations. Using our derived tissue substructure and pathological
feature proportions we characterise differential gene expression sig-
natures and uncover substructure/pathology genetic associations
using GWAS. We also demonstrate how such proportions can be used
to detect interaction eQTLs, in which tissue substructure and patho-
logical variability across donors drive changes in expression in a
genotype-dependent manner.

As our histology representations capture intra- and inter-donor
variability in tissue morphology, we propose a multiple instance
learning model named RNAPath that can regress RNA expression levels
directly from our learnt histology representations, as well as predict
the spatial localisation of a given gene’s expression within a tissue
section. We validate our expression predictions by showing sub-
stantially better performance of RNAPath compared to HE2RNA across
awide range of tissues, and also verify our spatial predictions of known
marker genes to ground-truth immunohistochemistry staining.

Our work has several limitations and room for future develop-
ment. First, we work with 128 x 128 histology image tiles, limiting the
resolution of our spatial predictions and segmentations. A natural next
step would be to perform cellular or nuclei segmentation and learn
self-supervised representations at the single cell-level. Second, whilst
we benchmark our SSL representations, it is entirely possible that a
model trained on a specific disease cohort (e.g. Inflammatory Bowel
Disease, or a specific tumour) would outperform our approach. This is
not surprising, as each disease has its own characteristic pathology
that a model may only observe in that specific disease context. Third,
computational pathology is a fast moving field, with the recent
development of large scale foundation models for histology****. These
foundation models, coupled with even newer methodologies for self-
supervision could result in even better substructure segmentation and
more accurate gene expression prediction and localisation®. These
developments, alongside more extensive, systematic annotation by
pathologists therefore represent a promising future direction. Forth,
whilst our discovered GWAS variants recapitulate relationships with
known GWAS loci, our genetic analyses are underpowered, both to
detect novel GWAS variants and to detect thousands of interaction
eQTLs. We believe this will be overcome as larger cohorts with paired
histology and genetic data become available, enabling broader dis-
covery but also replication efforts. Fifth, RNAPath is predicting the
expression of genes from tissue morphology alone. Many genes
exhibit variance attributable to both morphology and non-
morphological factors. In these cases, RNAPath will only explain the
variance attributable to morphology, whilst sequencing based spatial
transcriptomics would explain all variance measurable. Therefore,

whilst predicted tile expression correlates to ground truth expression,
we would not expect a perfect match between predicted expression
scale and ground truth expression. This is to be expected, and still
allows for RNAPath to highlight gene-morphology relationships and
use this knowledge for many useful downstream inferences.

Finally, whilst we demonstrate and validate RNA-expression pre-
diction from histology this will by definition be limited to genes whose
variation influences observable morphological differences in tissue
sections. To associate histological variation with intracellular gene
expression variation beyond morphology would require spatial tran-
scriptomic assays whose current cost does not scale to large numbers
of histology sections, with current endeavours profiling only tens of
samples®. Therefore, we believe there is still significant value in
understanding and characterising more deeply, histological and
functional genomic associations at the population level. In summary,
as histological archives and pathology workflows become digital, we
believe there is substantial opportunity for using self-supervised
learning to uncover novel, fundamental biology about tissue structure,
function and its variability in a population in both healthy and diseased
states.

Methods

GTEx Cohort description

All analysis is conducted using data from the Genotype Tissue Expres-
sion (GTEx) Consortium’?*, GTEx consists of a total of 948 post-
mortem donors, in which RNA-seq, Whole Genome Sequencing (WGS),
and digitised tissue histology have been collected from up to 54 tissue
types. For this study, we utilised GTEx v8 considering the overlap
between individual donors who had both RNA-seq and matching tissue
histology available and tissues with at least 200 donors genotyped. In
total, we utilised N=13,898 slides, across 23 tissues.

RNA-seq normalisation

We used normalised TPM values available in the GTEX v8 release. As
the GTEx RNA-seq data is not strand-resolved, we only considered
IncRNAs that did not overlap with protein coding loci (see Code
Availability). Additionally, on a tissue by tissue basis, we considered
only genes that were expressed with TPM > 10 in at least 5% of samples.
For prediction, we used log normalised TPM values, log2(x +1). In total,
we considered 21,691 genes.

GTEx Whole Slide Image histology preprocessing

We downloaded all available Whole Slide Image (WSI) histology data
from the GTEx portal. All GTEx histology slides were acquired at 20x
magnification with an approximate micron per pixel (MPP) scale of
0.494. WSI were first segmented to separate foreground tissue from
background, using a previously published U-net architecture trained
on 4732 H&E slides*®. Tissue sections were tiled into image tiles of fixed
dimension (128 x128 pixels, corresponding to approximately
63 x 63 um?) and their coordinates stored in hdf5 files. These tiles were
used in all downstream analysis.

Self-supervised feature learning from histology tiles

After preprocessing, we extracted features from histology tiles build-
ing a matrix with as many rows as the number of tiles in the WSI and as
many columns as the number of features (i.e. 384). To do this, we
trained a small vision transformer (ViT-S, output dimension=384)
using DINO', on 1.7 M histology tiles equally sampled across all the 23
tissues from GTEx that we selected for this study. In this self-
supervised training regime there are two networks, a student and a
teacher model, sharing the same architecture: the student is provided
with global and local augmented crops of the input image, whilst the
teacher receives only global crops of the same image. Both models
output a k-dim probability vector (k= 65,536) via a temperature soft-
max along the feature dimension, which can be thought of as a
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distribution over latent-classes the model is learning to represent. The
student-teacher models are trained by minimising the cross entropy
(CE) loss between their output distributions:

J
CE= - y;log,p(x)) @
j=1

This has the desired effect of encouraging the model to learn
local-to-global image correspondences. It can be particularly useful in
histology, where cells (local crops) may be specific to much larger
tissue structures (global crops). We modified the augmentation pipe-
line of DINO’s global and local crops to better capture the relevant
features of histology samples, by adding a random modulation of
hematoxylin (H) and eosin (E) channels. Images were stain-normalised
before being input to the vision transformer to eliminate any effect
due to differential stain intensity*’.

Once obtained, the matrices of tile representations (Kx384, where
K is the number of tiles of a WSI) for all samples were stored in a HDF5
together with the corresponding upper-left corner coordinates.

Weakly supervised segmentation of histology images

The segmentation of histology images into regions of interest identi-
fying substructures or pathological features is fundamental to both
extract image derived phenotypes (e.g. size of specific tissue regions)
and to compute gene enrichments with RNAPath predictions. To
obtain pathology and tissue substructure annotations, we used the
following criteria:

1. WSI were randomly selected to extract tiles to include major tis-
sue substructures. For example in arterial tissue: intima, media
and adventitia layers. These can be thought of as the tissue’s
canonical structures present across the majority of specimens.

2. Pathology notes for tissue specimens were inspected to addi-
tionally include donors where incidental structures were present:
e.g. presence of hair follicles, or eccrine glands in skin, which are
not always present given sampling variability.

3. Pathology notes for specimens were also examined to include
incidental pathology findings. For example, atherosclerosis or
calcification in arterial samples.

These annotations were performed by C.A.G and independently
verified by a trained clinical histopathologist (A.P.L). To perform these
annotations, we used QuPath (v0.4.3)*° and a groovy script to produce
128 x128 tiles from each annotated area. All annotation tiles are
available for download (see Data Availability). For each tile from an
annotated class, we perform a forward pass through our trained ViT-S
model, obtaining its 384-dim representation. We can then obtain
automatic segmentations of the non-annotated WSI by computing the
distance between tile representations from unannotated WSI and by
using a k-Nearest Neighbours (k =200) model fitted on the annotated
(tissue-specific) dataset to assign classes. It should be noted, that the
kNN model was applied directly to the tile level representations, not
the UMAP embeddings, which can vary substantially based on hyper-
parameter settings. To mitigate cases in which annotated tiles contain
multiple classes or individual tile predictions are uncertain, we tile
each WSI with overlap, allowing us to average predictions with
majority voting. This helps create a continuous prediction and mini-
mise uncertainty at boundaries between two classes (e.g. the media-
adventitia boundary in arterial tissue). We stored all segmentations as
images and in a dataframe in which the class of each tile is tabulated.

Assessing associations of tissue substructures with biological
and technical covariates

To assess whether a given covariate such as sex, age, BMI or ischemic
time was associated with a specific tissue substructure or pathology

proportion, we fit linear models in Python using statsmodels
(v.0.14.0)"". To account for multiple testing, we report adjusted P-
values based on Bonferroni correction. For effect size estimates, we
report the coefficient for the given covariate, conditional on all other
covariates as provided by the linear model output.

Differential expression analysis of image derived phenotypes
Tissue substructure and pathology proportions were computed by
counting the number of tiles belonging to each class and normalising
by the total number of tissue tiles present in the WSI. However, these
phenotypes are compositional as the sum across tissue substructure
and pathology proportions within a sample equals one, implying that
the measured variables are not independent. This dependence may
alter the results of downstream statistical analysis. To address this
issue, we transformed the compositional values into pivot
coordinates™*, Using these pivot transformed proportions, we fit
linear models in Python adjusting for age, sex, BMI, ischemic time and
the first 5 genetic PCs.

GTEx whole genome sequencing (WGS) quality control

The cohort VCF representing whole genome sequencing variant calls
was obtained from dbGaP (accession phs000424.v8.p2). All the ana-
lyses described here are based on the GTEx v8 analysis freeze dataset
containing 838 individuals and 46,569,704 variants. First, we used
somalier** to estimate the ancestry of all samples directly from the
cohort VCF. Based on somalier estimates, we then selected only the
699 samples of European (EUR) ancestry based on the 1000 G refer-
ence populations. Variants were then filtered, retaining only PASS
biallelic SNVs. The filtered dataset contained 699 samples and
43,066,451 variants.

To generate a high-quality dataset suitable for GWAS analysis, we
further filtered genotypes retaining only those with GQ>=20 and
DP >=10, and then removed variants with minor allele count <10, HWE
test P-value <1x107°, or missing call rate > 0.05.

The resulting processed dataset containing 11,527,288 variants
was converted to PGEN format and used in step 2 of REGENIE for
variant association analyses (see below). Variants in this dataset were
further processed to generate a set of independent SNVs to be used in
step 1 of REGENIE analysis. First, we filtered out variants with HWE test
P-value <1x 107", minor allele count <100, or missing call rate > 0.01,
and then we applied LD pruning as implemented by plink2 --indep-
pairwise method using -indep-pairwise 1000 100 0.5. The final dataset
for step 1 included 699 samples and 381,202 variants.

Genome-wide association analysis (GWAS)

To conduct the GWAS, we used REGENIE v3.2.7>° with an automated
Nextflow pipeline (v1.8.1) (see Data and Code Availability). The sample
size tested varies depending on the phenotype: 691 donors for tibial
artery calcification, 479 for coronary artery calcification and 674 for
esophagus mucosa inflammation and vascular congestion. For all four
phenotypes we tested autosomal variants adjusting for age, sex, BMI,
ischemic time and the first five principal components of genetic
ancestry. A minMAC filter of 10 was applied in step 2 of the REGENIE
pipeline; and the variants with MAF < 5% were excluded from the final
analyses. We considered the standard genome-wide significance
threshold (P-value =5.0 x107®), but also examined suggestive hits (P-
value <1.0 x107). Regional plots, Manhattan plots and quantile-
quantile plots were generated with GWASLab (v3.4.21)%. All summary
statistics are available for download (see Data Availability).

Interaction eQTL mapping

To perform interaction eQTL analysis, we used TensorQTL (v1.0.8)”,
an open source package that allows QTL mapping to be executed on
GPUs, resulting in ~200-300 fold faster computations compared to
the CPU-based implementations. Interaction eQTL analysis requires
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genotypes, gene expression data and an interaction variate (e.g. a
phenotype or environmental factor) for each individual. The statistical
model is described by the following equation:

Y=1+B,G+B,P+BsPxCGte )

where / is the intercept, G the genotype, P the phenotype, PxG
represents the interaction term and € the residual error. We used the
same genotype data as per the GWAS (described above). For the gene
expression data we utilised the normalised gene expression matrices
and covariates provided by GTEx in the cis-eQTLs section of the open
access data.

The covariates include the top five genotype components, PEER
factors calculated for the expression matrices, sequencing platform,
sequencing protocol, sex, age, BMI and ischemic time. As an interac-
tion term, we used the tissue substructure and pathology proportions
transformed into pivot coordinates. The sample size varies across
tissue type and depends on the number of genotyped donors with
both gene expression and WSI of the histology sample available.

RNAPath: Multiple instance learning for gene expression
regression
RNAPath works as follows: consider a total of N WSIs, each represented
as abag of image tile embeddings, X; € R P where M is the number of
image tiles for that WSI and D is the embedding dimension of each
image tile. M, termed the bag size in the MIL literature, is variable
across WSI as it depends on the size of the tissue section taken. At the
level of each WSI, we have as regression target ¥ € R, ¢, where G is the
number of genes selected for the tissue, corresponding to the
log,(x +1) TPM values for each gene. The model estimates the gene
expression at tile level by G independent gene-wise linear regressors
applied to tile features. This is a simple linear layer mapping tile
representations X, to gene level expression predictions, Yp. No fully
connected layers or non-linear activation functions were used between
layers to ensure that RNAPath tile level predictions are identifiable and
interpretable. We subsequently apply a non-linear activation function
(ReLU), simply to have non negative tile-level scores. These scores are
then averaged to derive a sample-level prediction; mean squared error
(MSE) loss between predicted sample-level expression and bulk RNA-
seq is computed to train the model (see Code Availability for full
implementation).

Formally, the tile-level expression values for a tile P are computed
as:

Y, = ReLUW' X, +b) 3)

where W e R”*, X, e R°,beR®and ¥, e R®,.
The sample-level estimate is obtained using the average as an
aggregation function of the local predictions:

~ 1 ZM:A
y==%"Y “)
MP:1 P

To train RNAPath for each tissue we created a training, validation
and test split of 80:10:10, ensuring that tissues from the same indivi-
dual were present in only one split, to avoid any leakage based on
genetic effects shared across tissues. For each sample, we apply
dropout both at the bag level (by keeping a random percentage of tiles
between 70% and 100% of the total number), and at the level of tile
representations (p = 0.10) to make the training of RNAPath more stable
and to increase robustness to outliers.

We train RNAPath with batch size 1 for a maximum of 200 epochs,
using a decaying learning rate scheduler (starting value 1x10™); we
optimised RNAPath using Adam and a Mean Squared Error (MSE) loss

function:

1 =
L:NE}Y;— v 5)
£

We divided the gene set into groups of size < 500, due to memory
restrictions. To limit the time taken by the optimization step, we
accumulate the gradients over each of these groups and update
weights once all the genes for a sample have been regressed. In total,
we trained 23 tissue-specific RNAPath models for the regression of
gene expression.

We extracted tiles with 75% overlap to have multiple bags of tiles
representing the same sample (therefore enlarging the training set
with more tile embeddings to be sampled at each iteration, as an
additional form of data augmentation) and to achieve fine-grained
expression heatmaps by averaging logits in overlapping regions.

Substructure specific enrichment score (SSES)

To determine whether a given gene expression prediction was spatially
restricted, we devised a substructure specific enrichment score (SSES)
that computes a ratio between the mean expression in a given area
over the total mean expression, using the tile level predictions:

1
_ Jer 2jer Pi
iTT1 N~

TS 2okes Pik

(6)

This produces an SSES metric for each gene i, e;, in which ¢;>1
represent genes that are spatially enriched for the given ROI (i.e. the
average tile-level expression p; is higher in the ROI, R, than in the whole
sample, S). Enrichment scores are then averaged across samples, and
the final outcome is a matrix reporting the enrichment score for each
pair (gene, substructure or localised pathology).

External validation on TCGA

To validate our study on breast carcinoma specimens from The Cancer
Genome Atlas (TCGA-BRCA), we first ran our preprocessing pipeline to
separate tissue from background and tile the tissue into 256 x 256 tiles
from 986 slides at 40x magnification, in order to maintain the same
tissue area per tile (63 x 63 pm?) as for the GTEx samples.

Tile features were extracted using the same DINO model trained
on 1.7 M GTEx tiles (see section: Self-supervised features learning from
histology tiles). We performed substructure segmentation with the
same method as for the GTEx samples, just modifying the tile size
(256 x 256) and the number of neighbours in the kNN model (k = 50).
For the purpose of training and testing our RNAPath model on TCGA
samples, we selected the 10,000 genes with highest index of disper-
sion and used their log 2(x +1) RPKM as supervisory signal.

HE2RNA implementation

RNAPath outputs tile-level scores and then averages across tiles for a
slide-level aggregated prediction. In our implementation of HE2RNA,
we used the authors defined model class, available from their pub-
lished repository, with our 128 x 128 tiles and self-supervised embed-
dings. HE2RNA considers bag shapes (number of tiles per WSI) of
8,000 and the number k of tiles used in the training step is randomly
sampled from the list L=[10, 20, 50, 100, 200, 500, 1000, 2000,
5000]. Given that some of our slides have a substantially higher
number of tiles, we substituted the absolute numbers in L into pro-
portions (L / 8000), in order to keep the ratio of tiles used in the
training step equal to the original implementation, despite having
larger bags. It is worth noting that the original HE2RNA implementa-
tion used pre-trained ImageNet feature representations for tiles, which
we demonstrate perform significantly worse in representing histolo-
gical entities. Therefore, this is a conservative comparison in which
HE2RNA benefits from using our self-supervised representations.
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Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

GTEx V8 data are accessible via an approved dbGAP application
(https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_
id=phs000424.v8.p2). DINO ViT and RNAPath Model weights, anno-
tations and GWAS summary statistics for this study are publicly avail-
able via: https://github.com/GlastonburyC/RNAPath (https://doi.org/
10.5281/zenodo.11519629)%%. Upon publication, summary statistics as
well as being available through github will be uploaded to the GWAS
catalog. Raw eQTL summary statistics, due to file size (330GB) are
available on request (craig.glastonbury@fht.org) and will be made
available to requestees within 2 weeks. The original Immunohis-
tochemistry images courtesy of the Human Protein Atlas, used in Fig. 6
can be found here:

PLINI: https://v22.proteinatlas.org/ENSGO0000166819-PLIN1/
tissue/breast
SLC6A19: https://v22.proteinatlas.org/ENSGO0000174358-

SLC6A19/tissue/colon

CRNN:  https://v22.proteinatlas.org/ENSGO0000143536-CRNN/
tissue/esophagus

DCD: https://v22.proteinatlas.org/ENSGO0000161634-DCD/
tissue/skin

All other data supporting our findings can be found in our sup-
plementary tables.

Code availability

All code developed as part of this manuscript is publicly available via:
https://github.com/GlastonburyC/RNAPath  (https://doi.org/10.5281/
zenodo.11519629)%%. The nextflow-pipeline used for REGENIE based
GWAS is available here: https://github.com/HTGenomeAnalysisUnit/
nf-pipeline-regenie.
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