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A real-world multi-center RNA-seq
benchmarking study using the Quartet and
MAQC reference materials

Duo Wang1,2,3,7, Yaqing Liu 4,7, Yuanfeng Zhang 1,2,3, Qingwang Chen4,
Yanxi Han1,2,3, Wanwan Hou4, Cong Liu1,2,3, Ying Yu 4, Ziyang Li5, Ziqiang Li1,2,3,
Jiaxin Zhao1,2,3, Leming Shi 4,6 , Yuanting Zheng 4,6 , Jinming Li 1,2,3 &
Rui Zhang 1,2,3

Translating RNA-seq into clinical diagnostics requires ensuring the reliability
and cross-laboratory consistency of detecting clinically relevant subtle dif-
ferential expressions, such as those between different disease subtypes or
stages. As part of the Quartet project, we present an RNA-seq benchmarking
study across 45 laboratories using the Quartet and MAQC reference samples
spiked with ERCC controls. Based on multiple types of ‘ground truth’, we
systematically assess the real-world RNA-seq performance and investigate the
influencing factors involved in 26 experimental processes and 140 bioinfor-
matics pipelines. Here we show greater inter-laboratory variations in detecting
subtle differential expressions among the Quartet samples. Experimental
factors including mRNA enrichment and strandedness, and each bioinfor-
matics step, emerge as primary sources of variations in gene expression. We
underscore the profound influence of experimental execution, and provide
best practice recommendations for experimental designs, strategies for fil-
tering low-expression genes, and the optimal gene annotation and analysis
pipelines. In summary, this study lays the foundation for developing and
quality control of RNA-seq for clinical diagnostic purposes.

Transcriptome sequencing (RNA-seq) has expanded new avenues for
exploring global expression patterns as well as identifying alternative
splicing events1. Differential expression analysis of transcriptomic data
enables genome-wide identification of gene or isoform expression
changes associated with biological conditions of interest. This con-
tributes significantly to the discovery of biomarkers for disease
diagnosis2, prognosis3, and therapeutic selection4. These evidences
facilitate the application of RNA-seq in clinical routine. Noticeably,

clinically relevant biological differences among study groups are often
small, especially between certain diseases and normal tissues5,6, or
between different disease subtypes or stages7–11, implying minor
changes in gene expression profiles between sample types.We refer to
such minor expression differences between sample groups with simi-
lar transcriptome profiles, as subtle differential expression, which
typically manifests in the detection of fewer differentially expressed
genes (DEGs). Subtle differential expression is typically challenging to
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distinguish from the technical noises of RNA-seq. Therefore, translat-
ing RNA-seq into clinical diagnostics poses requirements for more
sensitive differential expression analysis, emphasizing the necessity
for quality assessment at subtle differential expression levels.

However, over the past decade, quality assessment of RNA-seq in
the community has predominantly relied on the milestone MAQC
reference materials, characterized by significantly large biological
differences between samples, which were developed by the Micro-
Array/Sequencing Quality Control (SEQC/MAQC) Consortium from
ten cancer cell lines (MAQC A) and brain tissues of 23 donors (MAQC
B)12. TheMAQCConsortium utilized these samples with spike-ins of 92
synthetic RNA from the External RNA Control Consortium (ERCC) to
assess RNA-seq performance and demonstrated a high accuracy and
reproducibility of relative expression measurements across different
sites and platforms under appropriate data processing and analysis
conditions13,14. More large-scale studies have also employed these two
RNA reference materials to compare different library preparation
protocols and sequencing platforms15–17, and have utilized the MAQC
datasets for benchmarking bioinformatics pipelines18–21. Moreover, the
Genetic European Variation in Disease, a European Medical Sequen-
cing (GEUVADIS) Consortium sequenced RNA samples from lympho-
blastoid cell lines of 465 individuals across seven sites to assess
reproducibility across laboratories and examined the sources of inter-
laboratory variation under an identical experimental and bioinfor-
matics process22.

Noticeably, quality control based on the MAQC reference mate-
rials may not fully ensure the accurate identification of clinically rele-
vant subtle differential expression23. Moreover, in contrast to the
rigorously controlled RNA-seq workflows of previous study designs,
the real-world scenarios present significant differences in sample
processing, experimental protocols, sequencing platforms, and ana-
lysis pipelines across laboratories, where confounding factors may
compromise the accuracy and reproducibility of RNA-seq14,15,22. In the
context of such diverse experimental and bioinformatics processes,
understanding of the sources of inter-laboratory variation remains
limited. Therefore, a detailed quality assessment of the overall per-
formance of real-world RNA-seq in detecting subtle differential
expression for clinical diagnostic purposes and of the technical factors
affecting diagnostic performance is necessary.

Recently, the Quartet project for quality control and data inte-
gration of multi-omics profiling introduced multi-omics reference
materials derived from immortalized B-lymphoblastoid cell lines from
aChinese quartet family of parents andmonozygotic twin daughters24.
These well-characterized, homogenous, and stable Quartet RNA
reference materials have small inter-sample biological differences,
exhibiting a comparable number of DEGs to clinically relevant sample
groups and significantly fewer DEGs than the MAQC samples23. Fur-
thermore, the Quartet RNA reference materials also provided large-
scale ratio-based reference datasets23. Thus, theQuartet samples could
reflect subtle differential expression, providing a unique opportunity
for the assessment and benchmarking of transcriptome profiling at
subtle differential expression levels in a reference-based manner.

Within the scope of the Quartet project, this study utilized the
Quartet RNA samples with spike-ins of ERCC controls, andMAQC RNA
samples to generate RNA-seq data across 45 independent laboratories,
each using its own in-house experimental protocol and analysis pipe-
line. Overall, approximately 120 billion reads of RNA-seq data from
1080 libraries were generated and analyzed, representing the most
extensive effort to conduct an in-depth exploration of transcriptome
data to date. Through the quality assessment based on theQuartet and
MAQC samples in parallel, this study thoroughly elucidated the per-
formance of real-world RNA-seq, particularly when detecting subtle
differential expression. Subsequently, we leveraged gene expression
data from 26 different experimental processes and 140 differential
analysis pipelines to investigate sources of variation in the

experimental and bioinformatic aspects, respectively. This study pro-
vides best practice recommendations for the experimental and
bioinformatics designs of the RNA-seq toward the scientific question
addressed, and underscores the necessity of quality controls at subtle
differential expression levels through the comparisons of the Quartet
and MAQC reference materials.

Results
Study design
Our multi-center study involved four well-characterized Quartet RNA
samples (M8, F7, D5, and D6) with ERCC RNA controls spiked into M8
and D6 samples, T1 and T2 samples constructed by mixing M8 and D6
at the defined ratios of 3:1 and 1:3, respectively, and MAQC RNA sam-
plesA andB (Fig. 1a). The samplepanel design introduces various types
of ground truth, encompassing three reference datasets: the Quartet
reference datasets and the TaqMan datasets for Quartet and MAQC
samples, and ‘built-in truth’ involving ERCC spike-in ratios and known
mixing ratios for the T1 and T2 samples (Methods). Each sample was
provided with three technical replicates, resulting in a total of 24 RNA
samples, which were sequenced and analyzed by 45 independent
laboratories. Each laboratory employed distinct RNA-seq workflows,
involving different RNA processing methods, library preparation pro-
tocols, sequencing platforms, and bioinformatics pipelines (Supple-
mentary Data 1). Overall, RNA-seq data from 45 different laboratories
reflected the inter-laboratory variations. Sixteen laboratories assigned
all libraries to different flowcells or lanes for sequencing, introducing
batch effects in RNA-seq data, while other laboratories sequenced
them within the same lane, thereby without batch effects. This
approach accurately mirrored the actual research practices in real-
world scenarios.

In total, 1080 RNA-seq libraries were prepared, yielding a dataset
of over 120 billion reads (15.63 Tb) for the Quartet andMAQC samples.
Here, these two sets of reference materials represent different
experimental conditions of small and large biological differences. In
both conditions, our aim is to provide real-world evidence on the
performance of RNA-seq in terms of data quality, and the accuracy and
reproducibility of gene expression and DEGs (Fig. 1b). Moreover, after
excluding low quality data, the fixed analysis pipelines were applied to
exclusively investigate the sources of inter-laboratory variation from
the experimental processes (Fig. 1c). A total of 140 different analysis
pipelines consisting of two gene annotations, three genome alignment
tools, eight quantification tools following six normalization methods,
and five differential analysis tools were applied to high-quality
benchmark datasets selected from 13 laboratories to investigate the
sources of variation from the bioinformatics processes (Fig. 1d). Based
onmultiple types of ground truth, the influences of factors involved in
experimental and bioinformatics processes on RNA-seq performance
were evaluated.

Significant variations in detecting subtle differential expression
We combined multiple metrics for a robust characterization of RNA-
seq performance in real-world scenarios: (i) quality of gene expression
data using signal-to-noise ratio (SNR) based on principal component
analysis (PCA)23, (ii) the accuracy and reproducibility of absolute and
relative gene expression measurements based on several ground
truths, and (iii) the accuracy of DEGs based on the reference datasets
(Fig. 1b). These metrics constitute a comprehensive performance
assessment framework that captures different aspects of gene-level
transcriptome profiling (Supplementary Notes 3.1).

PCA-based SNR values using both the Quartet andMAQC samples
discriminated the quality of all gene expression data into a wide range,
reflecting the varying ability to distinguish biological signals in differ-
ent sample groups from technical noises in replicates (Fig. 2a). How-
ever, smaller intrinsic biological differences appeared to be more
challenging to distinguish from noises, as indicated by lower average
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SNR values for the Quartet samples among laboratories compared to
those for the MAQC samples, at 19.8 (0.3–37.6) and 33.0 (11.2–45.2),
respectively (Supplementary Fig. 1). The reduced biological differ-
ences among the mixed samples led to a further decrease in the

average SNR values to 18.2 (0.2–36.4). Particularly, for different
laboratories, the gap between two sets of SNR values, one based on the
Quartet and mixed samples and the other based on the MAQC sam-
ples, differed from 4.7 to 29.3, suggesting that diagnosing quality
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Fig. 1 | Overview of study design. a Two MAQC samples (A =Universal Human
Reference RNA and B =Human Brain Reference RNA), two ERCC synthetic RNA
mixtures, and Quartet RNA reference materials were utilized to prepare a set of
samples. The M8 and D6 samples were combined with ERCC controls at manu-
facturer recommended amounts, and then mixed at 3:1 and 1:3 ratios to create
samples T1 and T2, respectively. Each sample was prepared with three replicates,
and tested by 45 laboratories with distinct protocols and analysis pipelines,
resulting in a total of 1,080 libraries and 15.63 Tb of data generated. All 45
laboratories submitted expression data and differential expression calls at gene
and transcript levels, while 42 laboratories submitted complete raw sequencing
data. DEG, differentially expressed gene. b A comprehensive framework for
assessment of real-world RNA-seq data, encompassing assessment of data quality
using PCA-based SNR, as well as gene expression profiles and differentially

expressed genes by comparing with various ground truths. c A fixed analysis
pipeline was applied to all raw data to exclude the influence of the bioinformatic
process. Then the relative contributions of experimental factors to inter-laboratory
variations were investigated.dHigh-quality data from 13 laboratories were selected
for the benchmarking study, and the performance of 140 differential analysis
pipelines composed of two gene annotations, three alignment tools, eight quan-
tification tools following six normalization methods, and five differential analysis
tools was compared to explore the sources of variations from the bioinformatics
process. SNR Signal-to-Noise Ratio, RMSE Root Mean Square Error, CC Correlation
Coefficient, MCC Matthews Correlation Coefficient, TN True Negative, TP True
Positive, FN False Negative, FP False Positive, DEG Differentially Expressed Gene.
a, c, d included icons created with BioRender.com released under a Creative
Commons Attribution-NonCommercial-NoDerivs 4.0 International license.

Article https://doi.org/10.1038/s41467-024-50420-y

Nature Communications |         (2024) 15:6167 3



issues at subtle differential expression levelswas sensitive. A total of 17
laboratories had SNR values based on the Quartet and mixed samples
less than 12, which were considered as low quality. Moreover, SNR
examinations allowed for identifying random library or sequencing
failures in the individual replicates by calculating SNR17 from any 17
out of the 18 samples (12 Quartet and 6 mixed samples). We observed
that the SNR17 values increased by six decibels compared to the

corresponding SNR18 values after excluding nine samples in nine
laboratories, indicating that these nine samples were low-quality out-
liers (Fig. 2a).

Gene expression measurements were assessed based on the
Quartet reference datasets, the TaqMan datasets, and the built-in
truths including the ERCC spike-in ratios and mixed ratios of samples
T1 and T2. Considering the varying gene types of interest among
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laboratories (Fig. 2b), only protein-coding genes were included to
facilitate comparisons between laboratories. In absolute gene expres-
sion levels, all laboratories exhibited lower Pearson correlation coef-
ficients at 0.825 (0.738–0.856) with the MAQC TaqMan datasets (830
results for protein-coding genes), compared to those at 0.876
(0.835–0.906) with the Quartet TaqMan datasets (143 results for
protein-coding genes) (Fig. 2c). Correlations with the nominal con-
centrations of the 92 ERCC spike-in RNAs were consistently high for all
laboratories with an average correlation coefficient of 0.964
(0.828–0.963). More ERCC based assessments are shown in Supple-
mentary Notes 3.2. These results indicate that accurate quantification
of a broader set of genes is more challenging, highlighting the
importance of large-scale reference datasets for performance assess-
ment. We also focused on the absolute expression for other gene
types, and observed that small non-coding RNAs (sncRNA) exhibited
the largest inter-laboratory variations, followed by pseudogenes, long
non-coding RNAs (lncRNA), and immunoglobulin/T cell receptor seg-
ments (Supplementary Fig. 2), which appeared to be associated with
gene features specific to each type, such as gene lengths and gene
expression levels (Supplementary Figs. 3–4).

Relative expression measurements are more reliable than abso-
lute expression measurements, but they still present challenges when
identifying subtle differential expression. The variations in relative
expression across laboratories decreased compared to those in abso-
lute expression, as indicated by the fact that samples tended to cluster
based on the source sample rather than the laboratory in PCA plots
(Fig. 2d–e). Noticeably, laboratories still exhibited considerable varia-
tions in relative expression exceeding the small biological difference
among the Quartet samples (Supplementary Fig. 5). When compared
with multiple reference datasets, relative expression exhibited higher
correlation coefficients than absolute expression (Supplementary
Fig. 6), whereas the accuracy of relative expression in detecting the
Quartet samples was lower than that of the MAQC samples. Labora-
tories exhibited lower average correlation coefficients of 0.865
(0.288–0.978) and 0.860 (0.488–0.944) with the Quartet reference
datasets (23790 results for protein-coding genes) and the Quartet
TaqMan datasets, respectively. In contrast, the average correlation
coefficient was 0.927 (0.778–0.949) with the MAQC TaqMan datasets
(Fig. 2f). It is noteworthy that the rootmeansquare error (RMSE) values
between laboratories and the Quartet reference datasets were con-
sistently lower, reflecting the systematic deviations between RNA-seq
and TaqMan RT-qPCR assays but not between RNA-seq and the
Quartet reference datasets (Fig. 2f). In addition, the two built-in truths
allowed for a complementary examination of the accuracy and
reproducibility of the relative expression across 92 ERCC RNAs and all
detected human genes, respectively. Our results revealed the impact
of low gene expression and subtle differential expression on relative
expression measurements. The expected ERCC spike-in ratios were
more accurately recovered for high-concentration ERCC genes com-
pared to low-concentration genes (Fig. 2g). The mixing ratios in the

mixed samples were recovered well in most laboratories (Fig. 2h).
Laboratories that failed to recover the mixing ratio demonstrated the
presence of outliers (Supplementary Fig. 7), which are typically caused
by the erroneous detection or calculation of low-expressed genes
(Supplementary Fig. 8). By stepwise filtering genes with low fold
changes, the RMSE values between the observed and expected fold
changes decreased, indicating challenges in detecting geneswith small
expression differences (Fig. 2i).

The accuracy of DEG identification, as assessed based on the
Quartet reference datasets and the TaqMan datasets for Quartet and
MAQC samples, also exhibited variations across laboratories. Due to
the varied number of genes inputted for differential expression ana-
lysis, true positives ranging from 0.03% to 78.6%, from 1.2% to 82.0%,
and from 0.2% to 52.9% of the three reference datasets, respectively,
were not reported across laboratories. Consequently, we categorized
these instances as false negatives, and employed a penalizedMatthews
Correlation Coefficient (MCC) to assess the accuracy of DEG identifi-
cation (Fig. 1b and SupplementaryNotes 3.1). TheMCCvalues basedon
the Quartet reference datasets and the Quartet TaqMan datasets were
more dispersed among laboratories, ranging from 0.100 to 0.837 and
from 0.075 to 0.756, respectively (Fig. 2j). In contrast, the MCC values
based on the MAQC TaqMan datasets ranged from 0.251 to 0.702.
Importantly, the relatively low MCC values in certain laboratories
could be explained by several factors (Supplementary Data 2). For
example, in the case of lab18, the expression data exhibited a SNR of
0.9, indicating that the low-quality library preparation or sequencing
processes resulted in uninformative RNA-seq data for differential
analysis. The lab03 and lab04 demonstrated low accuracy of fold
change determination, impacting the reliability of the DEG detection.
Additionally, due to the diversity in their experimental designs and
methodologies, different thresholds for filtering low-expression genes
and DEG identification were chosen by laboratories, which led to var-
iations in the number of DEGs and impacted the accuracy. For exam-
ple, lab45 filtered genes with FPKM< 1 in all replicates before
differential expression analysis, leading to true-positive genes present
in the reference datasets being filtered out. Lab26 employed a strin-
gent threshold of p < 0.001 while lab07 only utilized Q ≤0.05 without
incorporating log2FC for DEG identification, which resulted in either
few or excessive DEGs and consequently lower accuracy.

Quality control check for filtering of low-quality RNA-seq data
Complete RNA-seq raw data were available in 42 laboratories. We first
assessed the sequencing quality properties (pre-alignment) for the
Quartet andMAQC samples, including sequencing depth, base quality,
GC content, and duplication rate (Supplementary Data 3). The number
of reads ranged from 39.4Mb to 418.8Mb for the Quartet samples and
from 40.9Mb to 424.2Mb for the MAQC samples across laboratories
(Supplementary Fig. 9). Within the same laboratory, different samples
exhibited variations in sequencing depth, particularly noticeable for
laboratories with higher average sequencing depths. Given that

Fig. 2 | RNA-seq performance metrics for real-world laboratories. a SNR values
to measure the expression data quality submitted from 45 laboratories. Dots
represented SNR values based on any 17 of the 18 samples (12 Quartet and 6mixed
samples). A dot in dark red represented an SNR17 outlier that increased over six
decibels compared to its standard SNR (18-sample SNR) after excluding one low-
quality sample in a laboratory, while orange dots represented acceptable SNR17
values that decreased or increased less six decibels. The red dashed line represents
the SNR cutoff of 12. b The gene types of interest for all laboratories and the
number of genes supported by at least one read in any one technical replicate
(Supplementary Notes 3.3). c Assessment of absolute expression based on the
TaqMan datasets and ERCC concentrations on the log2 scale. d PCA plots on
expression data from 45 laboratories in absolute and (e) relative expression levels.
The circles with same color represent all laboratories for each sample. fAssessment
of relative expression using Pearson correlation coefficient and the root mean

square error (RMSE) based on the Quartet reference datasets and the TaqMan
datasets on the log2 scale. g ERCC ratios can be recovered increasingly well at
higher expression levels. h A consistency test for recovering the expected sample
mixing ratio in T1 andT2. The red and cyansolid line traces the expected curve after
mRNA/total-RNA shift correction. The gray dashed lines indicate the fitted curves
from 45 laboratories. The ERCC genes are shown in black, and the other human
genes are shown in gray. i The ability to recover expected mixing ratios was mea-
sured using RMSE between the observed and expected relative expression values.
Box plots present RMSE values for all 45 laboratories, and data are presented as
median values (center lines) and the upper and lower quartiles (box limits). Colors
representing the different percentages of remaining genes after progressively fil-
tering out genes with low fold changes. j Assessment of differentially expressed
genes using Matthews Correlation Coefficients (MCC) based on the Quartet refer-
ence datasets and the TaqMan datasets. FC fold change, QC quality control.
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different flowcells or lanes can lead to variations in total reads counts,
we compared 16 laboratories that assigned 24 libraries to two ormore
lanes to other laboratories that assigned libraries to a single lane, and
observed no increased variations (Supplementary Fig. 10). Therefore,
inter-sample variations were considered to be due to difficulties of
equimolar pooling22.

Both Quartet and MAQC samples exhibited high Q30 scores,
ranging from 88.4% to 96.6% and from 88.3% to 96.7%, respectively,
reflecting the high quality of base calling (Supplementary Fig. 11). Most
laboratories showed a biased quality score distribution in the first 1–10
bases for the Quartet andMAQC samples (Supplementary Figs. 12–13),
whichwas attributed to lower signal intensities for the first sequencing
cycle and insufficient correction for factors such as phasing and cross-
talk in the initial bases during base calling25,26. We also observed that
the quality scores of forward reads (the first sequenced reads) were
generally higher than those of reverse reads (the later sequenced
reads), particularly in laboratories using the Illumina sequencing
platform. This was attributed to the decreased cluster size and higher
number of errors due to more amplification steps, and reduced DNA
polymerase activity before sequencing the reverse reads27.

GC content bias was found across laboratories, with the average
GC content ranging from 42.3% to 54.2% for the Quartet samples and
from 42.4% to 52.9% for the MAQC samples. Such laboratory-specific
GC content bias, primarily caused by different sites of library
preparation28, was more noticeable than the sample-specific GC con-
tent bias (Supplementary Figs. 14–15). Unusual GC content presents
inherent challenges, as GC-poor genes (<35%) tended to exhibit more
variable expression levels between laboratories than genes with
medium or high (> 65%) GC content (Supplementary Fig. 16).

The average duplication rates of the sequencing reads varied
significantly across laboratories, ranging from 4.2% to 73.4% for the
Quartet samples and from 5.0% to 75.5% for the MAQC samples (Sup-
plementary Fig. 17), with increased duplication rates correlating with
higher sequencing depth (Supplementary Fig. 18a). Additionally, the
mRNA enrichment method also influenced the duplication rates, with
the Poly(A) selection method demonstrating higher duplication rates,
similar to observations in other studies (Supplementary Fig. 18b)15.
Noticeably, the rRNA depletion method, due to capturing a large
amount of non-coding RNA, showed a significant decrease in dupli-
cation rates after removing reads aligned to non-coding regions,
indicating difficulties in detecting non-coding RNAs (Supplementary
Fig. 19). Seven laboratories exhibited an average duplication rate
exceeding 30%, surpassing the typical duplication levels observed in
prior research15,29,30. Thesedata were characterized byhigh duplication
rates at both low and high expression levels (Supplementary Fig. 20a).
Excessively duplicated reads at low expression levels were recognized
to originate from PCR amplification bias31,32. Within three of these
seven laboratories, we also observed large dispersions in duplication
rates for all samples, which exhibited a strong negative correlation
with library concentration with Spearman correlation coefficients
ranging from -0.886 to -0.986, highlighting the influence of the lack of
library complexity (Supplementary Fig. 20b)32.

We next performed the post-alignment quality control after
mapping the raw reads using STAR. All laboratories exhibited a high
overall alignment rate, ranging from 90.69% to 98.7% for the Quartet
samples and from 92.1% to 98.9% for the MAQC samples (Supple-
mentary Fig. 21). The slightly lower uniquely mapping rate was
noticeable in the Quartet samples in comparison to the MAQC sam-
ples, with average mapping rates of 89.7% (80.9–95.4%) and 92.0%
(84.1–96.0%), respectively. This was similar to the common char-
acteristics observed when comparing clinical samples with the MAQC
samples20. The multi-mapping rate seemed to be associated with the
mRNA enrichment methods. The rRNA depletion method resulted in
higher averagemulti-mapping rates than the Poly(A) selectionmethod
(Supplementary Fig. 22), possibly due to the capture of a greater

number of small non-coding RNAs with high sequence similarity33.
Meanwhile, a highmulti-mapping rate was consistently correlatedwith
a higher mismatch rate. The percentage of aligned reads mapping to
annotated exons is directly related to expression quantification, and is,
therefore, a critical quality metric. The Poly(A) selection method
consistently showed a higher median percentage of exonic reads at
84.5% and 80.9%, compared to the rRNA depletion method at 46.3%
and 44.1% for the Quartet and MAQC samples, respectively (Supple-
mentary Figs. 23–24).

Additionally, we performed the sample-level quality control to
identify any problematic samples. First, we examined SNR after
applying the fixed data analysis pipeline to eliminate the effects of
different bioinformatics workflowsused by the laboratories. Data from
14 laboratories were classified as low quality (Supplementary Fig. 25).
Second, based on the fact that the single nucleotide polymorphisms
(SNPs) among technical replicates are theoretically identical, we cal-
culated the pair-wise correlation measures on the variant allele fre-
quencies (VAF) of the SNPs for sample-identity checks. All laboratories
exhibited higher Pearson correlations between any two technical
replicates, than those between-sample group comparisons, indicating
no sample swaps or mislabeling (Supplementary Fig. 26). Despite this,
the correlation coefficients between replicates of the MAQC samples
were relatively low, which were similar to values of 0.53 and 0.39
observed between replicates of MAQC A and B, respectively, in the
RNA-seq data from theMAQC-III study12. This may be attributed to the
increased genome complexity of the MAQC samples A and B, which
were prepared by mixing total RNA samples from ten different cancer
cell lines and from the brain of 23 donors, respectively12. Finally, based
on percentage of readsmapped to ERCC reference sequences allowed
for the identification of problematic samples or libraries. In four
samples (MAQC A, B, and Quartet F7, D5) without ERCC spike-ins, we
observed reads counts ranging from 1 to 213,467 mapped to ERCC
genes across 38 laboratories (Supplementary Fig. 27). Four labora-
tories showed more than 0.005% of reads mapped to ERCC genes in a
specific sample. Particularly, lab10 exhibited an exceptionally high
fraction of ERCC reads in the two replicates of MAQC sample A,
accounting for 0.8% and 0.06% of the exonic reads. This indicates
potential cross-contamination, possibly due to sample, library, or
barcode contamination during library preparation34, or misallocation
of barcodes and carry-over contamination from previous samples
during the sequencing process34–36.

Using the above multiple metrics, including pre-alignment, post-
alignment, and sample-level quality metrics, RNA-seq data from 26
laboratories passed all criteria and were used for subsequent analysis,
whereas the other data from remaining 16 laboratories were flagged as
low quality and excluded from subsequent analysis to mitigate the
impacts of poorer library or sequencing quality, as well as sample
cross-contamination (Supplementary Data 3) (Fig. 3).

Sources of variation from the experimental processes
The significant inter-laboratory variations necessitated the investiga-
tion of the sources. Here, we focused on the magnitude of variations
across 26 laboratories in absolute or relative gene expression intro-
ducedbyeachRNA-seq step. To exclusively investigate variations from
the experimental processes, we employed a uniform data analysis
pipeline for all RNA-seq raw data, involving fastp for data pre-proces-
sing, Ensembl gene annotation, STAR for read alignment, and StringTie
for gene quantification. When compared to the original expression
data, the variations in SNR and the accuracy of gene expression mea-
surements decreased across laboratories, with a significant improve-
ment observed in some laboratories (Supplementary Figs. 28–29).
Similar results were observed when an alternative gene quantification
pipeline (for example, RefSeq and Salmon) was used for gene quanti-
fication (Supplementary Fig. 30). These findings indicated that the
fixed pipeline effectively reduced variations introduced by various
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bioinformatics processes employed by the laboratories. The variations
arising from different RNA processing methods, library preparation
protocols, and sequencing platforms among laboratories represent
‘experimental noise’.

The inter-laboratory variations in absolute gene expression levels
introduced by experimental processeswere significant in bothQuartet
(Fig. 4a) and MAQC samples (Fig. 4b), especially impacting subtle
differential expression measurements. We quantified the relative
contribution of technical and biological factors to the total variations
by principal variance component analysis (PVCA) based on absolute
expression data from all laboratories for all samples. A total of 15 fac-
tors from the experimental process were considered (Supplementary
Data 4), which introduced significantly greater variations than biolo-
gical differences among the Quartet samples (85.1% vs. 5.8%), with
mRNA enrichment methods and strandedness as the primary sources
(Fig. 4c). Additionally, other factors, including library preparation kits,
read lengths, the number of exonic reads, RNA inputs, and their
interactions also contributed tomore than 25%of the variations. These
factors corresponded to clustering patterns of gene expression con-
sistency across laboratories (Fig. 4f). In contrast, while the MAQC
samples revealed similar sources, variations from all experimental
factors were lower than biological differences between the MAQC
samples (38.2% vs. 61.2%) (Fig. 4d). Employing the alternative analysis
pipeline (RefSeq and Salmon) also revealed similar sources of varia-
tions, with these introduced variations representing approximately 15-
fold and 0.4-fold of biological differences in the Quartet and MAQC
samples, respectively (Supplementary Fig. 31).

In relative gene expression levels, the proportion of variation
attributed to experimental factors decreased to below 20% for the
Quartet and MAQC samples, respectively, which was observed when
employing both fixed analysis pipelines (Supplementary Fig. 32). This
indicated that relative expression could effectively correct for the
influence of experimental factors. The increased consistency of rela-
tive gene expression between any two laboratories compared to
absolute expression further confirmed this (Fig. 4e–f).

Sources of variation from the bioinformatics processes
To assess the sources of variation from the bioinformatics process,
high-quality data for the Quartet and MAQC samples from 13 labora-
tories served as benchmarkdatasets, encompassing 13 different library
preparation protocols, seven sequencing platforms, and a wide range
of sequencing depths spanning 42.6Mb to 425.3Mb to mitigate bias
(Methods). Following commonly used transcriptomic profiling

pipelines in real-world settings, two gene annotations, three genome
alignment tools, and eight expression quantification tools were
incorporated into the analysis, resulting in 28 combined quantification
pipelines. Subsequently, six representative normalization methods
were systematically compared (Supplementary Fig. 33). Variations
caused by different combinations of analysis tools represent ‘bioin-
formatics noise’.

In absolute gene expression levels, each bioinformatics step
introduced variations, with a greater impact on the detection of subtle
differential expression (Fig. 5a–b). For the Quartet samples, all bioin-
formatics steps and their interactions collectively introduced sig-
nificantly greater variations than the intrinsic biological differences
(75.1% vs. 5.6%). Normalization methods were the primary source of
variations, followed by quantification tools, alignment tools, and gene
annotation types (Fig. 5a). However, the MAQC samples revealed
smaller variations introduced from different bioinformatics steps than
their biological differences (34.0% vs. 56.7%) (Fig. 5b).

The relative gene expression also helped reduce variations from
bioinformatics processes, as indicated by the increased consistency of
relative gene expression across different analysis pipelines compared to
absolute expression (Fig. 5c–d). Furthermore, the contribution of
bioinformatics factors to variations in relative expression levels
decreased over 60% and 30% in the Quartet and MAQC samples,
respectively (compare Supplementary Fig. 34 with Fig. 5), suggesting
that the relative expression calculations could correct for the influence
of different analysis tools. However, there were still 28.4% of the varia-
tions from the bioinformatics process for the Quartet samples, sug-
gesting inherent performance differences among various analysis tools.

Best practices for experimental designs
The low quality of experimental execution significantly influences the
RNA-seq performance. RNA-seq data from 16 laboratories, failing
multiple quality metrics, were considered low experimental quality in
library preparation or sequencing processes (Fig. 3). Based on four
types of ground truth, these laboratories exhibited lower Pearson
correlation coefficients or higher RMSE for absolute and relative gene
expressionmeasurements, aswell as lowerMCC forDEG identification,
compared to the other 26 laboratories (Supplementary Fig. 35).
Noticeably, these instances of low quality were unrelated to the choice
of experimental methods, as they were distributed across various
experimental workflows. Therefore, our results highlighted the
importance of multidimensional quality control in experimental
design.

la
b0

1
la

b0
3

la
b0

4
la

b0
5

la
b0

6
la

b0
7

la
b0

8
la

b0
9

la
b1

0
la

b1
1

la
b1

2
la

b1
3

la
b1

4
la

b1
5

la
b1

6
la

b1
7

la
b1

8
la

b1
9

la
b2

0
la

b2
1

la
b2

2
la

b2
3

la
b2

4
la

b2
7

la
b2

8
la

b2
9

la
b3

0
la

b3
1

la
b3

2
la

b3
3

la
b3

4
la

b3
5

la
b3

6
la

b3
7

la
b3

8
la

b3
9

la
b4

0
la

b4
1

la
b4

2
la

b4
3

la
b4

4
la

b4
5

Number of reads
Base quality (Q30)
Duplicate rate
Mappling rate
5’ - 3’ bais
Intergentic region
SNR (MAQC based)
SNR (Quartet based)
SNR17 - SNR18
Cross contamination
Sample identity check

Final quality

QC PASS
QC FAIL

Fig. 3 | Quality flags of RNA-seq data.Multiple quality metrics were used,
including the number of sequencing reads, base quality (Q30), the percentage of
reads mapped to the human genome (Mapping rate), gene body bias (5′−3′ bias),
the percentage of mapped reads that were located in the intergenic region
(Intergenic region), SNR based on the MAQC and Quartet samples, the difference

between the SNR calculated from any 17 out of 18 samples and the SNR calculated
from all 18 samples (SNR17-SNR18), the percentage of reads mapped to ERCC
sequences in samples without ERCC mixtures (Cross contamination), SNP-based
sample-identity check, and final quality flag.

Article https://doi.org/10.1038/s41467-024-50420-y

Nature Communications |         (2024) 15:6167 7



Different experimental protocols tended to influence RNA-seq
performance, which should be considered during experimental
design. Based on multiple types of ground truths, we assessed the
influence of experimental factors using RNA-seq data from 26
laboratories in four aspects: data quality, absolute and relative gene
expression, and DEG identification (Fig. 6). (i) For expression data
quality, the Poly(A) selectionmethod exhibited higher SNR values than
the rRNA depletionmethod. Considering the differences in gene types
captured by the two methods, we further examined SNR values for
different gene types and observed that the Poly(A) selection method
primarily exhibited higher SNR values for protein-coding genes.

Conversely, for other gene types, particularly sncRNA, the rRNA
depletion method demonstrated significantly higher SNR, indicating a
more accurate capture of biological differences in these RNAs (Sup-
plementary Fig. 36). (ii) For absolute expression levels, the influences
of mRNA enrichment method and strandedness were observed, with
the rRNA depletion method and stranded-specific libraries exhibiting
higher correlation coefficients with the reference datasets. (iii) For
relative gene expression and DEG levels, a higher number of reads
mapped to the exonic regions showed a strong or moderate correla-
tion with improved accuracy, likely due to more reliable detection of
lowly expressed genes37. To validate their impacts, we down-sampled
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Fig. 4 | Sources of variation from the experimental processes. Scatterplots of
PCA on RNA-seq data from 26 laboratories for the (a) Quartet samples, and (b)
MAQC samples after applying the fixed analysis pipeline. The circles of the same
color represent all replicates across all laboratories for each sample. Principal var-
iance component analysis quantifies the proportion of variance explained by each
experimental factor for the (c) Quartet samples, and (d) MAQC samples. Heatmap
and hierarchical clustering of laboratories based on the root mean square error

(RMSE) at (e) absolute expression levels, and (f) relative expression levels for the
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four Quartet samples for the intersecting genes between each laboratory’s data and
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The boxplots present theRMSE values for 26 laboratories, anddata are presented as
median values (center lines) and the upper and lower quartiles (box limits).
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RNA-seq data to different depths and drew similar conclusions. Spe-
cifically, lower read depths resulted in decreased accuracy of relative
gene expression and DEG identification, while exerting a relatively
minor overall impact on SNR and absolute expression levels. However,
when sequencing depth decreased to extremely low levels, such as
10Mb, SNR and accuracy of absolute expression detection also sig-
nificantly declined (Supplementary Fig. 37). Furthermore, the MAQC
TaqMan datasets revealed significant differences in the accuracy
associated with read lengths. To further explore their impacts, we
trimmed sequencing reads to different lengths ranging from 25 bp to

150 bp across four laboratories, revealing that longer sequencing reads
tended to exhibit higher accuracy, especially in relative gene expres-
sion measurements, and either similar or higher accuracy in DEG
identification (Supplementary Fig. 38).

Additionally, we also observed statistically significant differences
in accuracy among laboratories using different RNA inputs, library kits,
and sequencing platforms, based on a singular type of ground truth
(Supplementary Fig. 39), which have been recognized as influencing
factorspreviously15,17,38. In addition, for insert size, a factor considered to
influence gene or isoform identification and quantification, our results
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Fig. 5 | Sources of variation from the bioinformatics process. Principal variance
component analysis quantifies the proportion of variance explained by each data
analysis step for the (a) Quartet samples, and (b) MAQC samples. Heatmap and
hierarchical clustering of 28 gene quantification pipelines based on the root mean
square error (RMSE) at (c) absolute expression levels, and (d) relative expression
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all 28 quantification pipelines, and data are presented as median values (center
lines) and the upper and lower quartiles (box limits).
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demonstrated a poor correlation with gene quantification accuracy
under the involvement of other factors22. The impact of these factors
needs further validation during method development through focused
experimental designs controlling for other influencing factors.

In addition to gene quantification aspects, certain experimental
factors such as sequencing depth and read length, were considered to
influence exon-exon junction detection, which implies an impact on
isoform and alternative splicing identification39,40. We observed that
even lower sequencing depthwas sufficient to detect known junctions,
and increasing the sequencing depth further facilitated the identifi-
cation of novel junctions (Supplementary Fig. 40). The impact of read
length was similar, as known junctions can still be detected when the
read length was reduced to 25 bp, while novel junctions were almost
undetectable (Supplementary Fig. 41).

Best practices for bioinformatics designs
Toobtain an optimal analysis pipeline for gene-level quantification and
differential expression measurements, we sequentially evaluated the

performance of 140 combined analysis pipelines with regard to
alignment quality, quantification accuracy, normalization effective-
ness, low-expression gene filtering efficacy, and accuracy of DEG
identification.

We first evaluated the influence of six alignment approaches
combined with two annotations and three genome alignment tools in
terms of sequence alignment and splice junction discovery. In com-
parison to the RefSeq annotation, the Ensembl consistently resulted in
higher uniquely mapping rates and lower multi-mapping rates (Sup-
plementary Fig. 42a). STAR exhibited the highest overall mapping rate
aswell as uniquelymapping rate. STAR eithermappedordiscarded the
paired reads, avoiding the alignment of unpaired single-end reads
(Supplementary Fig. 42b). HISAT2 and Subread had comparable
uniquely mapping rates, yet HISAT2 tended to have slightly higher
multi-mapping rates in most samples, resulting in higher overall
mapping rates. Subread displayed a higher tolerance of accepting
mismatch, primarily concentrating in fewer mismatched bases (Sup-
plementary Fig. 42b). Given that Subread did not detect exon-exon
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junctions, we compared the junctions from STAR and HISAT2. The
Ensembl annotation, being more complex, led to the validation of a
greater number of junctions (Supplementary Fig. 43). For these known
junctions, two alignment tools did not exhibit significant differences,
whereas HISAT2 identified more completely novel junctions. Most of
novel junctions were not reliable, indicated by significantly decreased
number after applying a counts-based threshold (Supplemen-
tary Fig. 44).

We next assessed the performance of 28 gene quantification
pipelines, consisting of six genome alignment approaches and eight
quantification tools (Supplementary Fig. 33). Both absolute and rela-
tive gene expression from these pipelines exhibited clustering based
on principles of quantification tools: genome-alignment quantification
pipelines, and transcriptome-alignment or alignment-free quantifica-
tion pipelines (Fig. 5c–d). Gene annotation and alignment tools also
influenced the clustering patterns. In particular, pipelines employing
the same annotation demonstrated notable clustering in the PCA plots
(Supplementary Fig. 45). We further examined the accuracy of these
pipelines for relative expressionmeasurements by comparing them to
three reference datasets and the two types of built-in truths, revealing
similar clustering patterns based on the accuracy metric (RMSE)
(Fig. 7a). Our results also demonstrated that the performance of each
bioinformatics step was interdependent. Specifically, the performance
of gene annotation varied depending on the combination with differ-
ent quantification tools, with Ensembl annotation exhibiting higher or
similar accuracy when combined with exon-level quantification tools,
while RefSeq exhibited higher accuracy when combined with
transcript-level quantification tools (Supplementary Fig. 46). The three
different alignment tools demonstrated similar accuracy, especially
when using Ensembl annotation and quantification tools such as fea-
tureCounts and HTSeq. When using StringTie for quantification, STAR
and HISAT2 outperformed Subread (Supplementary Fig. 47). The
influence of quantification tools was notable, with genome-alignment
quantification tools consistently showing higher accuracy (Fig. 7c–e).
Alignment-free quantification tools exhibited higher accuracy when
selecting RefSeq gene annotation, particularly Salmon, showing per-
formance similar to genome-alignment quantification pipelines. RSEM
exhibits moderate accuracy, outperforming alignment-free quantifi-
cation tools combined with Ensembl annotation. Overall, our perfor-
mance ranking of all quantification pipelines for relative gene
expression measurements based on four types of ground truth sup-
ported the selection of Ensembl gene annotation (or RefSeq annota-
tion when using StringTie) and genome-alignment quantification
strategy for gene quantification purposes (Supplementary Fig. 48).

We converted the raw counts from the 28 quantification pipelines
using six normalization methods, followed by an assessment of
expression data quality using PCA-based SNR. Trimmed mean of M
values (TMM), and DESeq normalization methods appeared to
improve the raw counts most effectively, while upper quartile (UQ)
normalization exhibited the poorest improvement (Supplementary
Fig. 49). Then we examined the gene expression distribution for all
normalization methods, and found that the median gene expression
from DESeq was the highest, followed by TMM, total counts (TC), and
UQ, while fragments per kilobase million (FPKM) and transcripts per
million (TPM) had similarly low levels (Supplementary Fig. 50).

The setting of low-expression gene filtering conditions may affect
the interpretation of differential expression calls (Supplementary
Data 2). To elucidate the impact of filtering conditions on the perfor-
mance of differential analysis, we evaluated six filtering methods and
various threshold values (the percent of filtered genes ranging from 0
to 70%) across five differential analysis tools, utilizing four RNA-seq
datasets representing different sequencing depth levels (Supplemen-
tary Fig. 33) (Methods). Across all six filtering methods, elevating the
threshold values resulted in an increase in both the DEG number and
the true positive rate (TPR) until they reached their respective peak

values, accompanied by a slight yet acceptable decrease in precision
(Supplementary Fig. 51). Such threshold effects were observed for four
differential analysis tools, including edgeR, DESeq2, limma, and DEG-
seq, except for EBSeq, which employed stringent internal filtering
criteria (Supplementary Fig. 52). Overall, the six filtering methods led
to general consistency in terms of the maximum number of DEGs and
the highest TPR across data from all laboratories (Supplementary
Figs. 53–54). Thus, the key consideration shifts to the determination of
optimal threshold value. Opting for a threshold value balancing the
TPR and precision appears to be an effective approach, but the lack of
benchmark datasets for assessing sensitivity or precision presents a
challenge in practice. In contrast, calculating the maximum number of
DEGs is practical. Although there were slight differences between the
thresholds based on the maximum number of DEGs and the highest
TPR, especially in the Quartet samples (Supplementary Fig. 55), the
resulting TPR values corresponding to these two thresholds were
highly consistent (Supplementary Fig. 56).

After applying a series of threshold values to filter low-expression
genes, we compared the optimal performance of five differential
analysis tools with different choices of quantification pipelines, which
contributed to 140 differential analysis pipelines (Supplementary
Fig. 33). We assessed the DEG accuracy based on three reference
datasets and investigated the influences of each bioinformatics steps
on the accuracy (Fig. 8a–e). edgeR and DESeq2 consistently out-
performed other tools, with DEGSeq and limma slightly lower, and
EBSeq being the lowest (Fig. 8d). As another accuracy measure, the
area under the receiver operating characteristic curve (AUC) was
compared across all differential expression analysis pipelines, which
captured the statistical discrimination capability of theDEGs. Similarly,
edgeR outperformed the other tools, and DESeq2 also exhibited rela-
tively high AUC values (Fig. 8e and Supplementary Fig. 57). The influ-
ences of annotation, alignment, and quantification steps on the
accuracy of DEG identification were particularly significant when
detecting subtle differential expression among the Quartet samples,
showing larger dispersions in MCC values (Fig. 8d). Ensembl annota-
tion consistently demonstrates higher or comparable MCC compared
to RefSeq (Fig. 8a), and three alignment tools showed similar MCC
(Fig. 8b). Genome-alignment quantification tools consistently yielded
higher accuracy of DEG identification, with Salmon being an exception
among alignment-free quantification tools, displaying higher accuracy
similar to exon-level quantification tools (Fig. 8c). RSEM exhibited
lower accuracy for the Quartet samples but higher accuracy for the
MAQC samples. The accuracy ranking of 140 pipelines was provided in
Supplementary Data 5.

Discussion
Aspart of theQuartet project, this study represents themost extensive
cross-laboratory examination of real-world RNA-seq data and analysis
outcomes to date, employing the Quartet and MAQC RNA reference
materials. Through the systematic assessment of transcriptome data
from 45 laboratories and the investigation of factors involved in 26
experimental processes and 140 bioinformatics pipelines based on
several types of ground truth, we attempted to address several ques-
tions: (i) the performance of real-world RNA-seq in detecting subtle
differential expression; (ii) the sources of inconsistency among
laboratories; and (iii) the recommended practices to enhance the
accuracy of RNA-seq in practical applications (Supplementary Table 1).

This study, for thefirst time, revealed noteworthy real-world inter-
laboratory variations in transcriptome profiling performance, espe-
cially when detecting subtle differential expression among theQuartet
samples. This prompts a reconsideration of the actual performance,
which may not be as robust as in previous studies conducted under
rigorously controlled RNA-seq workflows14,15,22. First, we examined the
data quality from multiple perspectives and identified a total of 16
batches of low-quality data, which seems to be more common than
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previously reported15,23. Second, absolute expression levels exhibited
substantial inter-laboratory variations, while relative expression mea-
surements were more reliable, which have become widely
recognized14. However, this study also revealed greater variations in
relative expression especially when detecting subtle differential
expression. Certain laboratories exhibited low consistency with refer-
ence datasets and poor recovery of known mixing ratios between
mixed samples, which were primarily due to inadequate restoration of

inter-sample biological differences in low-quality data or erroneous
detection of low-expression genes. Third, the number of DEGs varied
widely, and the accuracy metrics for DEG calls demonstrated a broad
range across laboratories, even when focusing on protein-coding
genes. Differences in data quality, filtering conditions for low-
expression genes, differential analysis tools, and the cutoff setting
for DEG identification collectively contribute to such variations, which
appear to be more significant than the differences in DEG detection
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Fig. 7 | Accuracy of gene quantification pipelines. a Clustering of 28 quantifica-
tion pipelines basedon accuracymetrics (RMSE) derived from comparisons to four
types of ground truth. b The color legend for c-g. The accuracy of all 28 quantifi-
cation pipelines was assessed based on the (c) Quartet reference datasets, (d)
Quartet TaqMan datasets, (e) MAQC TaqMan datasets, (f) built-in truth of mixing

ratios in T1 and T2, and (g) built-in truth of ERCC spike-in ratios. The accuracy of
quantification tools is comparedunder the sameconditions of gene annotation and
alignment tools. Box plots represent the RMSE values for 13 benchmark datasets,
and data are presented as median values (center lines) and the upper and lower
quartiles (box limits). Diamonds indicate outliers.
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Fig. 8 | Impact of each bioinformatics step on the accuracy of DEG identifica-
tion.Using the benchmark datasets from 13 laboratories, theMatthews correlation
coefficients (MCC) for 140 bioinformatics pipelines were measured based on the
Quartet reference datasets, the Quartet TaqMan datasets, and the MAQC TaqMan
datasets. The impact of each bioinformatics step on the accuracy of DEGs was
assessed, including (a) different annotations, (b) different alignment tools, (c)
different gene quantification tools, and (d) different DEG identification tools. Box

plots indicate MCC values for 13 benchmark datasets when different annotations,
alignment tools, quantification tools, and DEG identification tools are used, and
data are presented as median values (center lines) and the upper and lower quar-
tiles (box limits). e The AUC was analyzed for five DEG identification tools using
RNA-seq data from lab01, and the AUC values for other high-quality benchmark
datasets are displayed in Supplementary Fig. 57. AUC Area Under the receiver
operating characteristic Curve.
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performance across platforms, sites, and analysis tools previously
reported14,15,21. Therefore, our results underscore the fact that real-
world RNA-seq performancemay not fully meet the clinical diagnostic
demands, requiring ongoing quality improvement specifically toward
subtle differential expression.

The greater inter-laboratory variations in detecting subtle differ-
ential expression among the Quartet samples prompted to investigate
the sources of variations from diverse RNA-seq workflows, which
compensated for previous studies that exclusively focused on the
sources of variation under identical protocols and analysis
pipelines16,22. We observed that the technical factors in experimental
and bioinformatics processes contributed to a higher proportion of
variations in absolute gene expression levels for the Quartet samples
(85.1% and 75.1%) compared to MAQC samples (38.2% and 34%). Rela-
tive expression reduced the variation caused by technical factors to
below 20%, for both the Quartet and MAQC samples, indicating its
significance of eliminating batch effects, as previously shown to facil-
itatemulti-omics data integration24. To be specific, in the experimental
process, we identified factors affecting absolute expression quantifi-
cation, including mRNA enrichment methods, strandedness, library
kits, read length, the number of exonic reads, and RNA input. In the
bioinformaticsprocess, the normalization step is theprimary sourceof
variations, followed by quantification, alignment, and annotation.
These factors have been individually studied15,17,41–44, and in contrast,
our study revealed the magnitude of their impact in real-world
laboratory settings, providing clarity on the priority of technical fac-
tors to consider when designing RNA-seq systems.

The experimental design centered on establishing strict quality
control to avoid the influence of low-quality experimental execution,
as well as choosing experimental protocols for specific research
objectives, considering their impact on RNA-seq performance (Sup-
plementary Table 1). First, the quality of experimental execution is a
prerequisite. Low-quality execution contributed to poor RNA-seq
performance, and its impact ismore severe than the choiceofdifferent
experimental protocols. A comprehensive quality control is necessary
to promptly exclude low-quality data for subsequent analysis. Second,
the impact of experimental factors should be considered, with the
mRNA enrichment methods, strandedness, read length, and sequen-
cing depth identified as key factors based onmultiple types of ground
truth. (i) The rRNA depletion method exhibited significantly higher
accuracy for absolute gene expression measurements. In relative
expression levels, our results revealed a generally higher accuracy for
the Poly(A) selection method as previously reported15,17, although dif-
ferences between laboratories employing the two methods did not
reach statistical significance. (ii) Stranded libraries showed enhanced
accuracy in gene expression, which appears to be related to more
reliable quantification of overlapping genes transcribed from the
opposite strands42. (iii) Longer read lengths and higher sequencing
depths not only benefit gene quantification but also significantly
improve junction identification, and the latter is crucial for the appli-
cation of RNA-seq for isoform and alternative splicing analysis1. Our
results demonstrated an evident decrease in the accuracy of gene
quantification and DEG identification when the sequencing depth was
reduced to 10Mb, which was consistent with the previously proposed
minimumrequirement for readdepth1. For other experimental factors,
including RNA input, library kits, sequencing platforms, and insert
sizes, this study and previous studies have consistently revealed their
influence on the RNA-seq performance15,17,22,38. However, thorough
validation during method development is still necessary to make
informed choices regarding these factors. Finally, the experimental
designs also need to consider that different experimental methods
capture distinct transcriptomic features, which concerns the research
objectives. For example, the rRNA depletion method detects more
non-coding RNAs and pseudogenes compared to the Poly(A) selection
method15,41. Stranded and non-stranded libraries also contributed to

the differential expression of pseudogenes and antisense genes42. This
underscores the importance of considering sample type and quality,
such as the extent of RNA degradation17, as well as research objectives,
which may involve non-coding RNAs, pseudogenes, antisense genes,
novel transcripts, and alternative splicing events41,42,45.

The bioinformatics design, centered on the choice of optimal
analysis tools, requires equal attention, as the variations from the
bioinformatics processes are comparably significant as those from the
experimental processes (Supplementary Table 1). This study assessed
different normalization methods from the data quality aspects and
found that TMM and DESeq significantly improved the quality of
expression data, agreeing with conclusions drawn from previous
studies46. For each step of the differential expression analysis, we
found that the performance of any analysis tool is not constant but
depends on the other tools used in combination with it. Nevertheless,
this study provided the optimal bioinformatics design through an
evaluation of arbitrary combinations of analysis tools. First, for gene
annotation, choose Ensembl when using exon-level quantification
tools such as featureCounts and HTSeq, and choose RefSeq when
using transcript-level quantification tools for gene quantification pur-
poses. For differential expression analysis purposes, Ensembl con-
sistently demonstrated higher or similar DEG identification accuracy
than RefSeq. Second, for alignment tools, STAR with Ensembl anno-
tation resulted in the highestmapping rate. Similar to previous studies,
the three alignment tools generally exhibited similar accuracy in gene
quantification or DEG identification20,47. Specific cases have also been
observed, such as lower accuracy with Subread when using the
StringTie for gene quantification. The performance of alignment tools
also varied depending on factors including the genomic complexity of
different sample types and sequencing data characteristics, which
should be considered when selecting alignment tools20,48. Specifically,
differences in efficiency in aligning reads to ambiguous genes, such as
pseudogenes, significantly impact the accuracy of DEGs49,50. Third, for
gene quantification, choose tools using genome-alignment strategy,
particularly featureCounts and HTSeq. Fourth, the threshold for fil-
tering low-expression genes is not fixed but varies with different
samples and analysis tools51. If benchmark datasets are available, the
optimal thresholds could be chosen by balancing sensitivity and spe-
cificity after applying a series of thresholds ranging from low to high to
filter low-expression genes.Otherwise, it is practical to achieve optimal
sensitivity and acceptable specificity of DEG identification by choosing
the threshold corresponding to the highest number of DEGs. Finally,
edgeR or DESeq2 is preferred for conducting differential gene
expression analysis.

This study significantly advances the understanding of the role
of reference materials in quality control applications by utilizing the
Quartet and MAQC reference materials in parallel (Supplementary
Table 1). Overall, the assessment based on these two sets of refer-
ence materials demonstrated common patterns in multiple aspects
of the transcriptome across laboratories. Notably, each of the two
sets of reference materials has significantly enhanced the reliability
and distinctiveness of the assessment and exploration of RNA-seq
data. On the one hand, the Quartet samples enabled the assessment
in subtle differential expression levels and demonstrated advan-
tages in the performance assessment for different laboratories and
various analysis pipelines, underscoring the need for a shift in RNA-
seq benchmarking toward subtle differential expression levels. First,
Quartet samples with large-scale reference datasets enabled a more
precise and comprehensive assessment of the RNA-seq perfor-
mance. The performance metrics exhibited a broader range than
those from the MAQC samples in terms of SNR values for assessing
data quality, Pearson correlation coefficients for assessing gene
expression accuracy, and MCC coefficients for evaluating the accu-
racy of DEG calls. This implies a higher discriminative ability for
discovering performance differences among different batches,
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protocols, sites, and analysis tools. Second, Quartet samples allowed
for a more sensitive uncovering of technical noise. In the context of
subtle biological differences among the Quartet samples, the var-
iations introduced by experimental and bioinformatics factors
become more pronounced. Third, the Quartet reference datasets
revealed no systemic differences with the RNA-seq data at both
absolute and relative expression levels. Methodological differences
between RNA-seq and TaqMan RT-qPCR have previously limited
gene expression assessments concerning correlation analyzes14,
which are considered to have limitations in representing
consistency52. The Quartet reference datasets showed a lower RMSE
with RNA-seq data compared to the TaqMan datasets, allowing for a
direct comparison of the quantitative values of gene expression. On
the other hand, the MAQC samples established connections with
previous milestone studies, contributing to a deeper understanding
of real-world RNA-seq performance based on these traditional RNA
reference materials in the community. Moreover, a large-scale
TaqMan RT-qPCR dataset for the MAQC samples ensures an
unbiased performance assessment, effectively complementing the
Quartet reference datasets originated from the Ensembl-HISAT2-
StringTie pipeline which may introduce biases especially when
assessing diverse RNA-seq analysis pipelines53.

Limitations should also be noted, considering the influence of the
biological complexity of samples on RNA-seq performance. The
interpretation of our findings should fully consider the characteristics
of the samples. This study utilized two sets of distinctly different
reference materials, representing conditions of small (Quartet) and
large (MAQC) biological differences, which may not fully reflect more
complex biological experiments, such as those involving genetic per-
turbations or chemical treatments23,54. Previous studies have reported
that the RNA-seq performance may vary depending on the biological
complexity of samples23. This concern is particularly relevant in DEG
analysis, where each analysis tool uses a distinct data distribution
model, inter-sample normalization strategy, and statistical test, tai-
lored to the expected variances in read counts or expression values.
Consequently, the performance of the tools could be potentially
influenced by specific variances and characteristics of the samples55.
Despite this, our findings also exhibited similarities with previous
studies that useddifferent samples, such as the assessmentofdifferent
DEG analysis tools56. Additionally, the two sets of fundamental RNA
referencematerials allow for the establishment of a robust foundation
of RNA-seq performance across laboratories before embarking on
more complex biological experiments. This means that if technical
noises cannot be distinguished even in analyzing these reference
materials, detecting true biological differences in samples with higher
biological complexity or small treatment effects will be even more
challenging.Weunderscored the critical role of comprehensive quality
control, meticulous experimental design, and the selection of bioin-
formatics tools, and these insights obtained from the Quartet and
MAQC samples are expected to enhance the quality and interpretation
of a variety of RNA-seq experiments.

In summary, this study unveils significant inter-laboratory varia-
tions in real-world transcriptome profiling especially when detecting
subtle differential expression, with respect to data quality, absolute
expression, and differential gene expression. The investigation of the
sources of inter-laboratory variations in both experimental and
bioinformatic aspects has highlighted key points for the development
and optimization of RNA-seq methods. This study provided best
practice recommendations regarding the experimental and bioinfor-
matics design and quality control of RNA-seq (Supplementary Table 1).
These will aid researchers in accurately identifying subtle changes in
disease conditions, accelerating the transition of RNA-seq into a
diagnostic tool. Furthermore, these data can also be used to address
other aspects of transcriptomeprofiling, including alternative splicing,
gene fusion, RNA editing, and RNA variations.

Methods
RNA Reference samples preparation
FourQuartet RNA referencematerials (M8, F7,D6,D5)wereused53, and
External RNA Control Consortium (ERCC) spike-in Mix 1 and Mix 2
were added to M8 and D6 samples at manufacturer recommended
amounts, respectively (4456740, Thermo Fisher Scientific)13. Samples
T1 and T2 represent mixtures of samples M8 and D6 at the defined
ratios of 3:1 and 1:3, respectively, and thus hold ‘built-in truths’ of
sample mixing ratios. Universal Human Reference RNA (740000,
Agilent Technologies) and Human Brain Reference RNA (QS0611,
Thermo Fisher Scientific) were used, which were labeled as MAQC
samples A and B by MAQC Consortium12. MAQC B sample was paired
withMAQCA sample as a control sample for differential analysis, while
Quartet D6 sample served as a control sample for differential analysis
of sample M8, F7, D5, T1, and T2. Based on these reference materials,
three technical replicates were prepared for 8 RNA samples, resulting
in a total of 24 RNA samples (Fig. 1a). All the samples dispensed as 8μL
aliquots into 200μL thin-wall polypropylene PCR tubes with a con-
centration of 200ng/μL and stored at −80 °C.

RNA-seq workflow
The samples were transported to each laboratory on dry ice, and the
ERCC reference sequences and gene annotation files were provided
with the names of the 92 ERCCgenesmodified to ‘SPIKEIN’ followedby
the corresponding identifier. Laboratories conducted the experiments
and data analysis following their routine procedures. To accurately
capture batch effects within the laboratories, the sample grouping
information was provided to the laboratories after they submitted the
sample quality results, raw FASTQ files, and quantification results at
the gene and transcript levels. Subsequently, laboratories were
required to submit differential analysis results at gene and transcript
level, and alternative splicing results.

TaqMan RT-qPCR
Primers and TaqMan probes were designed for 91 genes based on the
RNA sequences. Among them, C1ORF43 was selected as the reference
gene for the PCR method. Primers and probes were synthesized by
Sangon Biotech, and the sequences are shown in Supplementary
Data 6. Before proceeding with the bulk qPCR experiments, we
designed two sets of primers and probes for the reference gene and
the target gene (CD180) to verify the acceptable impact of primer and
probe selection on the results. Then the amplification efficiency of the
primers and probes was confirmed to meet the requirements by per-
forming gradient dilution experimentswith the samples. The results of
the CD180 gene were used for inter-batch quality control for qPCR
experiments.

Five µg of eachQuartet RNA sample was reverse transcribed using
the PrimeScript™ RT reagent Kit (RR037A, TaKaRa) in a 50 µl reaction.
This reaction mixture was incubated at 37 °C for 15min, then for 5 s at
85 °C and finally for termination at 4 °C. cDNAobtained in the previous
step was used as template for qPCR. qPCR reactions were run in 96-
well plates, the qPCR reactions were carried out using Premix Ex Taq™
(RR390A, TaKaRa) containing 2μL of cDNA, 0.4μL of each forward
and reverse primers, 0.8μL of TaqMan probes in a 20μL final volume
reaction. The qPCR was performed on an Applied Biosystems 7500
Real-Time PCR System using the following cycling conditions: 30 s at
95 °C followed by 45 cycles of 5 s at 95 °C and 34 s at 56 °C. Three
replicates per sample per gene were conducted for eliminating ran-
dom variations.

The ground truth inherent in RNA reference samples
The sample design introduced four types of ground truth, comprising
three reference datasets: the Quartet reference datasets and the Taq-
Man datasets for the Quartet and MAQC samples, and two built-in
truths: ERCC spike-in ratios and themixing ratios in T1 and T2 samples.
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Quartet reference datasets. The Quartet reference datasets provided
relative gene expression andDEG results. Theywereobtained from the
Quartet data portal (https://chinese-quartet.org/#/dashboard)57, con-
sisting of 31,155 results regarding gene relative expression and DEGs in
comparisons ofM8/D6, F7/D6, andD5/D623. After intersecting with the
gene list of Ensembl release-109 annotation, the remaining 30,976
results (including 5,036 DEGs) comprised 76.8% of protein-coding
genes, 13.7% of long non-coding RNAs, 1.1% of small non-coding RNAs,
6.4% of pseudogenes, and 1.9% of immunoglobulin/T-cell receptor
gene segments.

TaqMan datasets for the Quartet samples. The TaqMan datasets for
the Quartet samples included absolute, relative gene expression and
DEG results (Supplementary Data 7). RT-qPCR assays were conducted
for 90 genes selected from theQuartet reference datasets. Normalized
gene expression was quantified using the Delta Ct method, with the
C1ORF43 gene serving as the endogenous control58. Fold changes were
calculated using the Delta Delta Ct method for the three Quartet
sample comparisons (M8/D6, F7/D6, andD5/D6). A gene is classified as
a DEG when the student’s t-test p <0.05 and fold change ≥2 or ≤0.515.
The TaqMan datasets and the Quartet reference datasets have a high
consistency in terms of fold change (Pearson correlation = 0.93), and
DEG identification (88%, 162/184) (Supplementary Fig. 58).

TaqMan datasets for the MAQC samples. The TaqMan datasets for
the MAQC samples also included absolute, relative gene expression
and DEG results. Normalized expression values for 1044 genes were
obtained from the Gene Expression Omnibus database (accession
number GSE5350), and 830 genes remained after removing genes with
undetectable CT values (CT > 35 or CT = 0). Fold changes between the
MAQCsamples A andBwere calculated as the ratios between themean
expression values of the four technical replicates. DEGswere identified
using the same method for the Quartet TaqMan datasets.

The built-in truth of ERCC spike-in ratios. ERCC spike-in ratios were
used to assess both absolute and relative gene expression accuracy.
ERCCRNA controls comprised 92 genes inMix 1 andMix 2 with known
wide-ranging concentrations, which were used for assessing absolute
expression levels. ERCC genes could be further divided into four
subgroups labeled as a, b, c, and d with respective ratios of 4:1, 1:2, 2:3,
and 1:1 between Mix 1 and Mix 2 for each group, which facilitated the
assessment of relative expression levels.

The built-in truth of mixing ratios in samples T1 and T2. This built-in
truth ofmixing ratios represents expected ratios in relative expression
between T1/D6 or T2/D6 and M8/D6, which was used to assess the
accuracy and reproducibility of relative gene expression. Translating
the known mixing ratios of 3:1 and 1:3 in RNA samples into gene
expression ratios between samples followed methods described in
previous studies14, involving two steps.

First, the expected absolute gene expression of genes in T1 and
T2 should be calculable from the absolute expression in M8 and D6
using Eq. (1):

log2ET1=T2 = log2ðk1 × EM8 + k2 × ED6Þ ð1Þ

where ET1/T2 represents the expected absolute gene expression in T1 or
T2, and EM8 and ED6 respectively represent the absolute gene expres-
sion in M8 and D6. k1 and k2 represent mixing coefficients for calcu-
lating gene expression in T1 and T2, respectively.

Second, using gene expression in D6 as the common denomi-
nator, the expected relative gene expression in comparisons of T1/D6
or T2/D6 could be calculated from the relative expression observed in

the comparison of M8/D6, utilizing Eq. (2):

log2ET1
D6
= log2 k1 + k2× 2

log2EM8
D6

� �

log2ET2
D6
= log2 k2+ k1 × 2

log2EM8
D6

� � ð2Þ

where ET1
D6
and ET2

D6
represents the expected relative gene expression in

comparisons of T1/D6 or T2/D6, and EM8
D6

represents the relative gene

expression in the comparison of M8/D6. Due to potentially different
mRNAproportions in different samples, as stated by ref. 61, themixing
coefficients for M8 and D6 may not adhere strictly to the theoretical
values of 1/4 and 3/4. A correction value, z, was introduced to correct
the mixing coefficients: k1 = z/(z + 3) and k2 = 3z/(3z + 1), which was
determined using RT-qPCR assays. In brief, ten genes with a broad
range of expression levels were tested using RT-qPCR, and the
corresponding z-values for each gene were calculated using Eq. (1)
basedongene expression results fromdifferent samples. Theobtained
average z values were 0.974 ±0.06 for T1 and 0.949 ±0.09 for T2. To
validate the z-values, RNA-seq data from the top ten laboratories with
higher accuracy for recovering ERCC spike-in ratios were used,
resulting in z-values of 0.965 ± 0.024 and 0.941 ± 0.026 for T1 and
T2, respectively. Finally, the z values from RT-qPCR assays were used.

RNA-seq performance metrics
The PCA-based SNR was used to assess the data quality at the gene
expression level, and the calculation method of PCA-based SNR as
shown in the previous study23. A gene was included for PCA analysis
and subsequent SNR calculation if more than one read wasmapped to
it in any one of the samples included. SNR calculated using the abso-
lute gene expression profiles from 24 samples including the MAQC
samples (SNR24) and 18 samples excluding the MAQC samples
(SNR18), represented the ability to distinguish large and subtle biolo-
gical differences from technical noises among technical replicates,
respectively. Additionally, SNR17 was calculated from any 17 out of the
18 samples (12 Quartet and 6 mixed samples). If the removal of a
particular sample results in a significant increase inSNR17 compared to
SNR18 (with a difference greater than 6), the quality of the RNA-seq
data of the excluded sample is considered low and the sample is
treated as an outlier. Such random occurrences of problematic library
preparation or sequencing in individual samples are referred to as
random failures.

The Pearson correlation coefficient was used to evaluate the
accuracy of gene expression. This involved examining the correlation
between log2FPKM and ERCC concentrations as well as TaqMan gene
quantification results, for assessing absolute gene expression, and
examining the correlation between sample-pair relative expression
and gene fold change in the TaqMan datasets and the Quartet refer-
ence datasets, for assessing relative gene expression. The Root Mean
Square Error (RMSE) was also used to measure the difference between
RNA-seq data and Quartet reference datasets and TaqMan results.

The built-in truth of mixing ratios in T1 and T2 was employed to
assess the accuracy of RNA-seq in capturing known gene expression
ratios between samples and the reproducibility of gene quantification
within the laboratory14,59,60. A nonlinear robust fit (nlrob) was per-
formed for relative gene expression in comparisons of T1/D6 or T2/D6
and M8/D6 for each laboratory, and the fitting curves were compared
to the expected curves defined by Eq. (2) (Fig. 1b). The closeness
between the laboratory data and the expected curve indicates accu-
racy, while the clustering of laboratory data represents reproducibility.
Additionally, the RMSE between the observed and the expected rela-
tive expression fromEq. (2)wascalculated for comparisonsofT1/D6or
T2/D6.
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The MCC was used to evaluate the accuracy of DEG identification
for a givenpair of samples basedon theQuartet reference datasets and
TaqMan results. The true positives, true negatives, false positives, and
false negatives were judged as shown in Fig. 1b. Then MCC was cal-
culated using Eq. (3).

MCC=
TP×TN� FP × FNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðTP+ FPÞðTP+FNÞðTN+FPÞðTN+FNÞ
p ð3Þ

Fixed data analysis pipeline
RNA-seq data from all laboratories were analyzed using uniform ana-
lysis pipelines to excluded variations from different bioinformatics
pipelines. Preliminary processing of raw reads was performed using
fastp (v.0.23.2) to remove adapter sequences61. Sequences were
aligned to the GRCh38 genome assembly62 using STAR (v.2.7.10b)63

with Ensembl annotation. Gene quantification was conducted using
StringTie (v2.2.1)64. Additionally, we also utilized RefSeq gene anno-
tation and Salmon (v.1.10.1)65 for gene quantification to strengthen the
validity of conclusions. The Ensembl release-109 annotation66 and the
recent RefSeq annotation (2023-03-21)67 was obtained. STAR was run
with the “--twopassMode Basic” option, and genes were quantified
using StringTie -e function. Salmon was run in the mapping-based
mode, using optional parameters: --gcBias, –seqBias, and --posBias.
The log2 transformation was then performed based on Fragments Per
Kilobase of transcript per Million mapped reads (FPKM) values. To
avoid infinite values, a value of 0.01 was added to the FPKM value of
each gene before log2 transformation.

Quality control analysis of sequencing data at pre-alignment,
post-alignment, and sample level was conducted using FastQC
(v.0.12.1), fastp (v.0.23.2)61, Qualimap (v.2.2.2)68, MultiQC (v.1.8)69, and
NGSCheckMate (v.1.0.1)70.

Relative expression calculation
Relative expression data were obtained within each laboratory on a
gene-by-gene basis. Specifically, relative expressions were calculated
based on log2FPKM values. For each gene, the mean of expression
profiles of replicates of reference sample(s) (for example, D6) was first
calculated and then were subtracted from the log2FPKM values of that
gene in other samples.

Filtering of low-quality data
To exclusively focus on the impact of methodological differences in
experimental processes on RNA-seq performance and to mitigate the
effects of low-quality library or sequencing and sample cross-
contamination due to experimental execution, we employed pre-
alignment, post-alignment, and sample-level quality metrics listed in
Supplementary Data 3, based on FASTQ, BAM, and expression profiles,
respectively, to filter out low-quality RNA-seq data from subsequent
analysis. The main pre-alignment quality criteria included: (i)
Q30 > 85%, (ii) the number of paired reads >20Mb, and (iii) the
duplication rate <30%. The post-alignment quality criteria included: (i)
the total mapping rate >90%, (ii) 5′-3′ bias ranging from 0.8 to 1.2, and
(iii) the proportionof readsmapped to the intergenic region <10%. The
sample-level quality criteria included: (i) the SNR value based on the
MAQC samples > 20, (ii) the SNR value based on theQuartet samples >
12, (iii) the difference between SNR17 and SNR18 < 6, (iv) the propor-
tion of readsmapped to ERCC sequences <0.005%, and (v) passing the
SNP-based sample-identity check.

Principal variance component analysis
Principal variance component analysis (PVCA) was performed to esti-
mate the sources of variation in absolute or relative expression profiles
from the experimental and bioinformatics processes using the pvca
package (v.1.40.0)71. In brief, after filtering out low-quality data, the

expression data for all samples from the remaining RNA-seq data were
used as the input for PVCA. PVCA involved four basic steps: (i) perform
PCA and select the first few principal components to retain the
majority of the variations in the gene expression data, (ii) fit a mixed
linearmodel separately to each principal componentwith all factors of
interest as random effects, (iii) estimate the variance components of
each factor through restricted maximum likelihood and average the
estimated variance components with their corresponding eigenvalues
as weights for each factor, and (iv) standardize the weighted average
variance components by dividing by their sum, so that the proportion
of variance components reflects the magnitude of sources of
variation72. We examined a total of 15 experimental factors, including
RNA input, mRNA enrichment method, strandedness, library kit,
library concentration, read length, sequencing platform, flowcell, lane,
base quality, GC content, duplication rate, the number of reads in
exonic region, insert size, and 5′ to 3′ bias, and four bioinformatics
factors, including annotation type, alignment tool, quantification tool,
and normalizationmethod. Sample grouping also served as a factor in
PVCA, allowing for a comparison between biological differences
among samples and variations introduced by various factors.

Benchmark of bioinformatics pipelines
Benchmark datasets. High-quality data from 13 laboratories were
further selected as the benchmark dataset. In brief, from all RNA-seq
data that passed all QC metrics, data were further selected based on
SNR values exceeding 20 (SNR based on the Quartet and mixed
samples).

Gene annotation. Two human gene annotations were included as the
guiding reference for alignment and quantification tasks in this study,
including the Ensembl release-109 annotation and the recent RefSeq
annotation (2023-03-21). All these annotations were generated based
on the human reference genome GRCh38. The gene annotation files
were used in conjunctionwith referencegenomeor transcriptomefiles
from the corresponding database.

RNA-seq analysis tools. We included all analysis tools used by the 45
laboratories to reflect real-world scenarios. Additionally, we also
included three popular tools, including Subread for alignment73, and
two alignment-free quantification tools (Sailfish and Kallisto)74,75. The
details of RNA-seq analysis tools, versions, and the command line are
listed in Supplementary Data 8.

Three alignment tools, STAR (v.2.7.10b)63, HISAT2 (v.2.2.1)76, and
Subread (v.2.0.3)73, were included. Eight gene or transcript quantifi-
cation tools were included, consisting of genome-alignment quantifi-
cation tools like featureCounts (v.2.0.3)77, HTSeq (v.2.0.2)78, StringTie
(v.2.2.1)64, and STAR, one transcriptome-alignment quantification tool,
RSEM (v.1.3.1)79 with Bowtie (v.1.3.1) for alignment80, as well as three
alignment-free quantification tools, including kallisto (v.0.48.0)74,
Salmon (v.1.10.1)65, and Sailfish (v.0.9.0)75. According to the different
quantification principles, these quantification tools canbe divided into
exon-level tools (featureCounts, HTSeq, and STAR) and transcript-
level tools (Kallisto, Salmon, Sailfish, RSEM, and StringTie), which
quantify gene expression by counting or estimating reads mapped to
exons or transcripts, respectively. Five differential expression analysis
tools, edgeR (v.3.42.4)81, limma (v.3.56.2)82, DESeq2 (v.1.40.2)83, DEG-
seq (v.1.54.0)84, and EBSeq (v.1.40.0)85, were included and compared.

Each tool was run with default parameters, and certain specific
options were also selected considering their potential to improve
alignment or gene quantification as stated in the Reference Manual.
The specific parameter options are as follows:

• STAR was run with the “--twopassMode Basic” option for more
accurate alignment, “--quantMode GeneCounts” option to obtain
read counts, and “--outSAMunmapped Within” option to retain
unmapped reads.
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• Subread was run with –multimapping and -B to retain multi-
mapped reads.

• featureCounts was run with optional arguments: -B to only count
fragments that have both ends successfully aligned and -C to
exclude the chimeric fragments.

• StringTie was run with parameter -e specifying to only estimate
the expression levels of the reference transcripts.

• Salmon was run in the mapping-based mode, using optional
parameters: --gcBias, –seqBias, and --posBias to correct sequence-
specific biases, GC biases, and 5′ or 3′ positional bias.

• Kallisto was run using –bias to correct biases.

The mapping information of each mapping tool was evaluated
using Samtools flagstat and stats function86. The number of mis-
matches was detected using the NM tag. The junctions were extracted
from BAM files using ‘junction_annotation.py’ in RSeQC package
(v.5.0.1)87. Transcript-level reads counts from Sailfish and Kallisto were
transformed to gene-level counts using tximport package (v.1.28.0)88.
Post alignment duplication rates in the BAM files were calculated using
Picard (v.3.1.1) CollectInsertSizeMetrics function89. The outputs of all
quantification tools were converted to FPKM for comparison with the
ground truth or between tools.

Normalization methods. We consider six normalization methods:
total counts (TC), fragments per kilobase million (FPKM), transcripts
per million (TPM), trimmed mean of M values (TMM), upper quartile
(UQ) normalizations, and normalization method used by DESeq2
(v.1.40.2). TC also known as CPM (Counts Per Million), corrects for
library size (expressed in million counts) so that each count is
expressed as a proportion of the total number reads in the sample.
FPKM and TPM are similar methods that correct for both library size
and gene length, but TPM divides counts by gene length first and then
by total number of transcripts in the sample, resulting in each nor-
malized sample having the same number of total counts. The TMM
approach is to choose a sample as a reference sample and the others as
test samples. Under the hypothesis that the majority of genes are not
DEGs, a scaling factor is calculated to adjust for each test sample after
excluding highly expressed genes and genes with high log ratios
between the test and the reference sample55. The TMM normalization
method is implemented in the edgeR package (v.3.42.4) by means of
the calcNormFactors function81. UQ normalization first removes all
zero-count genes and calculates a scaling factor for each sample to
match the 75% quantile of the counts in all the samples90. UQ nor-
malization was performed using the uqua function in package NOISeq
(v.2.44.0)91. DESeq normalization method is also based on the
hypothesis thatmost genes are not DEGs. The scaling factor for a given
sample is computed as the median of the ratio of the read count and
the geometric mean across all samples for each gene92. Raw counts
were normalized using the estimateSizeFactors() and sizeFactors()
functions in the DESeq package (v.1.40.2).

Filtering conditions for low-expression genes. Data from four dif-
ferent laboratories, with varying sequencing depth levels ranging
from low to high, were utilized to validate the optimal filtering
methods and thresholds. We calculate the maximum (max), median,
and sum of raw read counts and CPM for each gene from the repli-
cated samples, resulting in six different combined filtering methods.
Using eachfilteringmethod,weapplied a series of thresholds, ranging
from low to high, to filter out up to 70% of lowly expressed genes. To
facilitate comparisonof different filteringmethods, the real threshold
values were transformed into percentile-based thresholds. We
next examined the performance of different differential analysis tools
after applying different filtering conditions. The true positive
rate (TPR) measures the proportion of DEGs that are accurately

detected as positive by the differential analysis tools. Precision mea-
sures the proportion of the detected DEGs made are correct (true
positives).

Statistical analysis
All statistical analyses were performed using R statistical packages
(v.4.3.0) and python (v.3.10.10). PCA was conducted with the uni-
variance scaling, using the prcomp (v.3.6.2) function. Principal var-
iance component analysis (PVCA) was performed by pvca package
(v.1.40.0)72 to quantifies the proportion of variance explained by each
influencing factor. Cutadapt (v.4.8)93 was used to shorten read lengths
into 100bp, 75 bp, 50bp, and 25 bp. The seqtk (v.1.4)94 was employed
for down-sampling RNA-seq data to various sequencing depths. The
distribution of duplicated reads across expression levels were exam-
ined using dupRadar (v.3.18)31.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The data supporting the findings of this study are available from the
corresponding authors upon request. The high-quality raw sequence
data reported in this paper have been deposited in the Genome
Sequence Archive (Genomics, Proteomics & Bioinformatics 2021) in
National Genomics Data Center (Nucleic Acids Res 2022), China
National Center for Bioinformation / Beijing Institute of Genomics,
Chinese Academy of Sciences under accession code of GSA-Human:
HRA00593795.

Code availability
The 28 gene quantification pipelines were integrated using Snakemake
and are available on GitHub at https://github.com/lyaqing/snakemake_
rnaseq.git96. Custom scripts for the assessment of data quality and
accuracy of gene expression and DEGs are available on GitHub at
https://github.com/wangduo-ux/Asssessment-of-RNA-seq-
performance.git97.
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