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In their natural environments, microorganisms mainly operate at suboptimal
growth conditions with fluctuations in nutrient abundance. The resulting
cellular adaptation is subject to conflicting tasks: growth or survival max-
imisation. Here, we study this adaptation by systematically measuring the
impact of a nitrogen downshift to 24 nitrogen sources on cellular metabolism
at the single-cell level. Saccharomyces lineages grown in rich media and
exposed to a nitrogen downshift gradually differentiate to form two sub-
populations of different cell sizes where one favours growth while the other
favours viability with an extended chronological lifespan. This differentiation
is asymmetrical with daughter cells representing the new differentiated state
with increased viability. We characterise the metabolic response of the sub-
populations using RNA sequencing, metabolic biosensors and a transcription
factor-tagged GFP library coupled to high-throughput microscopy, imaging
more than 800,000 cells. We find that the subpopulation with increased via-
bility is associated with a dormant quiescent state displaying differences in
MAPK signalling. Depending on the identity of the nitrogen source present,
differentiation into the quiescent state can be actively maintained, attenuated,
or aborted. These results establish amino acids as important signalling mole-
cules for the formation of genetically identical subpopulations, involved in
chronological lifespan and growth rate determination.

Most microorganisms spend most of their lifetime in a non-growing,
quiescent state'>. Upon occasional exposure to nutrients, they exit this
state and resume growth. In microbes such as yeast, quiescence and
proliferative growth are fundamentally opposite cellular states with
very distinct gene expression profiles and metabolic signatures*®,
While the metabolism of growing cells is dominated by anabolic
reactions, quiescent cells rely on catabolism for survival and typically
undergo important metabolic rewiring associated with an upregula-
tion of the stress response, recycling of internal macromolecules and

an overall reduced metabolic activity***'°. Physiologically, quiescent
cells are smaller and possess a thicker cell wall that provides resistance
to a wide variety of stresses* and different quiescence states can be
accessed depending on the environmental insult experienced’.
Understanding how microorganisms regulate their cell size,
growth rate and survivability in response to environmental signals
including starvation has been a major challenge in quantitative cellular
physiology" ™. Studies at the population level have drawn empirical
relationships between cell growth, cell size and nutrient availability ™.

Department of Bioengineering and Imperial College Centre for Synthetic Biology, Imperial College London, London SW7 2AZ, UK. 2London Biofoundry,
Imperial College Translation & Innovation Hub, London, UK. ®Department of Infectious Disease, Imperial College London, London, SW7 2AZ, UK.

e-mail: k.shabestary@imperial.ac.uk; r.ledesma-amaro@imperial.ac.uk

Nature Communications | (2024)15:6515


http://orcid.org/0000-0002-4207-0547
http://orcid.org/0000-0002-4207-0547
http://orcid.org/0000-0002-4207-0547
http://orcid.org/0000-0002-4207-0547
http://orcid.org/0000-0002-4207-0547
http://orcid.org/0000-0001-7353-2444
http://orcid.org/0000-0001-7353-2444
http://orcid.org/0000-0001-7353-2444
http://orcid.org/0000-0001-7353-2444
http://orcid.org/0000-0001-7353-2444
http://orcid.org/0000-0002-8948-5571
http://orcid.org/0000-0002-8948-5571
http://orcid.org/0000-0002-8948-5571
http://orcid.org/0000-0002-8948-5571
http://orcid.org/0000-0002-8948-5571
http://orcid.org/0000-0003-1503-8282
http://orcid.org/0000-0003-1503-8282
http://orcid.org/0000-0003-1503-8282
http://orcid.org/0000-0003-1503-8282
http://orcid.org/0000-0003-1503-8282
http://orcid.org/0000-0003-2631-5898
http://orcid.org/0000-0003-2631-5898
http://orcid.org/0000-0003-2631-5898
http://orcid.org/0000-0003-2631-5898
http://orcid.org/0000-0003-2631-5898
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-024-50602-8&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-024-50602-8&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-024-50602-8&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-024-50602-8&domain=pdf
mailto:k.shabestary@imperial.ac.uk
mailto:r.ledesma-amaro@imperial.ac.uk

Article

https://doi.org/10.1038/s41467-024-50602-8

Yet, population-averaged observations often mask single-cell beha-
viours due to phenotypic variations across cells'*'*. In particular, cell-
to-cell heterogeneity is often found in a population of genetically
identical (isogenic) cells, even when growing under steady-state
assumptions, due to differences in stochasticity, cell ageing or cell
cycle progression'*?°*, Recent advances in single-cell phenotyping
such as cell segmentation and tracking in microscopy” % or single-cell
RNA sequencing®**?*! have given new insights into the emergence of
phenotypic heterogeneity in microorganisms. While the underlying
differentiation processes are still poorly understood, the fitness ben-
efits are clear. Phenotypic heterogeneity, or population
multimodality®’, denoting the presence of two or more distinct iso-
genic subpopulations (Fig. 1a), can reduce the risks of investing all
resources towards a specific phenotype as in bet-hedging”®*** or can
lead to a more efficient proteome partitioning through cellular dif-
ferentiation or division of labour as in multicellular organisms® %,

Here, we study the single-cell response to suboptimal growth
conditions in the model eukaryote Saccharomyces cerevisiae. Using
nitrogen downshift as a case study, we report the presence of both
isogenic quiescent and growing subpopulations displaying differences
in cell size, chronological lifespan and growth resumption capability.
Based on previously published single-cell RNA sequencing datasets®,
we identify subpopulation markers that allow high-throughput inter-
rogation of cellular fate at the onset of a nitrogen downshift and study
differentiation across 24 different nitrogen sources present in limited
or replete amounts (Fig. 1b). We perform a multi-omics analysis of the
differentiation process using subpopulation RNA sequencing and
analyse the single-cell metabolic response using a prototrophic GFP-
tagged transcription factor library and metabolic biosensors (Fig. 1a,
Supplementary Fig. 1). Our results reveal the presence of two distinct
subpopulations reflecting a global population-wide strategy where
isogenic subpopulations are metabolically specialised in either growth
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Fig. 1| Nitrogen downshifts lead to phenotypic heterogeneity. a Conditions
tested throughout this study. Cells were grown in rich (YPD) media until they
reached exponential phase, washed twice with PBS and resuspended in one of the
media. Different modalities (unimodal or bimodal) were observed across condi-
tions. Flow cytometer and microscope schematics were made with BioRender.com
released under a CC-BY-NC-ND 4.0 International license. b Pipeline used through-
out this study to monitor single-cell differentiation. ¢ scRNAseq datasets were
obtained from ref. 23 and describe cells shifted to 0.8 mM proline (NLIM-PRO) or

10° 10* 10°
Cell size (FSC-H)

glutamine (NLIM-GLN) as well as the control (YPD). Plots represent dimensionality-
reduced data using UMAP, where each point represents a single cell. Cells in the top
UMAP plot are coloured by growth scores, calculated from a regression model*
trained on bulk RNAseq data. Histogram above represents the density of growth
scores (GS) for each condition. d Flow cytometry data for cells exposed to a
nitrogen downshift. GFP fluorescence (BL1-H channel) and cell size (FSC-H forward
scatter channel) were used to measure single-cell heterogeneity. Arbitrary units are
shown (abbreviated a.u.).
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or viability depending on the nitrogen source present. Results
obtained in wild and laboratory Saccharomyces strains suggest a pre-
viously unknown amino acid-dependent and conserved behaviour
shaping population dynamics.

Nitrogen shift leads to phenotypic heterogeneity

To study population adaptation following a nitrogen shift, we took
advantage of recently available yeast single-cell RNA sequencing
datasets (scRNAseq). Jackson et al.** observed that diploid proto-
trophic S. cerevisiae cells, generated from FY4 and FY5 laboratory
strains, exposed to nitrogen downshifts display two subpopulation
clusters with distinct transcriptome profiles. The differentiation pro-
cess was also impacted by the quality of the nitrogen source where
growth on the non-preferred amino acid proline gave a stronger dif-
ferentiation than for the preferred amino acid glutamine (Fig. 1c). We
further leveraged this data to find subpopulation markers that could
be used to study the emergence of this differentiation. Remarkably, in
both conditions, one of the subpopulation clusters (cluster P2 for
proline and G2 for glutamine) showed a decrease in expression of
ribosomal genes while having a higher stress signature (Fig. 1c). We
investigated whether this difference in transcriptome could translate
into a difference in growth. Using a previous regression model pre-
dicting growth rate based on bulk transcriptomic data obtained from
nutrient-limited chemostats®, we found that these clusters (P1/P2 and
G1/G2 for proline and glutamine, respectively) had distinct predicted
growth profiles 4 h into nitrogen limitation according to scRNAseq
data (Fig. 1c). We identified a subpopulation marker RPL28 (YGL103W)
whose transcript levels were high and significantly different between
Gl and G2, as well as between P1 and P2 (Supplementary Fig. 2 and
Fig. 1c). Flow cytometry of isogenic BY4741 laboratory cells containing
super-folded GFP (sfGFP) under the control of pRPL28 promoter
(700 bp upstream of start codon) was first used to reproduce the
observed heterogeneity at 4 h post-shift. As suggested from scRNAseq
data, bimodality could be detected in nitrogen-limited media with
proline or glutamine as nitrogen source but not in rich Yeast extract-
Peptone-Dextrose (YPD) media (Fig. 1d). For each of these nitrogen-
limited conditions, two subpopulations of cells could be detected for
both pRPL28-sfGFP intensity and cell size (Fig. 1d). Scatter plot of
PRPL28 fluorescence versus cell size shows that the “low” subpopula-
tion with the lower pRPL28 fluorescence had smaller cell size (lower
FSC forward scatter signal), while the “high” subpopulation had a cell
size and a pRPL28 fluorescence that were closer to pre-shift levels in
YPD (Fig. 1d, Supplementary Fig. 3a). To confirm that these differences
in pRPL28 fluorescence between low and high subpopulations were in
fact not due to cell size differences, we further normalised fluores-
cence by cell size (Supplementary Fig. 3b). When the subpopulations
were clustered based on cell size and cell size-normalised pRPL28
fluorescence, cell size-normalised pRPL28 fluorescence was still sig-
nificantly different (p<0.005; two-sided unpaired ¢ test) between
subpopulations for both proline and glutamine conditions, indicating
variations in cell size alone could not account for the differences
observed in pRPL28 fluorescence (Supplementary Fig. 3c, d). Addi-
tionally, exposing Rpl28 tagged GFP strains to 4 h of proline treatment
could also show the emergence of a “low” subpopulation with lower
Rpl28-GFP levels (Supplementary Fig. 3e), indicating that lower fluor-
escence in the “low” subpopulation was not due to post-transcriptional
regulation of sfGFP alone.

To further investigate whether high and low subpopulations were
truly isogenic, we sorted cells based on forward side scatter and GFP
fluorescence, separated the two subpopulations, and performed the
same shift from YPD to nitrogen limitation for high and low fractions
separately. Given the significant overlap in cell size and pRPL28
intensity between both subpopulations at the onset of the shift
(Fig. 2a), sorting on both fluorescence and cell size allowed for a more
precise separation at the early stage of differentiation (Supplementary

Note 1). Regardless of their post-sorting classification into low or high
subpopulations, both subpopulations re-exposed to rich media could
regenerate both low and high fractions when shifted again, indicating
that the heterogeneity observed was phenotypic and reversible when
re-exposed to rich media (Supplementary Note 1). Extending the
washing step and leaving the cells in PBS for 2 h did not affect the
dynamics of heterogeneity (Supplementary Fig. 4).

Low subpopulation is a daughter-specific reversible

quiescent state

To investigate the dynamics of the differentiation between high and
low subpopulations, we performed a time-course analysis for nitrogen-
limited proline and glutamine conditions and monitored cell size and
pRPL28 fluorescence every 2 h for 8 h (Fig. 2a). The emergence of a
second subpopulation could be seen for both conditions after 2 h and
was more pronounced after 4 h. After that, we noticed a diverging
outcome between conditions where cells in the nitrogen-limited pro-
line (hereafter NLIM-PRO) condition maintained bimodality while cells
in the glutamine conditions (NLIM-GLN) became more unimodal, but
yet heterogeneous, in cell size and pRPL28 fluorescence over time
(Fig. 2b, Supplementary Fig. 5a, b). Bimodality also led to significant
differences in the cell size coefficient of variation (CV), defined as the
population cell size standard deviation divided by its mean, always
higher for NLIM-PRO throughout the differentiation (Supplementary
Fig. 6). To further evaluate the number of cells in each subpopulation,
we clustered cells based on cell size and pRPL28 fluorescence (see
Methods) and assumed two distinct subpopulations based on previous
histograms (Fig. 1d). Given the difficulty to reliably cluster sub-
population early and late into the shift, we assigned subpopulations
based on the clustering performed on 4 h NLIM-PRO, which gave the
clearest clustering (Supplementary Fig. 7 and Fig. 2b). Significantly
more cells were assigned to the low subpopulation for NLIM-PRO
compared to NLIM-GLN from 4 h onwards (Fig. 2c).

The strong and weak bimodality observed for proline and gluta-
mine, respectively, echoed the growth score distributions computed
from scRNAseq (Fig. 1c). To confirm that the observed subpopulations
were indeed the scRNAseq clusters and analyse the early response at
the same time, we performed RNA sequencing on the sorted fractions
separately (subpopRNAseq) 1h post-shift (Supplementary Data 1,
Supplementary Data 2, Fig. 2d). Comparing genes that were sig-
nificantly different (p.q; < 0.05) between subpopulations and clusters
in the NLIM-PRO condition revealed a good correlation (Spearman
coefficient p = 0.66) between the high subpopulation and cluster P1 as
well as between the low subpopulation and cluster P2 despite differ-
ences in experimental set-up, laboratory strain and sampling time (1 h
for subpopRNAseq vs 4h scRNAseq) (Supplementary Fig. 8). Sub-
popRNAseq confirmed the upregulation of G1-phase daughter-specific
markers DSE1 and DSE2 for the low subpopulation as seen in cluster P2
in the scRNAseq dataset (Fig. 2d, Supplementary Fig. 8). Genes
involved in cytokinesis (HOF1, BUD4, ACE2, CHS2) or chromosome
segregation (HCM1) were significantly (Pagj < 0.05,
Benjamini-Hochberg procedure) up-regulated in the high sub-
population as well as the mitotic exit regulators SPO12, DBF2 and CDC5
(Supplementary Data 2). KEGG enrichment of differentially expressed
genes between high and low proline subpopulations revealed major
differences in cell cycle progression, meiosis, MAPK signalling pathway
and DNA repair (Supplementary Fig. 9). Further analysis of scRNAseq
clusters 4 h into the shift shows that the low subpopulation had all the
hallmarks of quiescence with a reversible growth arrest and upregu-
lation of quiescence markers* as well as proteins involved in autophagy
(Supplementary Note 2, Supplementary Data 1).

Enrichment of the daughter-specific markers DSE1 and DSE2 in the
low quiescent subpopulation prompted us to investigate subpopula-
tion dynamics further. First, we sorted high and low subpopulations
grown for 2 h in NLIM-PRO or NLIM-GLN and tracked their evolution
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Fig. 2 | Dynamics of cellular differentiation in NLIM media. a Contour plots of
cell size (FSC-H) and pRPL28 fluorescence (BL1-H) over time for NLIM-PRO (dark
purple) and NLIM-GLN (yellow). Pre-shift indicates growth in YPD prior to the shift.
Contours indicate areas of higher density. b Calculation of subpopulation fractions
for each timepoint and condition based on clustering applied to a. Example shown
is NLIM-PRO after 4 h where two multivariate Gaussians were fitted to the data
(Expectation Maximisation; Methods). Clustering was performed on cell size and
PpRPL28 fluorescence (contour plot) and is shown for both dimensions separately
(histograms). Light orange and light red colours represent high and low fractions,
respectively. ¢ Based on this clustering, hard assignment (dashed line) was

generalised to other conditions and timepoints to calculate subpopulation ratios
(bar chart) of low versus high. Bar plot represents the mean of biologically inde-
pendent samples +SEM (n =3) taken on different days. Significance scores denote
the p value of unpaired one-sided ¢ test with p < 0.05 (*). P values are 0.0056, 0.0314
and 0.0329 for 4 h, 6 h and 8 h, respectively. d Volcano plot representation of
transcriptomics data (NLIM-PRO) of subpopulations that were separated based on
pRPL28 marker intensity and cell size, as represented in b. P values (two-sided) were
adjusted for multiple hypothesis testing using the Benjamini-Hochberg procedure.
Significant transcripts (indicated in green) are those with p adj < 0.05 and absolute
log2 fold-change (FC) > 1.

after post-sorting resuspension in their original media composition
(Supplementary Fig. 10). Sorted high fractions were able to regenerate
the low subpopulation over time (Supplementary Fig. 10), further
highlighting that the low subpopulation is a daughter-specific state
arising from the high subpopulation. Once in the low state, the
dynamics differed between NLIM-PRO and NLIM-GLN. In NLIM-PRO,
most of the cells remained in this state and the mean subpopulation
cell size and pRPL28 intensity slowly increased (Supplementary Fig. 10
and 11). Conversely, in the low NLIM-GLN subpopulation, the increase
in cell size and pRPL28 intensity was more pronounced than for NLIM-
PRO. Remarkably, the low NLIM-GLN subpopulation achieved similar
levels in pRPL28 intensity and cell size to the high subpopulation 6 h
post-sorting (Supplementary Figs. 10 and 11). To further validate our
flow cytometry results, we also imaged and counted bud scars for each
sorted subpopulation in each condition using calcofluor white staining
(Fig. 3a). In both conditions, the low subpopulation primarily consisted
of scarless daughters, whereas the high subpopulation was pre-
dominantly enriched in dividing mother cells (Fig. 3b). After 2 h re-
growth in their respective media, we noticed again a significant dif-
ference between conditions. In NLIM-PRO, ~80% of the cells were
daughters, whereas in NLIM-GLN, this number was only 30% (Fig. 3b).

This observation suggests that low subpopulation cells in the NLIM-
GLN condition were resuming growth and regenerating daughter cells
significantly more than in NLIM-PRO. Taken together, our results show
that low subpopulations arise in the NLIM state and growth either stalls
or resumes according to the nitrogen source present.

The cell size and pRPL28 fluorescence modality (i.e. unimodal or
bimodal) observed above was conserved in nitrogen-replete condi-
tions (10 mM), as well as intermediate concentrations, indicating that
this was not a feature exclusive to nitrogen limitation but of the
nitrogen source (Supplementary Fig. 12). We performed time-lapse
microscopy of single-cells and could observe the emergence of three
phenotypes in NLIM-PRO (Supplementary Fig. 13). Some cells (below
2% of the total population estimated from flow cytometry data; Sup-
plementary Note 1) completely lost their fluorescence with cell size
shrinkage, indicative of potential cell death, while most cells showed
differences in pRPL28 intensity and cell size as observed during flow
cytometry.

Finally, to assess if the observed heterogeneity was strain-specific,
we analyzed the cell size modality in response to a downshift to NLIM-
PRO or NLIM-GLN for 20 wild-types and laboratory S. cerevisiae and its
close relative S. paradoxus isolated from diverse geographical

Nature Communications | (2024)15:6515



Article

https://doi.org/10.1038/s41467-024-50602-8

locations worldwide*® (Supplementary Data 3). We found that, simi-
larly to BY4741 and FY4 strains, multiple subpopulations (sometimes
more than two) could be formed in NLIM-PRO and in NLIM-GLN among
wild-type isolates (Supplementary Fig. 14), showing that cell size
modality is not the result of domestication but suggests broader
ecological implications inherited from wild-type strains.

Quiescence heterogeneity is amino acid-specific

We next asked how a downshift to other nitrogen sources could affect
quiescence heterogeneity. We performed a nitrogen downshift from
rich media to 24 different nitrogen sources (20 amino acids and 4 non-
proteinogenic sources) that can be transported across the plasma
membrane*’. For comparison, we also considered shifts to nitrogen-
starved media (NSTARVE) and nitrogen-replete media (NREP, 10 mM)
for a selection of nitrogen sources that were soluble under the con-
ditions tested. Since cell size was an overall good discriminator of
differentiation, we measured cell size heterogeneity 2 h, 4 h, 6 h and
8 h into the shift as a measure of quiescence heterogeneity. As seen
previously for NLIM-PRO and NLIM-GLN, measuring cell size distribu-
tion 6 h into the shift was enough to assess the dynamics of the low
subpopulation and capture differences between bimodal and unim-
odal conditions (Fig. 2a). Nitrogen downshifts gave a wide range of
heterogeneity profiles over time for NLIM (Supplementary Fig. 15) and
NREP (Supplementary Fig. 16). Among those, downshift to either
ammonium, arginine, asparagine, methionine, or serine gave unimodal
profiles over time, while downshift to other nitrogen sources or
nitrogen-starved media gave bimodal profiles. Notably, a shift to glu-
tamate gave a bimodal followed by a more unimodal profile after 8 h.
Direct proximity to glutamine through the GS-GOGAT nitrogen
assimilation pathway could explain this hybrid response. Glutamate
(bimodal after 2 h), slowly converting to glutamine (unimodal), would
indeed lead to a bimodal followed by a unimodal response. We further
quantified the bimodality in cell size distribution for each of the 25
different nitrogen conditions (24 nitrogen sources and NSTARVE)
using Hartigan’s diptest bimodality scores (Methods) on three repli-
cate flow cytometry experiments and found 14 NLIM conditions and 7
NREP conditions (out of 25 NLIM and 16 NREP tested, respectively) that
gave significant (p < 0.05, Hartigan’s diptest) bimodality scores 6 h into
the shift for all replicates (Fig. 4a, Supplementary Figs. 17, 18 and 19a).
We noted that many of the nitrogen sources leading to unimodal
growth were part of the “preferred” nitrogen source group that trig-
gers the Nitrogen Catabolite Repression (NCR) programme, usually
associated with better growth performances**’. This was the case for
arginine, glutamine, ammonium, serine, and asparagine but not for
alanine and aspartate, which trigger NCR but were bimodal. To further
investigate the connection between modality and growth, we also
recorded growth performance across all conditions (Fig. 4b, Supple-
mentary Fig. 19b). Our results for NREP conditions showed a moderate-
strong correlation (Spearman coefficient p=0.5-0.7) with previous
growth rate performance measurements on different nitrogen sources
in S. cerevisiae (Supplementary Fig. 20). As expected based on the
pRPL28 growth marker, nitrogen sources sustaining higher maximal
growth rate had a unimodal distribution, while nitrogen sources with a
bimodal distribution had slower growth, suggesting a strong anti-
correlation (Fig. 4c; Spearman coefficient p=-0.80 and -0.74 for
NLIM and NREP, respectively) between cell size bimodality and max-
imal achievable growth rate, further validating the computational
growth prediction and pRPL28 growth marker identified from
scRNAseq. Comparison between NLIM and NREP conditions show that
NREP could sustain higher growth (Supplementary Fig. 21a) but did not
show significant differences in modality across amino acids between
NLIM and NREP (Supplementary Fig. 21b). Together, our data suggest
that amino acid quality and not quantity is important for modality and
that population unimodality correlates with growth maximisation.
Remarkably, the presence of alternative nitrogen sources yielded more
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Fig. 3 | The low subpopulation is originally enriched with daughter cells.

a Microscopy imaging of sorted fractions exposed to a 2 h downshift. Bud scars
were visualised using calcofluor white dye on an inverted microscope with x40
magnification. p Fraction of unbudded cells calculated by microscopy. Over 100
cells were imaged for each subpopulation and condition. Error bars represent 95%-
confidence intervals centred on the individual fraction of unbudded cells. Sig-
nificance scores denotes p value with p <0.05 (*), p <0.01 (**), p < 0.001 (***) based
on the Fisher’s Exact test (one-tailed). Purple, light orange and light red bars
represent unsorted (not gated), high and low fractions, respectively.

extreme phenotypes than when nitrogen was absent. This includes a
downshift to leucine which gave the most bimodal profile, or a
downshift to either lysine or cysteine, which gave a significantly lower
(p<0.05 and p<0.0005, respectively; unpaired t test) maximal
growth rate than when nitrogen was absent from the media
(NSTARVE), further highlighting a strong connection between nitro-
gen sources and population dynamics.

Heterogeneity follows a growth-viability tradeoff

Given the apparent growth defect associated with bimodal profiles, we
asked what the evolutionary benefits of maintaining a low, quiescent
subpopulation of smaller cell size could be. Previous research in S.
pombe has shown that small-sized non-growing quiescent populations
appear under nitrogen-starved conditions*® with increased stress
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Fig. 4 | Yeast subpopulations follow a growth-viability tradeoff that is nitrogen
source dependent. a, b Bimodality scores (Hartigan’s diptest; Methods) and
maximal growth rates across all NLIM conditions. Bar plot represents the mean +
SEM of a flow cytometry experiments for cells exposed to a 6 h downshift per-
formed on different days (n = 3) and b growth curves of biological replicates (n = 3).
Purple bars represent the NSTARVE condition where no nitrogen is present. Sig-
nificance scores denotes conditions where all replicates had a p value (Hartigan’s
diptest) of at most p <0.05 (*), p<0.005 (**) or p <0.0005 (**). Bimodality scores
are shown as arbitrary units (abbreviated a.u.). ¢ Tradeoff between bimodality and
growth, shown in a, b, respectively. Regression lines are indicated in yellow and
magenta for NLIM and NREP, respectively. Spearman correlation scores are indi-
cated for each regression line. NLIM-CYS and NLIM-LYS were omitted from the plot
due to poor growth performances. d, e Viability rates for cells exposed to a 4 h
downshift and sorted based on size and pRPL28 intensities using FACS. Yellow and

pink samples indicate high and low GFP fractions. Dark purple samples indicate
cells passed through FACS but not gated. Error bars represent the mean + SEM
(n=4). Significance scores denotes p-value of unpaired two-sided ¢ test with
p<0.05 (), p<0.005 (**), p<0.0005 (**) and p <0.00005 (**). f, g Growth
resumption in rich media (YPD) for sorted and unsorted fractions from e, f. f the
shaded area represents the 95% confidence interval (n =4) of the best fit using the
ggplot2 function geom_smooth with “y ~ exp(x)” as fit function. g lag times were
calculated as the time needed (discretized in 30 min interval) to achieve two
doublings. Significance scores denote the p value of paired two-sided ¢ test asin e.
h Tradeoff between survival and growth resumption (measured as the inverse of
the lag time). Black line represents the regression and the associated value the
Spearman correlation. Circles and triangles represent NLIM and NREP conditions,
respectively. d-h purple, light orange and light red colours represent unsorted (not
gated), high and low fractions, respectively.

resistance*. With many subprocesses differentially regulated in
quiescent cells linked to a general increase in survivability*’, we
investigated links between bimodal growth and cellular viability. To
this end, we exposed the cells to a 20 h downshift in each of the 24
nitrogen sources, washed them and stored them in PBS for 20 days. As
a measure of cellular viability, we used propidium iodide staining,
routinely used in chronological lifespan assays. Propidium
iodide permeates non-viable cells, with the proportion of stained cells
used to estimate single-cell viability and chronological lifespan. We
discovered strong differences in viability across conditions with
nitrogen sources sustaining unimodal and faster growth such as

glutamine, arginine, or ammonia generally displaying lower viability
rates (Supplementary Fig. 22). NREP conditions lead to lower viability
rates than NLIM showing that nitrogen source quantity could
also influence viability (Supplementary Fig. 21c). To further assess if
increased viability during bimodal growth could be tied to one of the
subpopulations, we recorded subpopulation-specific viability rates.
We exposed cells to a 4 h downshift (5 NLIM and 3 NREP different
conditions) and subsequently sorted subpopulations based on cell size
and pRPL28 expression. As control, we also kept an unsorted fraction
that passed flow cytometry but was not gated. We observed the
greatest difference in viability in NREP-UREA, where the viability rate
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gradually decreased for all sorted and unsorted fractions over 30 days
with the high subpopulation reaching a 33.7 + 1.4% viability rate while,
in comparison, the low subpopulation could maintain a remarkable
71.0 + 0.2% viability rate (Fig. 4d). In fact, the low fraction could achieve
significantly better viability rates and chronological lifespan than the
high and unsorted fraction in all conditions tested (Fig. 4e).

We next sought to investigate how subpopulations would fare
once optimal growth conditions would resume. To this end, we re-
exposed each sorted fraction as well as the unsorted fraction to rich
YPD media and monitored growth over 15 h. As a measure for growth
resumption, we calculated a pseudo lag time, defined as the time it
took to achieve two doublings (corresponding to a fourfold increase in
ODgo00). Remarkably, the high fraction could resume growth faster
than the low and unsorted fractions. For NLIM-PRO, the high fraction
achieved a lag time of 8.9+ 0.3 h, while it took significantly longer
(p<0.05, paired t test) for the low fraction to resume growth with a lag
time of 11.5 + 0.7 h (Fig. 4f, g). Again, the lag time extension observed
for the low subpopulation was significantly longer than the high sub-
population for all conditions tested (Fig. 4g), likely due to metabolic
changes necessary to re-enter cell cycle progression. An extended lag
time was also observed for the low subpopulation when grown in YPD
on agar pads (Supplementary Fig. 23). Comparing viability and growth
resumption rates, our data suggests a second tradeoff between long-
term viability and growth maximization (Spearman correlation
p=-0.62, Fig. 4g). In terms of population-wide resource allocation,
investing in a subpopulation with higher viability and chronological
lifespan is probably advantageous in fluctuating conditions and out-
weighs the associated population growth reduction. We indeed note
that the low subpopulation investment seems to be mitigated during
re-exposure to rich media, with the unsorted fraction showing a similar
growth compared to the high subpopulation, especially under NREP
conditions (Supplementary Fig. 24). Additionally, the increased lag
phase in rich media for the low subpopulation could be a memory
effect. Cells exposed to fluctuating environments often display history-
dependent behaviours to prepare for recurring suboptimal
conditions®. Therefore, maintaining a longer lag phase and not
resuming growth straight after re-exposure to rich media could
increase longevity as measured by viability extension and enhance
survival chances, especially with reoccurring suboptimal conditions.

Viability and growth are distinct transcriptional states

We further characterised metabolic differences between growth and
viability based on transcription factor (TF) nuclear intensity, where TF
activity is proportional to nuclear intensity in addition to promoter
affinity of the downstream targets*’. To this end, we created a proto-
trophic transcription factor GFP fusion library (TF-GFP library) using
Synthetic Genetic Array (SGA) (Methods). The library consists of 192
members containing a TF fused to GFP as well as a nuclear localisation
tag (BFP) and a subpopulation marker (pRPL28-RFP). We performed a
nitrogen downshift into proline or glutamine for each member of the
TF-GFP library and analysed the resulting nuclear intensity over time
for each condition and subpopulation using high-throughput micro-
scopy (Fig. 5a). TF nuclear intensities were computed from YeaZ seg-
mented cells by overlapping nuclear localisation tag (BFP) and TF-GFP
localisation (GFP), while subpopulation assignment was performed on
cell size and pPRL28-RFP intensity (Methods, Fig. 5a, b). For each GFP-
tagged TF, we recorded cell size, mean cellular pRPL28-RFP and mean
nuclear GFP for ~-800,000 cells exposed to 30 min, 90 min, 150 min
and 210 min of either NLIM-PRO or NLIM-GLN treatment (Source Data).
The resulting cell size-pRPL28-RFP scatter plot obtained from micro-
scopy was consistent with flow cytometry data (Fig. 5b, Supplementary
Fig. 25). After 30 min, we found that already 157 and 116 transcription
factors were significantly different (p < 0.05, two-tailed ¢ test) between
conditions and subpopulations (NLIM-PRO), respectively (Fig. 5c, d).
Because TF localisation can be noisy and highly variable over time”, we

also ranked the nuclear intensities at each timepoint to highlight the
most consistent TFs for each condition and subpopulation (Fig. Se, f,
Supplementary Data 4).

We first asked whether the TF library could capture established
differences between proline and glutamine conditions. For example,
Put3, activator of proline catabolic genes and under the control of the
NCR programme*’, was one of the most localised TF in proline com-
pared to glutamine at bulk and at the low subpopulation levels
(210 min; p <0.05, two-tailed ¢ test) (Supplementary Data 4, Supple-
mentary Fig. 26a, b). Ure2, one of the most consistent targets over
time, had a higher nuclear intensity for the proline condition at the
population level (Fig. 5c, e). Ure2 is strongly associated with the NCR
programme, sequestering the NCR activator GIn3 to the cytoplasm in
presence of a preferred nitrogen source such as glutamine®®, Dig2, a
repressor of the Stel2 transcription factor, part of MAPK signalling,
which was differentially activated between low and high subpopula-
tion according to subpopulation RNA sequencing (Supplementary
Fig. 9). To validate our high-throughput results, we further imaged
Dig2-GFP strain during a shift to either NLIM-PRO or NLIM-GLN and
could find it to be indeed more intense for proline (Supplementary
Fig. 26f). Conversely, Migl, involved in respiration and gluconeogen-
esis gene repression*’, had a higher nuclear intensity in glutamine,
indicating that cells growing on glutamine could do fermentation
despite nitrogen limitation (Fig. Se, g). This was also conserved at the
low subpopulation level where Migl was consistently more intense for
glutamine compared to proline (Supplementary Fig. 26e). Consistent
with this finding, we found that Snfl, a major Migl inhibitor, had higher
nuclear intensity in the low proline subpopulation mimicking a low-
glucose condition despite glucose present in abundance (Supple-
mentary Fig. 26d)*°. This corroborates our previous findings that the
low glutamine subpopulation is actively growing while the low proline
subpopulation is more quiescent.

We next used the TF library to investigate differences between
high and low subpopulations in NLIM-PRO. Among the most consistent
targets, Tecl had significantly higher nuclear intensity in the low sub-
population already after 30 min and onwards (Fig. 5d, f). We found that
Tecl was specific to the low proline subpopulation since it was more
intense when compared to the low glutamine, indicating an essential
role in maintaining quiescence (Supplementary Fig. 26¢). Interestingly,
Tecl connects MAPK and TOR pathways to coordinate yeast devel-
opment and has previously been reported as a positive regulator of
chronological lifespan®, consistent with the improved chronological
lifespan observed for the low subpopulation. Tecl, together with Stel2
of the MAPK pathway, both regulate genes required for filamentous
and pseudohyphal growth®?. Rcsl, another TF that specifically localises
to the low proline subpopulation, is involved in iron homoeostasis and
its nuclear localisation increases with DNA stress* (Fig. 5f, Supple-
mentary Fig. 26g). Other main targets included Rdrl and Pdr8, both
associated with ATP-binding cassette (ABC) family of transporters,
important for resistance to drugs and other growth inhibitors and up-
regulated in quiescent cells’**.

Quiescent population is dormant and heterogeneous in

ATP levels

Given important differences in transcription factor localisation for
high and low subpopulations, we further studied how they could
translate into physiological differences. Using metabolic sensors, we
measured two key metabolic parameters, that are cellular energy sta-
tus and metabolic activity. For energy status, we measured adenosine-
triphosphate (ATP) levels using a FRET biosensor” (Fig. 6a). For
metabolic activity, we measured fructose-1,6-bisphosphate (FBP),
shown to correlate with glycolytic flux’*¢, using a riboswitch-based
fluorescence sensor”’ (Fig. 6b). To account for growth differences
between subpopulations as well as cell-to-cell variability in sensor
expression that could occlude the measurement, FBP signal was
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normalised to an RFP control placed under a constitutive promoter
while the ATP sensor was ratiometric, providing the ratio between
bound and unbound states (Fig. 6a, b).

Analysis of ATP levels after 8 h of growth in NLIM media with
glutamine or proline showed population-wide differences and cellular
ATP levels generally lower in glutamine than proline media (Fig. 6c).
These data, together with the strongest growth profile observed in
cells shifted to NLIM-GLN (Fig. 4b), could further suggest fermentative
rather than respiratory growth in NLIM-GLN. Remarkably, while ATP
levels were unimodal at the population levels, scatter projection of
ATP levels versus cell size revealed cellular bimodality for proline, with

the emergence of two clusters corresponding to the low and high
subpopulations (Fig. 6d). When we clustered high and low sub-
populations based on cell size (Supplementary Fig. 27a), we found that
from 4 h onwards, the low quiescent subpopulation showed a reduced
but more heterogeneous ATP pool, while the high growing sub-
population maintained a homogeneous ATP content over the course
of the experiment (Supplementary Fig. 27b). This difference in ATP
heterogeneity between low and high subpopulations was maintained
for the other bimodal nitrogen sources (Supplementary Fig. 28a).
Similarly, conditions that sustained higher maximal growth rates
(Fig. 4b) had generally lower median ATP output at the population
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Fig. 5| Transcription factor tracking upon entry into quiescence. a Overview of
the pipeline. A marker strain containing the subpopulation marker as well as a
nuclear localisation tag was mated with one of the 192 transcription factor mem-
bers of the GFP library (TF-GFP) using the Synthetic Genetic Array method (SGA).
The improved library was then grown in rich media and shifted to nitrogen-limited
conditions as described in the Methods. The library was imaged in PBS 30, 90, 150
and 210 mininto the shift. The YeaZ algorithm?®® was used to segment cells based on
neural networks. When possible, segmented cells were assigned to high and low
clusters based on pRPL28 mScarlet fluorescence and cell size using the Expectation
Maximisation (EM) algorithm. TF localisations were computed for each cell and
each strain by overlapping the nuclear localisation signal (mTagBFP2) with the TF-
GFP signal (Methods). b Scatter plot representing mean RFP fluorescence per cell
and cell size 150 min into the shift, at the onset of differentiation for NLIM-PRO

(dark purple) and NLIM-GLN (yellow). Cells were assigned to each cluster (low or
high) based on their cell size and mean RFP intensity using the EM algorithm. ¢, d TF
localisations for proline plotted against glutamine (population level) and high
against low subpopulation (NLIM-PRO), 30 min into the shift. TF nuclear intensity
was calculated as the mean GFP fluorescence over the nucleus, determined by the
NLS-mtagBFP2. Significance score denotes p value of unpaired two-sided ¢ test with
p <0.05, with an adjusted mean (condition/subpopulation difference). TF with
significant localisation scores are shown in green. e, f Relative TF nuclear localisa-
tion tracked over time for proline versus glutamine (e) and low versus high proline
subpopulations (f). Relative localisations were normalised by the mean relative
localisation of the timepoint. g Multi-channel x50 imaging of Migl-GFP for one
representative of two experiments. NLS-mtagBFP2 represents the nuclear locali-
sation and pRPL28-mScarletl was used to classify high and low subpopulations.
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Fig. 6 | Central metabolites tracking upon entry into quiescence. a, b Overview
of the ATP (yATP) FRET sensor® and FBP fluorescence sensor”’. Both sensors are
ratiometric, normalising out potential differences in sensor expression levels. For
the ATP sensor, relative ATP levels are proportional to the inverse of the ratio of
acceptor (590 nm) over donor (483 nm) emission from the same excitation

(438 nm). For the FBP sensor, FBP levels can be estimated from the inverse of the
ratio of GFP (riboswitch) over RFP (control) ratio. GFP and RFP are integrated in the
same locus (URA3) and under the control of pTEF1 and pTEF2, respectively.

c Scatter plot representing the emergence of the low subpopulation for NLIM-PRO

FBP sensor

l—» RFP

x

_Qﬁ > R @D = 2

l—» GFP

SV

@

®

P=ns. P =0.0009 P=2x10®
4h 6h 8h E .
High
. Low
P=2x10° P<2x10%  P<2x107
4h 6h 8h
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against cell size. d, e Quantification over time based on Expectation Maximisation
clustering (Methods) of scatter plots as shown in c. Orange and red colours
represent high and low fractions, respectively. Only timepoints where clustering
could be performed are shown. Centre marks of the box plot represent the median,
hinges mark the lower and upper quartiles and whiskers show all values that, at
maximum, fall within 1.5 times the interquartile range. Indicated p-values were
calculated from unpaired two-sided ¢ test and represent single-cell heterogeneity
performed on one representative of two experiments.

level (Supplementary Fig. 28b, c). A high variability in the quiescent
subpopulation could be consistent with bet-hedging where increased
ATP variability could denote a strategy to further increase phenotypic
diversity in preparation to environmental fluctuations. Similar obser-
vations were made for cells shifted from glucose to maltose, where
cells resuming growth had a higher and more homogeneous ATP pool
than cells that remained quiescent”. Conversely, the analysis of FBP
levels did not show the same difference in variability between low and

high subpopulations but showed a population-wide decrease over
time instead (Fig. 6e). This decrease was more marked for the low
subpopulation suggesting a more dormant metabolism, consistent
with previous studies on quiescence®*®,

Discussion
Our results show that S. cerevisiae exposed to a nitrogen downshift
display phenotypic bimodality with simultaneous presence of
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subpopulations following a tradeoff between chronological lifespan
and growth capabilities. Concomitantly, these subpopulations operate
at very distinct metabolic states where the low subpopulation is opti-
mized for viability, and the high subpopulation is optimized for
growth. With these fundamentally opposite metabolic states, indivi-
dual cells need to commit to either state (specialisation) and pheno-
typic bimodality is therefore optimal given finite resource allocation. A
similar phenotypic specialisation into a growing and a stress-resistant
fraction has also been found when S. cerevisiae was exposed to growth
inhibitors®. In proline, the low subpopulation is a terminal state enri-
ched with daughter cells, while in glutamine, it can resume growth.
Asymmetric generation of quiescent-specific daughter cells has also
been observed during glucose exhaustion, at the onset of stationary
phase®. Using subpopulation-based RNA sequencing and high-
throughput TF imaging, we found that increased viability correlates
with a more active MAPK signalling and DNA stress response asso-
ciated with general chromosomal regulation, as well as organelle and
morphological reorganisation. The seemingly more active MAPK sig-
nalling between subpopulations denotes an important crosstalk
between nitrogen and carbon metabolism. More importantly, the low
subpopulation had similarities with a low-glucose state despite glucose
present in excess. Nuclear localisation of transcription factors involved
in metal homoeostasis for the low proline subpopulation could be
related to the non-growing phenotype, where upregulation of ion
homoeostasis when growth stalls have been previously reported in a
wide range of model organisms®**°,

We argue that in the context of evolution and given conservation
in both wild and domesticated S. cerevisiae and S. paradoxus strains,
cell size bimodality in response to a nitrogen downshift is a hard-wired
regulatory mechanism and probably crucial to environmental inter-
actions. We further hypothesise that amino acids could be used as an
environmental cue for decision-making. In this aspect, glutamine
could denote ideal growth conditions while leucine, which gave the
strongest cell size bimodality (Fig. 4a), could indicate conditions that
necessitate a survival increase or dispersal. Supporting this theory,
cells growing on leucine produce a distinctive banana-like aroma
including isoamyl alcohol, isovaleric acid or isoamyl acetate®. While
aroma production dependence on nitrogen sources is well docu-
mented in the yeast brewing industry®, its ecological purpose still
remains obscure but past evidence suggests that aroma production
could be used for attracting insects and facilitating dispersion®®***,
Strong differentiation to quiescence for leucine coupled with
increased aroma production could, therefore, facilitate dispersal
through insect vectors directly linking the observed bimodality to a
broader ecological context. Given that growth on leucine was more
bimodal than growth without any nitrogen sources (NSTARVE), we
further hypothesise that leucine could be used as an environmental
cue for dispersion. Increasing viability and extending lifespan might be
a strategic choice to allow better dispersion without needing to
undergo sporulation and could offer several advantages. First, it could
be seen as a lighter, more reversible commitment to dormancy. This
could explain why diploid cells in the presence of fermentable carbon
sources such as glucose undergo quiescence rather than sporulation
when other essential nutrients such as nitrogen are limiting growth®.
Second, the increased lag phase for the quiescent subpopulation could
correspond to a delayed phenotypic outing and give a memory effect
in fluctuating conditions to better withstand previously experienced
suboptimal conditions*>*®. We note that this is still unclear whether the
increased lag phase could also be a by-product of increased viability
where cells need time to exit quiescence. Yet, another advantage could
be that quiescent cells remain metabolically active and could still be
able to exchange metabolites with their environment. Metabolite
exchange, amino acids in particular, is a key feature of yeast exo-
metabolome and is important for phenotypic heterogeneity and
metabolic  specialisation®”. Remarkably, while measuring the

supernatant of yeast exposed to 8 h nitrogen downshifts, we could
detect amino acids other than the nitrogen source used, even under
low nitrogen contents (NLIM, 0.8 mM) (Supplementary Data 5), sup-
porting a broader population-wide function based on amino acid
exchange. Similarly, a recent study found that lysine was involved in
cross-feeding interactions in ageing colonies on an agar plate resulting
in phenotypic heterogeneity between young and old cells consuming
and producing lysine®®. Interestingly, we found that lysine was the
amino acid that performed the worst in both growth and chronological
lifespan. We could not detect any lysine throughout the different
downshifts despite the observation that [ysi2 (lysine biosynthesis)
knockout is able to establish syntrophic communities with lysine
producers®®, showing that lysine or its intermediate can be exchanged.

In light of a recent study showing that artificial consortia of S.
cerevisiae auxotrophs have an extended chronological lifespan’, we
show that such lifespan improvements could be explained by the
heterogeneity we observed. Auxotrophs would typically be forced to
rely heavily on amino acids produced by other members of the com-
munity and could, therefore, exhibit heterogeneity within an auxo-
trophy class, leading to increased lifespan. Finally, in terms of fitness
burden, our results show that an investment in a small quiescent
subpopulation with longer lifespan is beneficial since it results in a
minor decrease in growth resumption capabilities with the lag phase
for high and unsorted subpopulations being very similar if not the
same in certain cases. This can explain other bet-hedging strategies
such as antimicrobial resistance”. Our results could be relevant
in future work to study amino acid sensing mechanisms or investi-
gate potential division of labour across subpopulations and the role
they play within a natural environmental context.

Methods

Single-cell RNA sequencing data analysis

Single-cell RNA sequencing data were obtained from ref. 23. Raw
counts data was downloaded from NCBI with accession number
GSE125162. All data analysis was performed on R. Pre-processing was
performed according to the author’s guidelines, except for the nor-
malisation that was performed using the logNormCounts from the
LTLA/Scuttle package (https://github.com/LTLA/scuttle). Dimension-
ality reduction using Uniform Manifold Approximation and Projection
(UMAP) was performed using the scater package’. To calculate single-
cell growth scores, the log normalised scRNAseq reads were inputted
into the calculateRates function from the growth regression model
obtained from ref. 39. To identify subpopulation-specific markers,
DESeq2” was used to find genes that were differentially expressed
between subpopulations. Detailed methodology is available as part of
Supplementary Method 1. All data analysis performed in this study are
available on GitHub (https://github.com/KiyanShabestary/2023-NLIM-
heterogeneity).

Strain creation

Two prototrophic strain versions based on the laboratory strain
BY4741 (MATa his341 leu2A0 metl15A0 ura3A0)’* were made as sub-
population marker strains. One version had full prototrophy restored
using the minichromosome pHLUM series”™. A genome-integrated
version was also created with HLUM fragments, PCR amplified from
the respective minichromosomes with ~35bp overhangs for homo-
logous recombination targeting the HO locus. The fluorescent protein
sfGFP was assembled under the control of the pRPL28 promoter,
identified as a subpopulation marker through scRNAseq data analysis.
Transcription termination was under the control of the tTDHI1 termi-
nator. The pRPL28 promoter part was amplified from genomic DNA
taking 700 bp directly upstream of the coding sequence. Parts for
sfGFP and terminators were obtained from the yeast MoClo Toolkit
(YTK)’®. Assembly was performed into a URA3 targeting vector using
Golden Gate assembly as described in the YTK toolkit assembly. For
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the ATP sensor strain, a codon-optimised variant of yAT1.03 sensor>
was ordered as GeneArt from ThermoFisher and cloned in a pYTK level
0 Type 3 plasmid. Using Golden Gate assembly, the fragment was
placed under pTEF1 control and with the tENOI1 terminator in a vector
targeting ura3. The plasmid was co-transformed with pHLM into
BY4741. For the FBP sensor, the 2_riboswitch sensing unit was ampli-
fied from the pFBP-2_6.sensor’’ plasmid obtained from addgene (cat-
alogue number 162800). The fragment was assembled into pYTK053
of the YTK collection, downstream of the promoter pTEF1 and
mNeonGreen and upstream of the tSSA1 terminator. Both the FBP
sensor and its control (mScarletl (RFP) under pTEF2 control and with
tENO2 terminator) were genome-integrated at the ura3 locus, com-
plemented with the pHLM minichromosome. For the TF library, a
donor strain based on BY4742 (MATa hisAl leu2A0 lys2A0 ura3A0) was
used to create the prototrophic GFP library using SGA (see SGA section
in Methods). As a subpopulation marker, mScarlet (RFP) was placed
under pRPL28 control at the ura3 locus with tTDH1 terminator. For
nuclear localisation visualisation, a nuclear localisation tag derived
from the SV40 T-antigen’” was added at the 5’ end of mTagBFP2 (BFP)
placed under the control of pTEF2 and with the tENO2 terminator
genome-integrated at the leu2 locus. Additionally, for haploid selec-
tion, a kanMX cassette was placed under the MATa-specific pSTE2
promoter (genome amplified) with tPGK1 terminator at the canI locus.
All assemblies were performed using Golden Gate assembly within the
YTK framework”. Strains used in this study are indexed and described
in Supplementary Data 3.

Yeast transformation

Transformation into yeast was performed using the Lithium acetate
protocol’®. Overnight YPD yeast cultures were diluted in YPD (1:50,
5ml per three transformations) in the morning and cultivated until
they reached exponential growth (4-5 h). Cells were then washed once
and resuspended in 0.1M Lithium acetate (LiOAc, Sigma) to a final
volume of 100 pl per transformation. The subpopulation marker
plasmid was linearised using Notl (New England Biolabs). The line-
arised plasmid (500 ng) and the minichromosome (1 pl, >100 ng/pl),
when appropriate, were mixed with boiled (5min, 100 °C) salmon
sperm DNA (10 pl, Invitrogen). Competent yeast cells were resus-
pended in the DNA/salmon sperm DNA mixture and then mixed with
260 pl 50% (w/v) PEG-3350 (Sigma) and 36 pl 1M LiOAc. The trans-
formation mixture was incubated at 42 °C for 25 min, resuspended in
sterile water and plated on the appropriate selection medium. All
strains were confirmed by cPCR followed by Sanger sequencing.

Growth conditions

Yeast cells were cultivated in sterile 14 ml cell culture tubes (Greiner
Bio-One) grown at 30 °C in a Infors HT Multitron with 700 rpm shak-
ing. Yeast extract-peptone dextrose (YPD) composed of 1% (w/v) Bacto
Yeast Extract (Merck), 2% Bacto Peptone (Merck), and 2% Glucose
(VWR) was used as rich pre-shift media. For the post-shift media, 1.7 g/I
Yeast Nitrogen Base (YNB) without amino acid and ammonium sulfate
(Sigma) and with 2% Glucose (YNB) was used with 0.8 mM (NLIM),
10 mM (NREP) or without (NSTARVE) nitrogen source. All amino acids
were supplied from Sigma or Formedium. Both YPD and post-shift
media were buffered with 50 mM phosphate buffer and adjusted
to pH 6.0.

Medium shift

Pre-shift growth included an overnight step in YPD from a single col-
ony stored on YNB agar plate followed by a 1:50 dilution in 5ml YPD
grown for 4h until the end of exponential growth was reached
(ODgpo = 0.8-1.0). Cells were then centrifuged for 6 min at 4 kG and
washed in phosphate-buffered saline (PBS) solution twice. After the
washing step, cells were resuspended in post-shift media (NLIM, NREP,
or NSTARVE) to ODggo = 0.4 in 14 ml cell culture tubes or 250 ml flasks

(for subpopulation RNA sequencing) and grown at 30 °C with 700 rpm
shaking (Infors).

Time-lapse microscopy

Time-lapse microscopy was performed using agarose pads. In short,
cells were trapped in between a microscope slide and an agar pad as
previously described”. Agarose pads were composed of the respective
growth media and 1.5% (w/v) low melting agar (Sigma). To create the
agar pad, 1 ml of agar/media mixture was pipetted on top of a micro-
scope glass cover (22 mm x 22 mm, VWR). Another cover was placed
on top to create a layer of even thickness. Approximately 50 mm? of
the solidified agarose (one-ninth) was cut out to make an agarose pad
and 2 pl of cells (ODggo = 0.4 in PBS) was applied in the middle of each
pad. The agarose pad was then placed upside down in an enclosed
35 mm cell imaging dish (Ibidi). Water was added to the enclosure to
limit evaporation during the time-lapse. Imaging was performed on a
Nikon Ti-2 Twin-Cam-TIRF with an environmental chamber to maintain
temperature at 30 °C.

Subpopulation sorting

Subpopulations were sorted using fluorescence-activated cell sorting
(FACS), performed on a BD FACSAria Il Cell Sorter, based on GFP
fluorescence (FITC-A, blue laser 488-530/30 nm) and morphology
(SSC-A). Doublets and budding yeast exclusion were filtered out
through FSC-W/FSC-H and SSC-W/SSC-H gatings. Prior to sorting,
samples were filtered, and 20,000 events were used to adjust gating.
Purity cheques were performed at the start of every sorting run to
ensure accurate gating and no cross-contamination. Gating details are
available as part of Supplementary Note 1. For subpopulation RNA
sequencing, pRPL28 marker strain culture grown overnight was dilu-
ted (1:50) in YPD (10 ml) and grown to exponential phase (4 h). Cells
were washed twice with PBS as described above and exposed for 1 hour
in post-shift media (post-shift resuspension ODggo=0.4). Prior to
sorting, cells were centrifuged, resuspended in PBS and kept at 4 °C for
the duration of sorting. After sorting in 15 ml tubes, cells from each
sorted fraction were grouped and centrifuged (6 min at 4kG) to
remove the supernatant. Cell pellets (at least 4 million cells for each
sample) were frozen in liquid nitrogen and stored at —80 °C until RNA
extraction. Growth resumption and chronological lifespan experi-
ments were performed in 96-well plates (Greiner). Cells were grown in
YPD and exposed to a 4 h post-shift as described above. Cells were
washed once in PBS and sorted in 15 ml tubes. Approximately 50 k cells
were used per well for both subpopulation lifespan and growth
resumption measurements.

Subpopulation RNA sequencing

Subpopulation RNA extraction, sequencing and data analysis was
performed through Novogene sequencing services. Sorted cell pellets
stored at =80 °C were thawed on ice. RNA was extracted with a RNA-
prep Pure Plant Plus kit (Tiangen). Messenger RNA was purified using
poly-T oligos attached magnetic beads. After fragmentation, the first
strand cDNA was synthesised using random hexamer primers, fol-
lowed by a second strand cDNA synthesis. The library was quantified
using real-time PCR and Qubit. Size distributions were calculated using
Bioanalyzer analysis. Quantified libraries were pooled and sequenced
on an lllumina platform (Novaseq 6000) with a paired-end 150 bp
(PE150) method. Raw sequencing reads and count matrix are available
in NCBI GEO under the accession number GSE235239.

RNA sequencing reads were filtered according to the following
criteria: Reads with no adaptor contamination, no more than 10% of
uncertain base (N) within the read, not >50% of the reads made of low-
quality base reads (Base Quality Qscore less than 5). Low-quality reads
represented less than 1% of total reads. HISAT2%° was used to map the
filtered reads to the genome. Reference genome (fasta file) and gene
annotations (gtf file) used for alignments were obtained from the
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Ensembl database available at http://ftp.ensembl.org/pub/release-75
(December 2022).

Principal Component Analysis was performed on gene expression
values (FPKM) to evaluate intergroup and intragroup variance and
remove outliers. Differential gene expression was computed using
DESeq2” and p values adjusted using the Benjamini-Hochberg pro-
cedure. KEGG enrichment analysis was performed using
clusterProfiler® with adjusted p values obtained from DESeq2.

Growth measurements

Growth parameters were calculated for cultures grown in YPD and
shifted to post-shift media (ODgoo=0.1) as described above.
Growth curves were obtained for 96-well plates (Greiner) recorded
in a Tecan Spark microplate reader set at 30 °C with 200 rpm orbital
shaking. Breathe-Easy sealing membrane (Sigma) was applied to
reduce evaporation while maintaining gas transfer throughout the
experiment. Bulk population maximal growth rates were calculated
as follows: Data from the plate reader was blank normalised.
The R package growthcurver (https://github.com/sprouffske/
growthcurver) was used to obtain a smooth fit of the growth
curve. Local growth parameter mu_log for each time interval was
computed as the difference of the natural logarithmic of the ODs
divided by the time interval. Finally, the maximal value mu_log
within a time window excluding lag and stationary phases (between
5h to 20 h in post-shift media) was taken as maximal growth rate.
For growth resumption experiment in YPD following FACS-based
sorting, cultures were resuspended to ODggo = 0.05. Lag time was
estimated as the time required (discrete interval) to reach two
doublings (ODggo =0.2).

Bimodality quantification

Cell-to-cell heterogeneity of cultures grown in YPD and shifted to post-
shift media (ODgoo = 0.4) was measured over time using an Attune Nxt
flow cytometer (Invitrogen). Forward scatter (FSC-H) and GFP fluor-
escence (BLI-H, blue laser 480/10 nm) were used to measure cell size
and GFP fluorescence heterogeneity, respectively. Doublets were
excluded from the data based on FSC-H/FSC-A linear correlation (both
log scale) using the Flowjo software. At least 10'000 events were
recorded per sample/replicate. Cell size bimodality scores were com-
puted using Hartigans’ diptest for unimodality using the R package
diptest (https://github.com/mmaechler/diptest). The stat and pval
output values were used as bimodality score and associated p-value.
The R package flexmix®> was used to perform Expectation Maximisa-
tion on cell size distributions to fit a Gaussian model for each sub-
population and estimate the respective mean and standard deviation
for each subpopulation.

Chronological lifespan assay

Chronological lifespan was estimated as the percentage of cells
remaining viable in PBS over time. For bulk population lifespan esti-
mation, cultures (150 pl) exposed to a 18 h nitrogen downshift in 96-
well plates were washed twice in PBS, resuspended in 200 pl PBS and
50 pl of cells/PBS mixture was added to 150 pl PBS in a 96-well plate.
For subpopulation lifespan assessment following FACS-based sorting,
cells exposed to a 4 h downshift were washed prior to sorting and 50 k
cells in PBS were stored in 96-well plates (200 pl). One whole plate was
used for each timepoint measurement to limit subsequent evapora-
tion. Lifespan was measured up to 30 days after the end of the post-
shift as indicated in text. Plates were sealed with Breathe-Easy sealing
membrane (Sigma) and wrapped with aluminium foil and stored at
30 °C until cell viability measurement. Cell viability was measured on
the basis of permeability to propidium iodide (PI, Merck) in apoptotic
cells using flow cytometry (Attune Nxt, YLI-H, excitation 561 nm,
emission filter 585/16 nm). Prior to the fluorescence assay, 1l of PI
(1 mg/ml) was added to 200 pl cell/PBS mixture and gently mixed using

a multi-channel pipette. For each sample/replicate, viability was thre-
sholded based on viability measured in YPD.

Unbudded cells counting

Sorted fractions of cells exposed to a 2 h downshift and sorted via
FACS were collected in PBS and either directly stained or transferred to
fresh NLIM-PRO or NLIM-GLN media and incubated for 2 h at 30 °C and
700 rpm shaking before staining. Bud scars were stained using calco-
fluor white (Sigma-Aldrich) at a final concentration of 0.01g/L. Cells
were incubated for 15 min in the dark at room temperature and washed
in PBS. Subsequently, 5 pl of cells were transferred to microscopy glass
slides and imaged using a Nikon Ti microscope fitted with a Hama-
matsu Flash 4 camera. Stained bud scars were visualised using a P4000
Cooled LED light source at 365 nm and filters for blue fluorescence.
pRPL28-sfGFP fluorescence was captured using a 460 nm LED and
green fluorescent filters. Counting was performed manually, to pre-
vent bias due to differences in staining efficiency.

Metabolic sensors analysis

Metabolic sensors were used for in vivo measurement of ATP and FBP.
Both sensors were genome-integrated at the URA3 locus. We used a
FRET-based biosensor* for ATP and a riboswitch-based fluorescence
sensor for FBP measurement®’. For the ATP sensor, the ATP FRET signal
was recorded using a 405nm excitation laser, a 450/40 nm donor
emission filter and a 525/50 nm acceptor emission filter (VL1 and VL2
channels). ATP levels were calculated by taking the ratio between the
VL2 and VL1 channels (VL2-H/VL1-H). For the FBP sensor, the FBP signal
was recorded using a 488 nm excitation laser and a 530/30 nm emis-
sion filter (BL1 channel) while the control RFP signal was measured
using a 516 nm excitation filter and 620/15 emission filter (YL2 chan-
nel). With the FBP sensor fluorescence displaying a signal inversely
proportional to FBP concentration. FBP levels were calculated by tak-
ing the ratio between the YL2 and BL1 channels (YL2-H/BL1-H). Signals
were recorded on a Attune Nxt flow cytometer (Invitrogen). Expecta-
tion maximisation using the R package Rmixmod® with “Gaus-
sian_pk_L I” model selection was performed on cell size to compute
subpopulation-specific ATP and FBP levels.

Library creation using SGA

A prototrophic version of the GFP collection®* was created using the
Synthetic Genetic Array method®. A transcription factor library (TF-
GFP library) containing 192 members was created as follows. Selected
strains from the GFP collection (MATa his341 met15A0 leu2A0 ura34A0
XXX-GFP-HisMX) were mated with a donor strain based on the
laboratory strain BY4742. The donor strain contained a nuclear loca-
lisation marker subpopulation marker as well as kanamycin resistance
placed under the MATa-specific pSTE2 promoter for haploid selection
(MATa canl::pSte2-KanMX-tPGK1 his341 [ys2A0 leu2::pTEF2-NLS-
mtagBFP-tENO2-LEU2  ura3:pRPL28-mScarletl-tTDHI-URA3) (see
Strain creation method section above). Mating was performed on solid
agar plates in a 384 array using a Rotor pinning robot (Singer Instru-
ments). Cells were then transferred to agar plates with minimal media
(YNB) lacking amino acids to select prototrophic diploids. These
diploids were then incubated in pre-sporulation media (YP with 1%
potassium acetate) in liquid 96-well plates and grown for 24 h. Cells
were then washed in PBS and resuspended in 1% potassium acetate
sporulation media. After 5 days, haploid MATa spores were selected by
transferring 50 ul of spores into 450 ul of synthetic media containing
50 ug/ml canavanine and 300 pg/ml G418. After 24 h, 50ul were
washed in PBS and resuspended in 450 ul of synthetic media lacking
uracil, leucine, histidine, lysine and methionine containing 10 pg/ml
canavanine and 300 pug/ml G418 to select prototrophic haploids
overnight. This step was repeated in standard 96-well plates in total
volumes of 150 ul and single colonies were selected by transferring
cells onto rectangular agar plates using the Rotor pinning robot
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(Singer Instruments) and a 7x7 pinning protocol to select clonal
populations from single colonies. Correct ploidy was confirmed using
MATa- and MATa-specific primers as described in ref. 86.

High-throughput microscopy

The transcription factor library consisting of 192 members was dis-
tributed along a 384 well plate pClear flat-bottom (Greiner) and
imaged in a Nikon Ti-2 Twin-Cam-TIRF. Two images were taken at two
different locations per library member using a bright field, blue, green
and red fluorescent filter. To obtain maximal resolution without oil
appliance, an x40 optic with an additional x1.5 lens was used. Looping
through each unique well, an nd2 file was generated with a dimension
of (fov(384) x channels (4) x Z stack (1) x X dimension x Y dimension)).

All data analysis was performed through a custom Python pipeline
available on GitHub (https://github.com/Benedict-Carling/YeaZ-
Output-Analysis). The generated nd2 file was used as an input for
segmentation using the segmentation tool Yeast-Analyzer (YeaZ)*.
The bright field segmentation parameters with a minimum seed dis-
tance of 1 and a threshold value of 0.5 were used. A scatter graph was
generated for each cell identified by YeaZ with the x axis representing
the cell size and the y-axis representing the mean Red fluorescence of
the cell. To mitigate the influence of outliers, such as mis-
segmentations in the scatter plot, we employed the KernelDensity
utility from the Scikit-learn Python package® with the following
arguments: algorithm was set to ball_tree, bandwidth set to 1, metric
set to Euclidean and kernel set to linear. Expectation Maximisation
(EM) was performed using the Gaussian Mixture utility from Scikit-
learn on the filtered cells to assign cells to each subpopulation cluster.
We performed EM with a confidence threshold of 0.85 to remove any
manual intervention in the identification of the subpopulations.

To generate nuclear segmentation, the bounding box of each cell
as identified by YeaZ was looped through using the blue channel
(nuclear localisation marker). The image was smoothed using a Gaus-
sian blur of sigma=1. A mask of the top 15% brightest pixels was
generated, and erosion and dilation were performed to remove iso-
lated islands, returning a mask representing the nucleus of each cell.
Single-cell transcription factors nuclear intensity were calculated by
averaging the GFP signal over the nuclear mask. Subpopulation-
specific scores were obtained by averaging the scores of each single-
cell for a given subpopulation. For condition-specific scores, localisa-
tion scores were then averaged across subpopulations. To obtain the
most consistent transcription factors over time, relative TF scores
were computed at each point. For the relative TF score calculation,
each TF score was normalised by the mean of all TF that were not part
of the top 5 or bottom 5 transcription factor at a given timepoint.

Targets identified in the previous step were validated using
inverted microscopy using a Nikon Ti (x60 magnification). Exposure
time was kept constant for each channel (200 ms for RFP, 500 ms for
BFP and 1s for GFP) with 11 slices per z stack to capture the nucleus.
Cells were exposed to a 30 min shift prior to imaging.

Statistical analysis and reproducibility

Heterogeneity in cell size and GFP measurements using flow cytometry
were performed in triplicates and on separate days. Chronological
lifespan measurements were performed at least on three biological
replicates. Paired statistical analysis was performed using the ¢ test
function (unpaired, two-sided) in R. Statistical analysis of bimodal
distributions was performed using Hartigan’s diptest. Significance
scores for genes differentially expressed during subpopulation RNA-
seq and single-cell RNAseq were adjusted using DESeq2 (multiple
hypothesis adjusted p value, Benjamini-Hochberg procedure). For
significance testing of discrete data obtained from manual budscar
quantification, we used Fisher’s exact testing, and error bars represent
95% confidence intervals.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

Data for Fig. 1c was from ref. 23 obtained from NCBI with accession
number GSEI125162. Raw sequencing data of subpopulation RNA
sequencing generated in this study was deposited in NCBI GO with
accession number GSE235239. All data generated or analysed during
this study are included in this article and in the Supplementary Infor-
mation. Source data are provided with this paper.

Code availability

All scripts used for data analysis and plotting are available on GitHub
(https://github.com/KiyanShabestary/2023-NLIM-heterogeneity  for
general analysis and plotting and https://github.com/Benedict-
Carling/YeaZ-Output-Analysis for high-throughput microscopy).
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