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Phenotypic heterogeneity follows a growth-
viability tradeoff in response to amino acid
identity

Kiyan Shabestary 1 , Cinzia Klemm1, Benedict Carling 1,2,
James Marshall 1,2, Juline Savigny1, Marko Storch 2,3 &
Rodrigo Ledesma-Amaro 1

In their natural environments, microorganisms mainly operate at suboptimal
growth conditions with fluctuations in nutrient abundance. The resulting
cellular adaptation is subject to conflicting tasks: growth or survival max-
imisation. Here, we study this adaptation by systematically measuring the
impact of a nitrogen downshift to 24 nitrogen sources on cellular metabolism
at the single-cell level. Saccharomyces lineages grown in rich media and
exposed to a nitrogen downshift gradually differentiate to form two sub-
populations of different cell sizes where one favours growth while the other
favours viability with an extended chronological lifespan. This differentiation
is asymmetrical with daughter cells representing the new differentiated state
with increased viability. We characterise the metabolic response of the sub-
populations using RNA sequencing, metabolic biosensors and a transcription
factor-tagged GFP library coupled to high-throughput microscopy, imaging
more than 800,000 cells. We find that the subpopulation with increased via-
bility is associated with a dormant quiescent state displaying differences in
MAPK signalling. Depending on the identity of the nitrogen source present,
differentiation into the quiescent state can be activelymaintained, attenuated,
or aborted. These results establish amino acids as important signalling mole-
cules for the formation of genetically identical subpopulations, involved in
chronological lifespan and growth rate determination.

Most microorganisms spend most of their lifetime in a non-growing,
quiescent state1–3. Uponoccasional exposure tonutrients, they exit this
state and resume growth. In microbes such as yeast, quiescence and
proliferative growth are fundamentally opposite cellular states with
very distinct gene expression profiles and metabolic signatures4–8.
While the metabolism of growing cells is dominated by anabolic
reactions, quiescent cells rely on catabolism for survival and typically
undergo important metabolic rewiring associated with an upregula-
tion of the stress response, recycling of internal macromolecules and

an overall reduced metabolic activity4,6,9,10. Physiologically, quiescent
cells are smaller and possess a thicker cell wall that provides resistance
to a wide variety of stresses4 and different quiescence states can be
accessed depending on the environmental insult experienced9.

Understanding how microorganisms regulate their cell size,
growth rate and survivability in response to environmental signals
including starvation has been amajor challenge in quantitative cellular
physiology11–14. Studies at the population level have drawn empirical
relationships between cell growth, cell size and nutrient availability15–17.
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Yet, population-averaged observations often mask single-cell beha-
viours due to phenotypic variations across cells14,18,19. In particular, cell-
to-cell heterogeneity is often found in a population of genetically
identical (isogenic) cells, even when growing under steady-state
assumptions, due to differences in stochasticity, cell ageing or cell
cycle progression14,20–24. Recent advances in single-cell phenotyping
such as cell segmentation and tracking inmicroscopy25–27 or single-cell
RNA sequencing22,23,28–31 have given new insights into the emergence of
phenotypic heterogeneity in microorganisms. While the underlying
differentiation processes are still poorly understood, the fitness ben-
efits are clear. Phenotypic heterogeneity, or population
multimodality32, denoting the presence of two or more distinct iso-
genic subpopulations (Fig. 1a), can reduce the risks of investing all
resources towards a specific phenotype as in bet-hedging20,33–35 or can
lead to a more efficient proteome partitioning through cellular dif-
ferentiation or division of labour as in multicellular organisms36–38.

Here, we study the single-cell response to suboptimal growth
conditions in the model eukaryote Saccharomyces cerevisiae. Using
nitrogen downshift as a case study, we report the presence of both
isogenic quiescent and growing subpopulations displaying differences
in cell size, chronological lifespan and growth resumption capability.
Based on previously published single-cell RNA sequencing datasets23,
we identify subpopulation markers that allow high-throughput inter-
rogation of cellular fate at the onset of a nitrogen downshift and study
differentiation across 24 different nitrogen sources present in limited
or replete amounts (Fig. 1b). We perform a multi-omics analysis of the
differentiation process using subpopulation RNA sequencing and
analyse the single-cell metabolic response using a prototrophic GFP-
tagged transcription factor library and metabolic biosensors (Fig. 1a,
Supplementary Fig. 1). Our results reveal the presence of two distinct
subpopulations reflecting a global population-wide strategy where
isogenic subpopulations aremetabolically specialised in either growth
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Fig. 1 | Nitrogen downshifts lead to phenotypic heterogeneity. a Conditions
tested throughout this study. Cells were grown in rich (YPD) media until they
reached exponential phase, washed twice with PBS and resuspended in one of the
media. Different modalities (unimodal or bimodal) were observed across condi-
tions. Flow cytometer andmicroscope schematics weremade with BioRender.com
released under a CC-BY-NC-ND 4.0 International license. b Pipeline used through-
out this study to monitor single-cell differentiation. c scRNAseq datasets were
obtained from ref. 23 and describe cells shifted to 0.8mM proline (NLIM-PRO) or

glutamine (NLIM-GLN) as well as the control (YPD). Plots represent dimensionality-
reduceddata usingUMAP,where eachpoint represents a single cell. Cells in the top
UMAP plot are coloured by growth scores, calculated from a regression model39

trained on bulk RNAseq data. Histogram above represents the density of growth
scores (GS) for each condition. d Flow cytometry data for cells exposed to a
nitrogen downshift. GFP fluorescence (BL1-H channel) and cell size (FSC-H forward
scatter channel) were used tomeasure single-cell heterogeneity. Arbitrary units are
shown (abbreviated a.u.).
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or viability depending on the nitrogen source present. Results
obtained in wild and laboratory Saccharomyces strains suggest a pre-
viously unknown amino acid-dependent and conserved behaviour
shaping population dynamics.

Nitrogen shift leads to phenotypic heterogeneity
To study population adaptation following a nitrogen shift, we took
advantage of recently available yeast single-cell RNA sequencing
datasets (scRNAseq). Jackson et al.23 observed that diploid proto-
trophic S. cerevisiae cells, generated from FY4 and FY5 laboratory
strains, exposed to nitrogen downshifts display two subpopulation
clusters with distinct transcriptome profiles. The differentiation pro-
cess was also impacted by the quality of the nitrogen source where
growth on the non-preferred amino acid proline gave a stronger dif-
ferentiation than for the preferred amino acid glutamine (Fig. 1c). We
further leveraged this data to find subpopulation markers that could
be used to study the emergence of this differentiation. Remarkably, in
both conditions, one of the subpopulation clusters (cluster P2 for
proline and G2 for glutamine) showed a decrease in expression of
ribosomal genes while having a higher stress signature (Fig. 1c). We
investigated whether this difference in transcriptome could translate
into a difference in growth. Using a previous regression model pre-
dicting growth rate based on bulk transcriptomic data obtained from
nutrient-limited chemostats39, we found that these clusters (P1/P2 and
G1/G2 for proline and glutamine, respectively) had distinct predicted
growth profiles 4 h into nitrogen limitation according to scRNAseq
data (Fig. 1c). We identified a subpopulationmarker RPL28 (YGL103W)
whose transcript levels were high and significantly different between
G1 and G2, as well as between P1 and P2 (Supplementary Fig. 2 and
Fig. 1c). Flow cytometry of isogenic BY4741 laboratory cells containing
super-folded GFP (sfGFP) under the control of pRPL28 promoter
(700bp upstream of start codon) was first used to reproduce the
observed heterogeneity at 4 h post-shift. As suggested from scRNAseq
data, bimodality could be detected in nitrogen-limited media with
proline or glutamine as nitrogen source but not in rich Yeast extract-
Peptone-Dextrose (YPD) media (Fig. 1d). For each of these nitrogen-
limited conditions, two subpopulations of cells could be detected for
both pRPL28-sfGFP intensity and cell size (Fig. 1d). Scatter plot of
pRPL28 fluorescence versus cell size shows that the “low” subpopula-
tion with the lower pRPL28 fluorescence had smaller cell size (lower
FSC forward scatter signal), while the “high” subpopulation had a cell
size and a pRPL28 fluorescence that were closer to pre-shift levels in
YPD (Fig. 1d, Supplementary Fig. 3a). To confirm that these differences
in pRPL28 fluorescence between low and high subpopulations were in
fact not due to cell size differences, we further normalised fluores-
cence by cell size (Supplementary Fig. 3b). When the subpopulations
were clustered based on cell size and cell size-normalised pRPL28
fluorescence, cell size-normalised pRPL28 fluorescence was still sig-
nificantly different (p < 0.005; two-sided unpaired t test) between
subpopulations for both proline and glutamine conditions, indicating
variations in cell size alone could not account for the differences
observed in pRPL28 fluorescence (Supplementary Fig. 3c, d). Addi-
tionally, exposing Rpl28 tagged GFP strains to 4 h of proline treatment
could also show the emergence of a “low” subpopulation with lower
Rpl28-GFP levels (Supplementary Fig. 3e), indicating that lower fluor-
escence in the “low” subpopulationwas notdue to post-transcriptional
regulation of sfGFP alone.

To further investigate whether high and low subpopulations were
truly isogenic, we sorted cells based on forward side scatter and GFP
fluorescence, separated the two subpopulations, and performed the
same shift from YPD to nitrogen limitation for high and low fractions
separately. Given the significant overlap in cell size and pRPL28
intensity between both subpopulations at the onset of the shift
(Fig. 2a), sorting on both fluorescence and cell size allowed for a more
precise separation at the early stage of differentiation (Supplementary

Note 1). Regardless of their post-sorting classification into low or high
subpopulations, both subpopulations re-exposed to rich media could
regenerate both low and high fractions when shifted again, indicating
that the heterogeneity observed was phenotypic and reversible when
re-exposed to rich media (Supplementary Note 1). Extending the
washing step and leaving the cells in PBS for 2 h did not affect the
dynamics of heterogeneity (Supplementary Fig. 4).

Low subpopulation is a daughter-specific reversible
quiescent state
To investigate the dynamics of the differentiation between high and
low subpopulations, weperformed a time-course analysis for nitrogen-
limited proline and glutamine conditions and monitored cell size and
pRPL28 fluorescence every 2 h for 8 h (Fig. 2a). The emergence of a
second subpopulation could be seen for both conditions after 2 h and
was more pronounced after 4 h. After that, we noticed a diverging
outcome between conditions where cells in the nitrogen-limited pro-
line (hereafter NLIM-PRO) conditionmaintained bimodality while cells
in the glutamine conditions (NLIM-GLN) became more unimodal, but
yet heterogeneous, in cell size and pRPL28 fluorescence over time
(Fig. 2b, Supplementary Fig. 5a, b). Bimodality also led to significant
differences in the cell size coefficient of variation (CV), defined as the
population cell size standard deviation divided by its mean, always
higher for NLIM-PRO throughout the differentiation (Supplementary
Fig. 6). To further evaluate the number of cells in each subpopulation,
we clustered cells based on cell size and pRPL28 fluorescence (see
Methods) and assumed twodistinct subpopulations based onprevious
histograms (Fig. 1d). Given the difficulty to reliably cluster sub-
population early and late into the shift, we assigned subpopulations
based on the clustering performed on 4h NLIM-PRO, which gave the
clearest clustering (Supplementary Fig. 7 and Fig. 2b). Significantly
more cells were assigned to the low subpopulation for NLIM-PRO
compared to NLIM-GLN from 4h onwards (Fig. 2c).

The strong and weak bimodality observed for proline and gluta-
mine, respectively, echoed the growth score distributions computed
from scRNAseq (Fig. 1c). To confirm that the observed subpopulations
were indeed the scRNAseq clusters and analyse the early response at
the same time, we performed RNA sequencing on the sorted fractions
separately (subpopRNAseq) 1 h post-shift (Supplementary Data 1,
Supplementary Data 2, Fig. 2d). Comparing genes that were sig-
nificantly different (padj < 0.05) between subpopulations and clusters
in the NLIM-PRO condition revealed a good correlation (Spearman
coefficient ρ =0.66) between the high subpopulation and cluster P1 as
well as between the low subpopulation and cluster P2 despite differ-
ences in experimental set-up, laboratory strain and sampling time (1 h
for subpopRNAseq vs 4 h scRNAseq) (Supplementary Fig. 8). Sub-
popRNAseq confirmed the upregulation of G1-phase daughter-specific
markers DSE1 andDSE2 for the low subpopulation as seen in cluster P2
in the scRNAseq dataset (Fig. 2d, Supplementary Fig. 8). Genes
involved in cytokinesis (HOF1, BUD4, ACE2, CHS2) or chromosome
segregation (HCM1) were significantly (padj < 0.05,
Benjamini–Hochberg procedure) up-regulated in the high sub-
population aswell as themitotic exit regulators SPO12,DBF2 andCDC5
(Supplementary Data 2). KEGG enrichment of differentially expressed
genes between high and low proline subpopulations revealed major
differences in cell cycle progression,meiosis,MAPK signalling pathway
and DNA repair (Supplementary Fig. 9). Further analysis of scRNAseq
clusters 4 h into the shift shows that the low subpopulation had all the
hallmarks of quiescence with a reversible growth arrest and upregu-
lation of quiescencemarkers4 aswell as proteins involved in autophagy
(Supplementary Note 2, Supplementary Data 1).

Enrichment of the daughter-specificmarkersDSE1 andDSE2 in the
low quiescent subpopulation prompted us to investigate subpopula-
tion dynamics further. First, we sorted high and low subpopulations
grown for 2 h in NLIM-PRO or NLIM-GLN and tracked their evolution
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after post-sorting resuspension in their original media composition
(Supplementary Fig. 10). Sorted high fractions were able to regenerate
the low subpopulation over time (Supplementary Fig. 10), further
highlighting that the low subpopulation is a daughter-specific state
arising from the high subpopulation. Once in the low state, the
dynamics differed between NLIM-PRO and NLIM-GLN. In NLIM-PRO,
most of the cells remained in this state and the mean subpopulation
cell size and pRPL28 intensity slowly increased (Supplementary Fig. 10
and 11). Conversely, in the low NLIM-GLN subpopulation, the increase
in cell size and pRPL28 intensity was more pronounced than for NLIM-
PRO. Remarkably, the low NLIM-GLN subpopulation achieved similar
levels in pRPL28 intensity and cell size to the high subpopulation 6 h
post-sorting (Supplementary Figs. 10 and 11). To further validate our
flow cytometry results, we also imaged and counted bud scars for each
sorted subpopulation in each condition using calcofluorwhite staining
(Fig. 3a). In both conditions, the low subpopulation primarily consisted
of scarless daughters, whereas the high subpopulation was pre-
dominantly enriched in dividing mother cells (Fig. 3b). After 2 h re-
growth in their respective media, we noticed again a significant dif-
ference between conditions. In NLIM-PRO, ~80% of the cells were
daughters, whereas in NLIM-GLN, this number was only 30% (Fig. 3b).

This observation suggests that low subpopulation cells in the NLIM-
GLN condition were resuming growth and regenerating daughter cells
significantlymore than inNLIM-PRO. Taken together, our results show
that lowsubpopulations arise in theNLIM state andgrowth either stalls
or resumes according to the nitrogen source present.

The cell size and pRPL28 fluorescence modality (i.e. unimodal or
bimodal) observed above was conserved in nitrogen-replete condi-
tions (10mM), as well as intermediate concentrations, indicating that
this was not a feature exclusive to nitrogen limitation but of the
nitrogen source (Supplementary Fig. 12). We performed time-lapse
microscopy of single-cells and could observe the emergence of three
phenotypes in NLIM-PRO (Supplementary Fig. 13). Some cells (below
2% of the total population estimated from flow cytometry data; Sup-
plementary Note 1) completely lost their fluorescence with cell size
shrinkage, indicative of potential cell death, while most cells showed
differences in pRPL28 intensity and cell size as observed during flow
cytometry.

Finally, to assess if the observed heterogeneity was strain-specific,
we analyzed the cell size modality in response to a downshift to NLIM-
PRO or NLIM-GLN for 20 wild-types and laboratory S. cerevisiae and its
close relative S. paradoxus isolated from diverse geographical
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locations worldwide40 (Supplementary Data 3). We found that, simi-
larly to BY4741 and FY4 strains, multiple subpopulations (sometimes
more than two) couldbe formed inNLIM-PROand inNLIM-GLNamong
wild-type isolates (Supplementary Fig. 14), showing that cell size
modality is not the result of domestication but suggests broader
ecological implications inherited from wild-type strains.

Quiescence heterogeneity is amino acid-specific
We next asked how a downshift to other nitrogen sources could affect
quiescence heterogeneity. We performed a nitrogen downshift from
richmedia to 24 different nitrogen sources (20 amino acids and 4 non-
proteinogenic sources) that can be transported across the plasma
membrane41. For comparison, we also considered shifts to nitrogen-
starved media (NSTARVE) and nitrogen-replete media (NREP, 10mM)
for a selection of nitrogen sources that were soluble under the con-
ditions tested. Since cell size was an overall good discriminator of
differentiation, we measured cell size heterogeneity 2 h, 4 h, 6 h and
8 h into the shift as a measure of quiescence heterogeneity. As seen
previously for NLIM-PRO and NLIM-GLN, measuring cell size distribu-
tion 6 h into the shift was enough to assess the dynamics of the low
subpopulation and capture differences between bimodal and unim-
odal conditions (Fig. 2a). Nitrogen downshifts gave a wide range of
heterogeneity profiles over time for NLIM (Supplementary Fig. 15) and
NREP (Supplementary Fig. 16). Among those, downshift to either
ammonium, arginine, asparagine,methionine, or serine gave unimodal
profiles over time, while downshift to other nitrogen sources or
nitrogen-starved media gave bimodal profiles. Notably, a shift to glu-
tamate gave a bimodal followed by a more unimodal profile after 8 h.
Direct proximity to glutamine through the GS-GOGAT nitrogen
assimilation pathway could explain this hybrid response. Glutamate
(bimodal after 2 h), slowly converting to glutamine (unimodal), would
indeed lead to a bimodal followed by a unimodal response. We further
quantified the bimodality in cell size distribution for each of the 25
different nitrogen conditions (24 nitrogen sources and NSTARVE)
using Hartigan’s diptest bimodality scores (Methods) on three repli-
cate flow cytometry experiments and found 14 NLIM conditions and 7
NREP conditions (out of 25NLIMand 16NREP tested, respectively) that
gave significant (p <0.05,Hartigan’s diptest) bimodality scores 6 h into
the shift for all replicates (Fig. 4a, Supplementary Figs. 17, 18 and 19a).
We noted that many of the nitrogen sources leading to unimodal
growth were part of the “preferred” nitrogen source group that trig-
gers the Nitrogen Catabolite Repression (NCR) programme, usually
associated with better growth performances41,42. This was the case for
arginine, glutamine, ammonium, serine, and asparagine but not for
alanine and aspartate, which trigger NCR but were bimodal. To further
investigate the connection between modality and growth, we also
recorded growth performance across all conditions (Fig. 4b, Supple-
mentary Fig. 19b). Our results forNREP conditions showed amoderate-
strong correlation (Spearman coefficient ρ =0.5–0.7) with previous
growth rate performancemeasurements on different nitrogen sources
in S. cerevisiae (Supplementary Fig. 20). As expected based on the
pRPL28 growth marker, nitrogen sources sustaining higher maximal
growth rate had a unimodal distribution, while nitrogen sources with a
bimodal distribution had slower growth, suggesting a strong anti-
correlation (Fig. 4c; Spearman coefficient ρ = −0.80 and −0.74 for
NLIM and NREP, respectively) between cell size bimodality and max-
imal achievable growth rate, further validating the computational
growth prediction and pRPL28 growth marker identified from
scRNAseq. Comparison between NLIM and NREP conditions show that
NREP could sustainhigher growth (Supplementary Fig. 21a) but did not
show significant differences in modality across amino acids between
NLIM and NREP (Supplementary Fig. 21b). Together, our data suggest
that amino acid quality and not quantity is important for modality and
that population unimodality correlates with growth maximisation.
Remarkably, thepresenceof alternative nitrogen sources yieldedmore

extreme phenotypes than when nitrogen was absent. This includes a
downshift to leucine which gave the most bimodal profile, or a
downshift to either lysine or cysteine, which gave a significantly lower
(p < 0.05 and p < 0.0005, respectively; unpaired t test) maximal
growth rate than when nitrogen was absent from the media
(NSTARVE), further highlighting a strong connection between nitro-
gen sources and population dynamics.

Heterogeneity follows a growth-viability tradeoff
Given the apparent growth defect associatedwith bimodal profiles, we
asked what the evolutionary benefits of maintaining a low, quiescent
subpopulation of smaller cell size could be. Previous research in S.
pombe has shown that small-sized non-growing quiescent populations
appear under nitrogen-starved conditions43 with increased stress
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on the Fisher’s Exact test (one-tailed). Purple, light orange and light red bars
represent unsorted (not gated), high and low fractions, respectively.
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resistance44. With many subprocesses differentially regulated in
quiescent cells linked to a general increase in survivability4,9, we
investigated links between bimodal growth and cellular viability. To
this end, we exposed the cells to a 20 h downshift in each of the 24
nitrogen sources, washed them and stored them in PBS for 20 days. As
a measure of cellular viability, we used propidium iodide staining,
routinely used in chronological lifespan assays. Propidium
iodide permeates non-viable cells, with the proportion of stained cells
used to estimate single-cell viability and chronological lifespan. We
discovered strong differences in viability across conditions with
nitrogen sources sustaining unimodal and faster growth such as

glutamine, arginine, or ammonia generally displaying lower viability
rates (Supplementary Fig. 22). NREP conditions lead to lower viability
rates than NLIM showing that nitrogen source quantity could
also influence viability (Supplementary Fig. 21c). To further assess if
increased viability during bimodal growth could be tied to one of the
subpopulations, we recorded subpopulation-specific viability rates.
We exposed cells to a 4 h downshift (5 NLIM and 3 NREP different
conditions) and subsequently sorted subpopulations basedoncell size
and pRPL28 expression. As control, we also kept an unsorted fraction
that passed flow cytometry but was not gated. We observed the
greatest difference in viability in NREP-UREA, where the viability rate
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SEM of a flow cytometry experiments for cells exposed to a 6 h downshift per-
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nificance scores denotes conditions where all replicates had a p value (Hartigan’s
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are shown as arbitrary units (abbreviated a.u.). c Tradeoff between bimodality and
growth, shown in a, b, respectively. Regression lines are indicated in yellow and
magenta for NLIM and NREP, respectively. Spearman correlation scores are indi-
cated for each regression line. NLIM-CYS andNLIM-LYSwere omitted from the plot
due to poor growth performances. d, e Viability rates for cells exposed to a 4 h
downshift and sorted based on size and pRPL28 intensities using FACS. Yellow and

pink samples indicate high and low GFP fractions. Dark purple samples indicate
cells passed through FACS but not gated. Error bars represent the mean± SEM
(n = 4). Significance scores denotes p-value of unpaired two-sided t test with
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respectively.d–hpurple, light orange and light red colours represent unsorted (not
gated), high and low fractions, respectively.

Article https://doi.org/10.1038/s41467-024-50602-8

Nature Communications |         (2024) 15:6515 6



gradually decreased for all sorted and unsorted fractions over 30 days
with the high subpopulation reaching a 33.7 ± 1.4% viability rate while,
in comparison, the low subpopulation could maintain a remarkable
71.0 ± 0.2% viability rate (Fig. 4d). In fact, the low fraction couldachieve
significantly better viability rates and chronological lifespan than the
high and unsorted fraction in all conditions tested (Fig. 4e).

We next sought to investigate how subpopulations would fare
once optimal growth conditions would resume. To this end, we re-
exposed each sorted fraction as well as the unsorted fraction to rich
YPD media and monitored growth over 15 h. As a measure for growth
resumption, we calculated a pseudo lag time, defined as the time it
took to achieve two doublings (corresponding to a fourfold increase in
OD600). Remarkably, the high fraction could resume growth faster
than the low and unsorted fractions. For NLIM-PRO, the high fraction
achieved a lag time of 8.9 ± 0.3 h, while it took significantly longer
(p < 0.05, paired t test) for the low fraction to resumegrowthwith a lag
time of 11.5 ± 0.7 h (Fig. 4f, g). Again, the lag time extension observed
for the low subpopulation was significantly longer than the high sub-
population for all conditions tested (Fig. 4g), likely due to metabolic
changes necessary to re-enter cell cycle progression. An extended lag
time was also observed for the low subpopulation when grown in YPD
on agar pads (Supplementary Fig. 23). Comparing viability and growth
resumption rates, our data suggests a second tradeoff between long-
term viability and growth maximization (Spearman correlation
ρ = −0.62, Fig. 4g). In terms of population-wide resource allocation,
investing in a subpopulation with higher viability and chronological
lifespan is probably advantageous in fluctuating conditions and out-
weighs the associated population growth reduction. We indeed note
that the low subpopulation investment seems to be mitigated during
re-exposure to richmedia, with the unsorted fraction showing a similar
growth compared to the high subpopulation, especially under NREP
conditions (Supplementary Fig. 24). Additionally, the increased lag
phase in rich media for the low subpopulation could be a memory
effect. Cells exposed tofluctuating environments often displayhistory-
dependent behaviours to prepare for recurring suboptimal
conditions45. Therefore, maintaining a longer lag phase and not
resuming growth straight after re-exposure to rich media could
increase longevity as measured by viability extension and enhance
survival chances, especially with reoccurring suboptimal conditions.

Viability and growth are distinct transcriptional states
We further characterised metabolic differences between growth and
viability based on transcription factor (TF) nuclear intensity, where TF
activity is proportional to nuclear intensity in addition to promoter
affinity of the downstream targets46. To this end, we created a proto-
trophic transcription factor GFP fusion library (TF-GFP library) using
Synthetic Genetic Array (SGA) (Methods). The library consists of 192
members containing a TF fused to GFP as well as a nuclear localisation
tag (BFP) and a subpopulation marker (pRPL28-RFP). We performed a
nitrogen downshift into proline or glutamine for each member of the
TF-GFP library and analysed the resulting nuclear intensity over time
for each condition and subpopulation using high-throughput micro-
scopy (Fig. 5a). TF nuclear intensities were computed from YeaZ seg-
mented cells by overlapping nuclear localisation tag (BFP) and TF-GFP
localisation (GFP), while subpopulation assignment was performed on
cell size and pPRL28-RFP intensity (Methods, Fig. 5a, b). For each GFP-
tagged TF, we recorded cell size, mean cellular pRPL28-RFP and mean
nuclear GFP for ~800,000 cells exposed to 30min, 90min, 150min
and210minof eitherNLIM-PROorNLIM-GLN treatment (SourceData).
The resulting cell size-pRPL28-RFP scatter plot obtained from micro-
scopywas consistentwith flowcytometrydata (Fig. 5b, Supplementary
Fig. 25). After 30min, we found that already 157 and 116 transcription
factors were significantly different (p < 0.05, two-tailed t test) between
conditions and subpopulations (NLIM-PRO), respectively (Fig. 5c, d).
BecauseTF localisation can be noisy and highly variable over time21, we

also ranked the nuclear intensities at each timepoint to highlight the
most consistent TFs for each condition and subpopulation (Fig. 5e, f,
Supplementary Data 4).

We first asked whether the TF library could capture established
differences between proline and glutamine conditions. For example,
Put3, activator of proline catabolic genes and under the control of the
NCR programme47, was one of the most localised TF in proline com-
pared to glutamine at bulk and at the low subpopulation levels
(210min; p <0.05, two-tailed t test) (Supplementary Data 4, Supple-
mentary Fig. 26a, b). Ure2, one of the most consistent targets over
time, had a higher nuclear intensity for the proline condition at the
population level (Fig. 5c, e). Ure2 is strongly associated with the NCR
programme, sequestering the NCR activator Gln3 to the cytoplasm in
presence of a preferred nitrogen source such as glutamine48. Dig2, a
repressor of the Ste12 transcription factor, part of MAPK signalling,
which was differentially activated between low and high subpopula-
tion according to subpopulation RNA sequencing (Supplementary
Fig. 9). To validate our high-throughput results, we further imaged
Dig2-GFP strain during a shift to either NLIM-PRO or NLIM-GLN and
could find it to be indeed more intense for proline (Supplementary
Fig. 26f). Conversely, Mig1, involved in respiration and gluconeogen-
esis gene repression49, had a higher nuclear intensity in glutamine,
indicating that cells growing on glutamine could do fermentation
despite nitrogen limitation (Fig. 5e, g). This was also conserved at the
low subpopulation level whereMig1 was consistently more intense for
glutamine compared to proline (Supplementary Fig. 26e). Consistent
with thisfinding, we found that Snf1, amajorMig1 inhibitor, hadhigher
nuclear intensity in the low proline subpopulation mimicking a low-
glucose condition despite glucose present in abundance (Supple-
mentary Fig. 26d)50. This corroborates our previous findings that the
low glutamine subpopulation is actively growing while the low proline
subpopulation is more quiescent.

We next used the TF library to investigate differences between
high and low subpopulations inNLIM-PRO.Among themost consistent
targets, Tec1 had significantly higher nuclear intensity in the low sub-
population already after 30min andonwards (Fig. 5d, f).We found that
Tec1 was specific to the low proline subpopulation since it was more
intense when compared to the low glutamine, indicating an essential
role inmaintaining quiescence (Supplementary Fig. 26c). Interestingly,
Tec1 connects MAPK and TOR pathways to coordinate yeast devel-
opment and has previously been reported as a positive regulator of
chronological lifespan51, consistent with the improved chronological
lifespan observed for the low subpopulation. Tec1, together with Ste12
of the MAPK pathway, both regulate genes required for filamentous
and pseudohyphal growth52. Rcs1, another TF that specifically localises
to the low proline subpopulation, is involved in iron homoeostasis and
its nuclear localisation increases with DNA stress53 (Fig. 5f, Supple-
mentary Fig. 26g). Other main targets included Rdr1 and Pdr8, both
associated with ATP-binding cassette (ABC) family of transporters,
important for resistance to drugs and other growth inhibitors and up-
regulated in quiescent cells9,54.

Quiescent population is dormant and heterogeneous in
ATP levels
Given important differences in transcription factor localisation for
high and low subpopulations, we further studied how they could
translate into physiological differences. Using metabolic sensors, we
measured two key metabolic parameters, that are cellular energy sta-
tus andmetabolic activity. For energy status, we measured adenosine-
triphosphate (ATP) levels using a FRET biosensor55 (Fig. 6a). For
metabolic activity, we measured fructose-1,6-bisphosphate (FBP),
shown to correlate with glycolytic flux5,56, using a riboswitch-based
fluorescence sensor57 (Fig. 6b). To account for growth differences
between subpopulations as well as cell-to-cell variability in sensor
expression that could occlude the measurement, FBP signal was
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normalised to an RFP control placed under a constitutive promoter
while the ATP sensor was ratiometric, providing the ratio between
bound and unbound states (Fig. 6a, b).

Analysis of ATP levels after 8 h of growth in NLIM media with
glutamine or proline showed population-wide differences and cellular
ATP levels generally lower in glutamine than proline media (Fig. 6c).
These data, together with the strongest growth profile observed in
cells shifted to NLIM-GLN (Fig. 4b), could further suggest fermentative
rather than respiratory growth in NLIM-GLN. Remarkably, while ATP
levels were unimodal at the population levels, scatter projection of
ATP levels versus cell size revealed cellular bimodality for proline, with

the emergence of two clusters corresponding to the low and high
subpopulations (Fig. 6d). When we clustered high and low sub-
populations based on cell size (Supplementary Fig. 27a), we found that
from 4h onwards, the low quiescent subpopulation showed a reduced
but more heterogeneous ATP pool, while the high growing sub-
population maintained a homogeneous ATP content over the course
of the experiment (Supplementary Fig. 27b). This difference in ATP
heterogeneity between low and high subpopulations was maintained
for the other bimodal nitrogen sources (Supplementary Fig. 28a).
Similarly, conditions that sustained higher maximal growth rates
(Fig. 4b) had generally lower median ATP output at the population
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level (Supplementary Fig. 28b, c). A high variability in the quiescent
subpopulation could be consistent with bet-hedging where increased
ATP variability could denote a strategy to further increase phenotypic
diversity in preparation to environmental fluctuations. Similar obser-
vations were made for cells shifted from glucose to maltose, where
cells resuming growth had a higher andmore homogeneous ATP pool
than cells that remained quiescent29. Conversely, the analysis of FBP
levels did not show the same difference in variability between low and

high subpopulations but showed a population-wide decrease over
time instead (Fig. 6e). This decrease was more marked for the low
subpopulation suggesting a more dormant metabolism, consistent
with previous studies on quiescence6,58.

Discussion
Our results show that S. cerevisiae exposed to a nitrogen downshift
display phenotypic bimodality with simultaneous presence of

Fig. 5 | Transcription factor tracking upon entry into quiescence. aOverview of
the pipeline. A marker strain containing the subpopulation marker as well as a
nuclear localisation tag was mated with one of the 192 transcription factor mem-
bers of the GFP library (TF-GFP) using the Synthetic Genetic Array method (SGA).
The improved library was then grown in richmedia and shifted to nitrogen-limited
conditions as described in the Methods. The library was imaged in PBS 30, 90, 150
and 210min into the shift. The YeaZalgorithm26was used to segment cells based on
neural networks. When possible, segmented cells were assigned to high and low
clusters basedonpRPL28mScarlet fluorescence and cell size using the Expectation
Maximisation (EM) algorithm. TF localisations were computed for each cell and
each strain by overlapping the nuclear localisation signal (mTagBFP2) with the TF-
GFP signal (Methods). b Scatter plot representing mean RFP fluorescence per cell
and cell size 150min into the shift, at the onset of differentiation for NLIM-PRO

(dark purple) and NLIM-GLN (yellow). Cells were assigned to each cluster (low or
high) basedon their cell size andmeanRFP intensity using the EMalgorithm. c,dTF
localisations for proline plotted against glutamine (population level) and high
against low subpopulation (NLIM-PRO), 30min into the shift. TF nuclear intensity
was calculated as the mean GFP fluorescence over the nucleus, determined by the
NLS-mtagBFP2. Significance score denotes p value of unpaired two-sided t test with
p <0.05, with an adjusted mean (condition/subpopulation difference). TF with
significant localisation scores are shown in green. e, f Relative TF nuclear localisa-
tion tracked over time for proline versus glutamine (e) and low versus high proline
subpopulations (f). Relative localisations were normalised by the mean relative
localisation of the timepoint. g Multi-channel ×50 imaging of Mig1-GFP for one
representative of two experiments. NLS-mtagBFP2 represents the nuclear locali-
sation and pRPL28-mScarletI was used to classify high and low subpopulations.
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subpopulations following a tradeoff between chronological lifespan
and growth capabilities. Concomitantly, these subpopulations operate
at very distinct metabolic states where the low subpopulation is opti-
mized for viability, and the high subpopulation is optimized for
growth. With these fundamentally opposite metabolic states, indivi-
dual cells need to commit to either state (specialisation) and pheno-
typic bimodality is therefore optimal given finite resource allocation. A
similar phenotypic specialisation into a growing and a stress-resistant
fraction has also been found when S. cerevisiaewas exposed to growth
inhibitors35. In proline, the low subpopulation is a terminal state enri-
ched with daughter cells, while in glutamine, it can resume growth.
Asymmetric generation of quiescent-specific daughter cells has also
been observed during glucose exhaustion, at the onset of stationary
phase10. Using subpopulation-based RNA sequencing and high-
throughput TF imaging, we found that increased viability correlates
with a more active MAPK signalling and DNA stress response asso-
ciated with general chromosomal regulation, as well as organelle and
morphological reorganisation. The seemingly more active MAPK sig-
nalling between subpopulations denotes an important crosstalk
between nitrogen and carbon metabolism. More importantly, the low
subpopulationhadsimilaritieswith a low-glucose state despite glucose
present in excess. Nuclear localisation of transcription factors involved
in metal homoeostasis for the low proline subpopulation could be
related to the non-growing phenotype, where upregulation of ion
homoeostasis when growth stalls have been previously reported in a
wide range of model organisms9,59,60.

We argue that in the context of evolution and given conservation
in both wild and domesticated S. cerevisiae and S. paradoxus strains,
cell size bimodality in response to a nitrogen downshift is a hard-wired
regulatory mechanism and probably crucial to environmental inter-
actions. We further hypothesise that amino acids could be used as an
environmental cue for decision-making. In this aspect, glutamine
could denote ideal growth conditions while leucine, which gave the
strongest cell size bimodality (Fig. 4a), could indicate conditions that
necessitate a survival increase or dispersal. Supporting this theory,
cells growing on leucine produce a distinctive banana-like aroma
including isoamyl alcohol, isovaleric acid or isoamyl acetate61. While
aroma production dependence on nitrogen sources is well docu-
mented in the yeast brewing industry62, its ecological purpose still
remains obscure but past evidence suggests that aroma production
could be used for attracting insects and facilitating dispersion2,63,64.
Strong differentiation to quiescence for leucine coupled with
increased aroma production could, therefore, facilitate dispersal
through insect vectors directly linking the observed bimodality to a
broader ecological context. Given that growth on leucine was more
bimodal than growth without any nitrogen sources (NSTARVE), we
further hypothesise that leucine could be used as an environmental
cue for dispersion. Increasing viability and extending lifespanmight be
a strategic choice to allow better dispersion without needing to
undergo sporulation and could offer several advantages. First, it could
be seen as a lighter, more reversible commitment to dormancy. This
could explain why diploid cells in the presence of fermentable carbon
sources such as glucose undergo quiescence rather than sporulation
when other essential nutrients such as nitrogen are limiting growth65.
Second, the increased lag phase for the quiescent subpopulation could
correspond to a delayed phenotypic outing and give a memory effect
in fluctuating conditions to better withstand previously experienced
suboptimal conditions45,66.We note that this is still unclearwhether the
increased lag phase could also be a by-product of increased viability
where cells need time to exit quiescence. Yet, another advantage could
be that quiescent cells remain metabolically active and could still be
able to exchange metabolites with their environment. Metabolite
exchange, amino acids in particular, is a key feature of yeast exo-
metabolome and is important for phenotypic heterogeneity and
metabolic specialisation67. Remarkably, while measuring the

supernatant of yeast exposed to 8 h nitrogen downshifts, we could
detect amino acids other than the nitrogen source used, even under
low nitrogen contents (NLIM, 0.8mM) (Supplementary Data 5), sup-
porting a broader population-wide function based on amino acid
exchange. Similarly, a recent study found that lysine was involved in
cross-feeding interactions in ageing colonies on an agar plate resulting
in phenotypic heterogeneity between young and old cells consuming
and producing lysine68. Interestingly, we found that lysine was the
amino acid thatperformed theworst in both growth and chronological
lifespan. We could not detect any lysine throughout the different
downshifts despite the observation that lys12 (lysine biosynthesis)
knockout is able to establish syntrophic communities with lysine
producers69, showing that lysine or its intermediate can be exchanged.

In light of a recent study showing that artificial consortia of S.
cerevisiae auxotrophs have an extended chronological lifespan70, we
show that such lifespan improvements could be explained by the
heterogeneity we observed. Auxotrophs would typically be forced to
rely heavily on amino acids produced by other members of the com-
munity and could, therefore, exhibit heterogeneity within an auxo-
trophy class, leading to increased lifespan. Finally, in terms of fitness
burden, our results show that an investment in a small quiescent
subpopulation with longer lifespan is beneficial since it results in a
minor decrease in growth resumption capabilities with the lag phase
for high and unsorted subpopulations being very similar if not the
same in certain cases. This can explain other bet-hedging strategies
such as antimicrobial resistance71. Our results could be relevant
in future work to study amino acid sensing mechanisms or investi-
gate potential division of labour across subpopulations and the role
they play within a natural environmental context.

Methods
Single-cell RNA sequencing data analysis
Single-cell RNA sequencing data were obtained from ref. 23. Raw
counts data was downloaded from NCBI with accession number
GSE125162. All data analysis was performed on R. Pre-processing was
performed according to the author’s guidelines, except for the nor-
malisation that was performed using the logNormCounts from the
LTLA/Scuttle package (https://github.com/LTLA/scuttle). Dimension-
ality reduction using UniformManifold Approximation and Projection
(UMAP) was performed using the scater package72. To calculate single-
cell growth scores, the log normalised scRNAseq reads were inputted
into the calculateRates function from the growth regression model
obtained from ref. 39. To identify subpopulation-specific markers,
DESeq273 was used to find genes that were differentially expressed
between subpopulations. Detailed methodology is available as part of
Supplementary Method 1. All data analysis performed in this study are
available on GitHub (https://github.com/KiyanShabestary/2023-NLIM-
heterogeneity).

Strain creation
Two prototrophic strain versions based on the laboratory strain
BY4741 (MATa his3Δ1 leu2Δ0 met15Δ0 ura3Δ0)74 were made as sub-
population marker strains. One version had full prototrophy restored
using the minichromosome pHLUM series75. A genome-integrated
version was also created with HLUM fragments, PCR amplified from
the respective minichromosomes with ~35 bp overhangs for homo-
logous recombination targeting the HO locus. The fluorescent protein
sfGFP was assembled under the control of the pRPL28 promoter,
identified as a subpopulation marker through scRNAseq data analysis.
Transcription termination was under the control of the tTDH1 termi-
nator. The pRPL28 promoter part was amplified from genomic DNA
taking 700bp directly upstream of the coding sequence. Parts for
sfGFP and terminators were obtained from the yeast MoClo Toolkit
(YTK)76. Assembly was performed into a URA3 targeting vector using
Golden Gate assembly as described in the YTK toolkit assembly. For
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the ATP sensor strain, a codon-optimised variant of yAT1.03 sensor55

was ordered asGeneArt fromThermoFisher and cloned in a pYTK level
0 Type 3 plasmid. Using Golden Gate assembly, the fragment was
placed under pTEF1 control and with the tENO1 terminator in a vector
targeting ura3. The plasmid was co-transformed with pHLM into
BY4741. For the FBP sensor, the 2_riboswitch sensing unit was ampli-
fied from the pFBP-2_6.sensor57 plasmid obtained from addgene (cat-
alogue number 162800). The fragment was assembled into pYTK053
of the YTK collection, downstream of the promoter pTEF1 and
mNeonGreen and upstream of the tSSA1 terminator. Both the FBP
sensor and its control (mScarletI (RFP) under pTEF2 control and with
tENO2 terminator) were genome-integrated at the ura3 locus, com-
plemented with the pHLM minichromosome. For the TF library, a
donor strain based on BY4742 (MATαhisΔ1 leu2Δ0 lys2Δ0ura3Δ0) was
used to create the prototrophic GFP library using SGA (see SGA section
in Methods). As a subpopulation marker, mScarlet (RFP) was placed
under pRPL28 control at the ura3 locus with tTDH1 terminator. For
nuclear localisation visualisation, a nuclear localisation tag derived
from the SV40 T-antigen77 was added at the 5’ end of mTagBFP2 (BFP)
placed under the control of pTEF2 and with the tENO2 terminator
genome-integrated at the leu2 locus. Additionally, for haploid selec-
tion, a kanMX cassette was placed under the MATa-specific pSTE2
promoter (genome amplified) with tPGK1 terminator at the can1 locus.
All assemblies were performed using Golden Gate assembly within the
YTK framework76. Strains used in this study are indexed and described
in Supplementary Data 3.

Yeast transformation
Transformation into yeast was performed using the Lithium acetate
protocol78. Overnight YPD yeast cultures were diluted in YPD (1:50,
5ml per three transformations) in the morning and cultivated until
they reached exponential growth (4–5 h). Cells were thenwashed once
and resuspended in 0.1M Lithium acetate (LiOAc, Sigma) to a final
volume of 100μl per transformation. The subpopulation marker
plasmid was linearised using NotI (New England Biolabs). The line-
arised plasmid (500 ng) and the minichromosome (1μl, >100 ng/μl),
when appropriate, were mixed with boiled (5min, 100 °C) salmon
sperm DNA (10μl, Invitrogen). Competent yeast cells were resus-
pended in the DNA/salmon sperm DNA mixture and then mixed with
260μl 50% (w/v) PEG-3350 (Sigma) and 36μl 1M LiOAc. The trans-
formation mixture was incubated at 42 °C for 25min, resuspended in
sterile water and plated on the appropriate selection medium. All
strains were confirmed by cPCR followed by Sanger sequencing.

Growth conditions
Yeast cells were cultivated in sterile 14ml cell culture tubes (Greiner
Bio-One) grown at 30 °C in a Infors HT Multitron with 700 rpm shak-
ing. Yeast extract-peptone dextrose (YPD) composed of 1% (w/v) Bacto
Yeast Extract (Merck), 2% Bacto Peptone (Merck), and 2% Glucose
(VWR)was used as rich pre-shift media. For the post-shift media, 1.7 g/l
Yeast Nitrogen Base (YNB) without amino acid and ammonium sulfate
(Sigma) and with 2% Glucose (YNB) was used with 0.8mM (NLIM),
10mM (NREP) or without (NSTARVE) nitrogen source. All amino acids
were supplied from Sigma or Formedium. Both YPD and post-shift
media were buffered with 50mM phosphate buffer and adjusted
to pH 6.0.

Medium shift
Pre-shift growth included an overnight step in YPD from a single col-
ony stored on YNB agar plate followed by a 1:50 dilution in 5ml YPD
grown for 4 h until the end of exponential growth was reached
(OD600 = 0.8−1.0). Cells were then centrifuged for 6min at 4 kG and
washed in phosphate-buffered saline (PBS) solution twice. After the
washing step, cells were resuspended in post-shift media (NLIM, NREP,
or NSTARVE) to OD600 = 0.4 in 14ml cell culture tubes or 250ml flasks

(for subpopulationRNA sequencing) and grown at 30 °Cwith 700 rpm
shaking (Infors).

Time-lapse microscopy
Time-lapse microscopy was performed using agarose pads. In short,
cells were trapped in between a microscope slide and an agar pad as
previously described79. Agarosepadswere composed of the respective
growth media and 1.5% (w/v) low melting agar (Sigma). To create the
agar pad, 1ml of agar/media mixture was pipetted on top of a micro-
scope glass cover (22mm× 22mm, VWR). Another cover was placed
on top to create a layer of even thickness. Approximately 50 mm2 of
the solidified agarose (one-ninth) was cut out to make an agarose pad
and 2μl of cells (OD600 = 0.4 in PBS) was applied in the middle of each
pad. The agarose pad was then placed upside down in an enclosed
35mm cell imaging dish (Ibidi). Water was added to the enclosure to
limit evaporation during the time-lapse. Imaging was performed on a
NikonTi-2 Twin-Cam-TIRFwith an environmental chamber tomaintain
temperature at 30 °C.

Subpopulation sorting
Subpopulations were sorted using fluorescence-activated cell sorting
(FACS), performed on a BD FACSAria III Cell Sorter, based on GFP
fluorescence (FITC-A, blue laser 488-530/30 nm) and morphology
(SSC-A). Doublets and budding yeast exclusion were filtered out
through FSC-W/FSC-H and SSC-W/SSC-H gatings. Prior to sorting,
samples were filtered, and 20,000 events were used to adjust gating.
Purity cheques were performed at the start of every sorting run to
ensure accurate gating and no cross-contamination. Gating details are
available as part of Supplementary Note 1. For subpopulation RNA
sequencing, pRPL28 marker strain culture grown overnight was dilu-
ted (1:50) in YPD (10ml) and grown to exponential phase (4 h). Cells
werewashed twicewith PBS asdescribed above andexposed for 1 hour
in post-shift media (post-shift resuspension OD600 = 0.4). Prior to
sorting, cells were centrifuged, resuspended in PBS and kept at 4 °C for
the duration of sorting. After sorting in 15ml tubes, cells from each
sorted fraction were grouped and centrifuged (6min at 4 kG) to
remove the supernatant. Cell pellets (at least 4 million cells for each
sample) were frozen in liquid nitrogen and stored at −80 °C until RNA
extraction. Growth resumption and chronological lifespan experi-
ments were performed in 96-well plates (Greiner). Cells were grown in
YPD and exposed to a 4 h post-shift as described above. Cells were
washed once in PBS and sorted in 15ml tubes. Approximately 50k cells
were used per well for both subpopulation lifespan and growth
resumption measurements.

Subpopulation RNA sequencing
Subpopulation RNA extraction, sequencing and data analysis was
performed through Novogene sequencing services. Sorted cell pellets
stored at −80 °C were thawed on ice. RNA was extracted with a RNA-
prep Pure Plant Plus kit (Tiangen). Messenger RNA was purified using
poly-T oligos attached magnetic beads. After fragmentation, the first
strand cDNA was synthesised using random hexamer primers, fol-
lowed by a second strand cDNA synthesis. The library was quantified
using real-time PCR andQubit. Size distributionswere calculated using
Bioanalyzer analysis. Quantified libraries were pooled and sequenced
on an Illumina platform (Novaseq 6000) with a paired-end 150 bp
(PE150) method. Raw sequencing reads and count matrix are available
in NCBI GEO under the accession number GSE235239.

RNA sequencing reads were filtered according to the following
criteria: Reads with no adaptor contamination, no more than 10% of
uncertain base (N) within the read, not >50% of the readsmade of low-
quality base reads (Base Quality Qscore less than 5). Low-quality reads
represented less than 1% of total reads. HISAT280 was used to map the
filtered reads to the genome. Reference genome (fasta file) and gene
annotations (gtf file) used for alignments were obtained from the
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Ensembl database available at http://ftp.ensembl.org/pub/release-75
(December 2022).

Principal Component Analysis was performed on gene expression
values (FPKM) to evaluate intergroup and intragroup variance and
remove outliers. Differential gene expression was computed using
DESeq273 and p values adjusted using the Benjamini–Hochberg pro-
cedure. KEGG enrichment analysis was performed using
clusterProfiler81 with adjusted p values obtained from DESeq2.

Growth measurements
Growth parameters were calculated for cultures grown in YPD and
shifted to post-shift media (OD600 = 0.1) as described above.
Growth curves were obtained for 96-well plates (Greiner) recorded
in a Tecan Spark microplate reader set at 30 °C with 200 rpm orbital
shaking. Breathe-Easy sealing membrane (Sigma) was applied to
reduce evaporation while maintaining gas transfer throughout the
experiment. Bulk population maximal growth rates were calculated
as follows: Data from the plate reader was blank normalised.
The R package growthcurver (https://github.com/sprouffske/
growthcurver) was used to obtain a smooth fit of the growth
curve. Local growth parameter mu_log for each time interval was
computed as the difference of the natural logarithmic of the ODs
divided by the time interval. Finally, the maximal value mu_log
within a time window excluding lag and stationary phases (between
5 h to 20 h in post-shift media) was taken as maximal growth rate.
For growth resumption experiment in YPD following FACS-based
sorting, cultures were resuspended to OD600 = 0.05. Lag time was
estimated as the time required (discrete interval) to reach two
doublings (OD600 = 0.2).

Bimodality quantification
Cell-to-cell heterogeneity of cultures grown in YPD and shifted to post-
shift media (OD600 = 0.4) wasmeasured over time using an Attune Nxt
flow cytometer (Invitrogen). Forward scatter (FSC-H) and GFP fluor-
escence (BL1-H, blue laser 480/10 nm) were used to measure cell size
and GFP fluorescence heterogeneity, respectively. Doublets were
excluded from the data based on FSC-H/FSC-A linear correlation (both
log scale) using the FlowJo software. At least 10’000 events were
recorded per sample/replicate. Cell size bimodality scores were com-
puted using Hartigans’ diptest for unimodality using the R package
diptest (https://github.com/mmaechler/diptest). The stat and pval
output values were used as bimodality score and associated p-value.
The R package flexmix82 was used to perform Expectation Maximisa-
tion on cell size distributions to fit a Gaussian model for each sub-
population and estimate the respective mean and standard deviation
for each subpopulation.

Chronological lifespan assay
Chronological lifespan was estimated as the percentage of cells
remaining viable in PBS over time. For bulk population lifespan esti-
mation, cultures (150μl) exposed to a 18 h nitrogen downshift in 96-
well plates were washed twice in PBS, resuspended in 200 μl PBS and
50μl of cells/PBS mixture was added to 150μl PBS in a 96-well plate.
For subpopulation lifespan assessment following FACS-based sorting,
cells exposed to a 4 h downshift werewashed prior to sorting and 50 k
cells in PBSwere stored in 96-well plates (200μl). Onewhole plate was
used for each timepoint measurement to limit subsequent evapora-
tion. Lifespan was measured up to 30 days after the end of the post-
shift as indicated in text. Plates were sealed with Breathe-Easy sealing
membrane (Sigma) and wrapped with aluminium foil and stored at
30 °C until cell viability measurement. Cell viability was measured on
the basis of permeability to propidium iodide (PI, Merck) in apoptotic
cells using flow cytometry (Attune Nxt, YL1-H, excitation 561 nm,
emission filter 585/16 nm). Prior to the fluorescence assay, 1μl of PI
(1mg/ml)wasadded to200μl cell/PBSmixture andgentlymixedusing

a multi-channel pipette. For each sample/replicate, viability was thre-
sholded based on viability measured in YPD.

Unbudded cells counting
Sorted fractions of cells exposed to a 2 h downshift and sorted via
FACSwerecollected in PBS and either directly stainedor transferred to
freshNLIM-PROorNLIM-GLNmedia and incubated for 2 h at 30 °C and
700 rpm shaking before staining. Bud scars were stained using calco-
fluor white (Sigma-Aldrich) at a final concentration of 0.01 g/L. Cells
were incubated for 15min in the dark at room temperature andwashed
in PBS. Subsequently, 5μl of cells were transferred tomicroscopy glass
slides and imaged using a Nikon Ti microscope fitted with a Hama-
matsu Flash 4 camera. Stained bud scars were visualised using a P4000
Cooled LED light source at 365 nm and filters for blue fluorescence.
pRPL28-sfGFP fluorescence was captured using a 460nm LED and
green fluorescent filters. Counting was performed manually, to pre-
vent bias due to differences in staining efficiency.

Metabolic sensors analysis
Metabolic sensors were used for in vivomeasurement of ATP and FBP.
Both sensors were genome-integrated at the URA3 locus. We used a
FRET-based biosensor55 for ATP and a riboswitch-based fluorescence
sensor for FBPmeasurement57. For theATP sensor, theATP FRET signal
was recorded using a 405 nm excitation laser, a 450/40 nm donor
emission filter and a 525/50 nm acceptor emission filter (VL1 and VL2
channels). ATP levels were calculated by taking the ratio between the
VL2 and VL1 channels (VL2-H/VL1-H). For the FBP sensor, the FBP signal
was recorded using a 488 nm excitation laser and a 530/30 nm emis-
sion filter (BL1 channel) while the control RFP signal was measured
using a 516 nm excitation filter and 620/15 emission filter (YL2 chan-
nel). With the FBP sensor fluorescence displaying a signal inversely
proportional to FBP concentration. FBP levels were calculated by tak-
ing the ratio between the YL2 and BL1 channels (YL2-H/BL1-H). Signals
were recorded on a Attune Nxt flow cytometer (Invitrogen). Expecta-
tion maximisation using the R package Rmixmod83 with “Gaus-
sian_pk_L_I” model selection was performed on cell size to compute
subpopulation-specific ATP and FBP levels.

Library creation using SGA
A prototrophic version of the GFP collection84 was created using the
Synthetic Genetic Array method85. A transcription factor library (TF-
GFP library) containing 192 members was created as follows. Selected
strains from the GFP collection (MATa his3Δ1 met15Δ0 leu2Δ0 ura3Δ0
XXX-GFP-HisMX) were mated with a donor strain based on the
laboratory strain BY4742. The donor strain contained a nuclear loca-
lisation marker subpopulation marker as well as kanamycin resistance
placed under the MATa-specific pSTE2 promoter for haploid selection
(MATα can1::pSte2-KanMX-tPGK1 his3Δ1 lys2Δ0 leu2::pTEF2-NLS-
mtagBFP-tENO2-LEU2 ura3::pRPL28-mScarletI-tTDH1-URA3) (see
Strain creationmethod section above). Matingwas performed on solid
agar plates in a 384 array using a Rotor pinning robot (Singer Instru-
ments). Cells were then transferred to agar plates with minimal media
(YNB) lacking amino acids to select prototrophic diploids. These
diploids were then incubated in pre-sporulation media (YP with 1%
potassium acetate) in liquid 96-well plates and grown for 24 h. Cells
were then washed in PBS and resuspended in 1% potassium acetate
sporulationmedia. After 5 days, haploidMATa sporeswere selected by
transferring 50 µl of spores into 450 µl of synthetic media containing
50 µg/ml canavanine and 300 µg/ml G418. After 24 h, 50 µl were
washed in PBS and resuspended in 450 µl of synthetic media lacking
uracil, leucine, histidine, lysine and methionine containing 10 µg/ml
canavanine and 300 µg/ml G418 to select prototrophic haploids
overnight. This step was repeated in standard 96-well plates in total
volumes of 150 µl and single colonies were selected by transferring
cells onto rectangular agar plates using the Rotor pinning robot

Article https://doi.org/10.1038/s41467-024-50602-8

Nature Communications |         (2024) 15:6515 12

http://ftp.ensembl.org/pub/release-75/gtf/saccharomyces_cerevisiae/
https://github.com/sprouffske/growthcurver
https://github.com/sprouffske/growthcurver
https://github.com/mmaechler/diptest


(Singer Instruments) and a 7 × 7 pinning protocol to select clonal
populations from single colonies. Correct ploidy was confirmed using
MATa- and MATα-specific primers as described in ref. 86.

High-throughput microscopy
The transcription factor library consisting of 192 members was dis-
tributed along a 384 well plate μClear flat-bottom (Greiner) and
imaged in a Nikon Ti-2 Twin-Cam-TIRF. Two images were taken at two
different locations per librarymember using a bright field, blue, green
and red fluorescent filter. To obtain maximal resolution without oil
appliance, an ×40 optic with an additional ×1.5 lens was used. Looping
through each unique well, an nd2 file was generated with a dimension
of (fov(384) × channels (4) × Z stack (1) x X dimension x Y dimension)).

All data analysis wasperformed through a customPythonpipeline
available on GitHub (https://github.com/Benedict-Carling/YeaZ-
Output-Analysis). The generated nd2 file was used as an input for
segmentation using the segmentation tool Yeast-Analyzer (YeaZ)26.
The bright field segmentation parameters with a minimum seed dis-
tance of 1 and a threshold value of 0.5 were used. A scatter graph was
generated for each cell identified by YeaZ with the x axis representing
the cell size and the y-axis representing the mean Red fluorescence of
the cell. To mitigate the influence of outliers, such as mis-
segmentations in the scatter plot, we employed the KernelDensity
utility from the Scikit-learn Python package87 with the following
arguments: algorithm was set to ball_tree, bandwidth set to 1, metric
set to Euclidean and kernel set to linear. Expectation Maximisation
(EM) was performed using the Gaussian Mixture utility from Scikit-
learn on the filtered cells to assign cells to each subpopulation cluster.
We performed EM with a confidence threshold of 0.85 to remove any
manual intervention in the identification of the subpopulations.

To generate nuclear segmentation, the bounding box of each cell
as identified by YeaZ was looped through using the blue channel
(nuclear localisation marker). The image was smoothed using a Gaus-
sian blur of sigma= 1. A mask of the top 15% brightest pixels was
generated, and erosion and dilation were performed to remove iso-
lated islands, returning a mask representing the nucleus of each cell.
Single-cell transcription factors nuclear intensity were calculated by
averaging the GFP signal over the nuclear mask. Subpopulation-
specific scores were obtained by averaging the scores of each single-
cell for a given subpopulation. For condition-specific scores, localisa-
tion scores were then averaged across subpopulations. To obtain the
most consistent transcription factors over time, relative TF scores
were computed at each point. For the relative TF score calculation,
each TF score was normalised by the mean of all TF that were not part
of the top 5 or bottom 5 transcription factor at a given timepoint.

Targets identified in the previous step were validated using
inverted microscopy using a Nikon Ti (×60 magnification). Exposure
time was kept constant for each channel (200ms for RFP, 500ms for
BFP and 1 s for GFP) with 11 slices per z stack to capture the nucleus.
Cells were exposed to a 30min shift prior to imaging.

Statistical analysis and reproducibility
Heterogeneity in cell size andGFPmeasurements usingflowcytometry
were performed in triplicates and on separate days. Chronological
lifespan measurements were performed at least on three biological
replicates. Paired statistical analysis was performed using the t test
function (unpaired, two-sided) in R. Statistical analysis of bimodal
distributions was performed using Hartigan’s diptest. Significance
scores for genes differentially expressed during subpopulation RNA-
seq and single-cell RNAseq were adjusted using DESeq2 (multiple
hypothesis adjusted p value, Benjamini–Hochberg procedure). For
significance testing of discrete data obtained from manual budscar
quantification, we used Fisher’s exact testing, and error bars represent
95% confidence intervals.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Data for Fig. 1c was from ref. 23 obtained from NCBI with accession
number GSE125162. Raw sequencing data of subpopulation RNA
sequencing generated in this study was deposited in NCBI GO with
accession number GSE235239. All data generated or analysed during
this study are included in this article and in the Supplementary Infor-
mation. Source data are provided with this paper.

Code availability
All scripts used for data analysis and plotting are available on GitHub
(https://github.com/KiyanShabestary/2023-NLIM-heterogeneity for
general analysis and plotting and https://github.com/Benedict-
Carling/YeaZ-Output-Analysis for high-throughput microscopy).
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