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Proteomic landscape of epithelial
ovarian cancer

Liujia Qian1,2,3,4,9, Jianqing Zhu 5,6,9, Zhangzhi Xue1,2,3,4,9, Yan Zhou1,2,3,4,9,
Nan Xiang1,2,3,4,9, Hong Xu7,9, Rui Sun1,2,3,4, Wangang Gong5,6, Xue Cai1,2,3,4,
Lu Sun5,6, Weigang Ge8, Yufeng Liu7, Ying Su5,6, Wangmin Lin8, Yuecheng Zhan8,
Junjian Wang5,6, Shuang Song 7, Xiao Yi1,2,3,4, Maowei Ni5,6, Yi Zhu 1,2,3,4,10 ,
Yuejin Hua 7,10 , Zhiguo Zheng 5,6,10 & Tiannan Guo 1,2,3,4,10

Epithelial ovarian cancer (EOC) is a deadly disease with limited diagnostic
biomarkers and therapeutic targets. Here we conduct a comprehensive pro-
teomic profiling of ovarian tissue and plasma samples from 813 patients with
different histotypes and therapeutic regimens, covering the expression of
10,715 proteins. We identify eight proteins associated with tumor malignancy
in the tissue specimens, which are further validated as potential circulating
biomarkers in plasma. Targeted proteomics assays are developed for 12 tissue
proteins and 7 blood proteins, and machine learning models are constructed
to predict one-year recurrence, which are validated in an independent cohort.
These findings contribute to the understanding of EOC pathogenesis and
provide potential biomarkers for early detection and monitoring of the dis-
ease. Additionally, by integrating mutation analysis with proteomic data, we
identify multiple proteins related to DNA damage in recurrent resistant
tumors, shedding light on the molecular mechanisms underlying treatment
resistance. This study provides amulti-histotype proteomic landscape of EOC,
advancing our knowledge for improved diagnosis and treatment strategies.

Ovarian carcinoma (OC) is among the deadliest cancers affecting the
female reproductive system worldwide1. Its high mortality is primarily
due to difficulties in detecting it at an early stage, both inter- and intra-
histological heterogeneity, and a high recurrence rate with limited
effective treatment options2. Epithelial ovarian carcinoma (EOC) is the
most common histological type and is generally diagnosed at an
advanced stage due to the intra-abdominal localization of the tumor and
the absence of specific early stage symptoms. This late-stage diagnosis
contributes to lower five-year relative survival rates compared to early

stage patients3. Recent findings from the UK Collaborative Trial of
Ovarian Cancer Screening (UKCTOCS) underscore the value of early
stage diagnosis for ovarian cancer. Longitudinal screening utilizing
CA125 and ultrasound has exhibited promise in the early detection of
ovarian cancer, leading to improved short-term treatment outcomes
but limited benefit in mortality reduction. These results emphasize the
pressing need for additional diagnostic biomarkers4,5.

EOC can be subdivided into five histological subtypes,
namelyhigh-grade serousOC (HGSOC), low-grade serousOC (LGSOC),
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clear-cell OC (CCOC), endometrioid OC (EMOC), and mucinous OC
(MCOC). Each subtype exhibits distinct clinical features, histotype-
specific progenitor, and molecular alterations6. Notably, even within
the same histotype, such as HGSOC, patients at different stages
demonstrated critical variations in copy number signature exposures7.
Furthermore, these tumorsmay exhibit diversemolecular subtypes, as
indicated by transcriptomic data, which are associated with varying
prognostic outcomes8–10. These findings highlight the complex land-
scape of EOC, underscoring the importanceof considering histological
subtypes, disease stage, andmolecular heterogeneity in the diagnosis,
treatment, and prognosis of patients with OC.

For operable candidates, primary debulking surgery (PDS) and
platinum-based chemotherapy have been the standard treatment
regimen for primary EOC patients for over 20 years11. For poor surgical
candidates with advanced EOC, neoadjuvant chemotherapy followed
by interval debulking surgery has proven to be beneficial in reducing
residual disease12. Unfortunately, nearly 75% of advanced-stage
patients develop incurable recurrence13, and there are only a few
effective treatment options available for such relapsed and chemore-
sistant cases14. As a result, there is an urgent need to understand the
molecular underpinnings of EOC to facilitate the development of
valuable diagnosis biomarkers and treatment strategies.

Genomic and transcriptomic technologies have been extensively
utilized in studying EOCs, revealing genomic features among
histotypes15, prognosis-related molecular subtypes within
HGSOC8,10,15–17 and chemoresistance-associated molecular events18–20.
The advent of single-cell transcriptomics has further refined our grasp
of HGSOC, elucidating both cell-intrinsic and microenvironmental
phenotypes that contribute to its heterogeneity and therapy
response21,22. Despite these advancements, the clinical application of
these genomic insights remains limited; the only current stratification
of EOC patients for treatment, specifically with poly(ADP-ribose)
polymerase inhibitors (PARPi), is based on the BRCA status23,24.

As direct executors of biological processes, proteins play a pivotal
role in comprehensive representations of molecular mechanisms
underlying pathological changes. Recent proteome-based studies of
EOCs have identified potential biomarkers for malignancy risk25–31, the
differential diagnosis between two or among three histotypes32–34,
patient stratification35–40, prognosis prediction39,41,42, and potential
therapeutical targets34,43–45. However, no systematic study has yet
characterized protein alterations in EOC across all five histopatholo-
gical features or after varied therapeutic regimens to provide addi-
tional clues for differential diagnosis, prognosis prediction andprecise
treatment.

Tumor biomarkers for detecting early stage EOC, monitoring
treatment response, and predicting prognosis are crucial for reducing
mortality. Currently, available CA125 or HE4 alone is approved to
monitor disease progression and evaluate pelvic masses but not for
early diagnostic biomarkers for EOCdue to their limited specificity and
sensitivity46,47. Three multi-marker panels, namely ROMA, OVA1, and
OVA2, were approved to assess the malignancy likelihood of ovarian
adnexal masses47,48. Remarkably, some of the markers in OVA1 and
OVA2 were discovered by mass spectrometry (MS)-based
proteomics25. However, these protein panels are still not sensitive and
specific enough for independent diagnosis46.

Recent studies utilizing MS-based proteomics have discovered
multiple potential biomarkers for EOC diagnosis26–31, which require
further validation in larger and independent cohorts of early stage
EOCs. Various study designs have been employed to discover protein
biomarkers for EOC, including blood samples directly from EOC
patients versus control ones26,29, integration of varied liquid
specimens31, and discovery in plasma samples from PDX mouse
models to improve identification of low-abundance proteins by con-
centrating human-derived proteins in the mouse serum28,30. To
improve diagnostic specificity, we hypothesize that biomarkers

secreted directly from EOC tissue samples might be more effective.
Therefore, we adopted strategies to discover secreted proteins upre-
gulated along with the increased malignancy in ovarian tissues of EOC
cohorts and then validate them in plasma samples for potential
diagnosis.

In this study, we reported a comprehensive proteomic landscape of
802 EOC tissues, 113 non-carcinoma tissues for control, as well as 180
plasma samples from 813 patients. We characterized the expression of
10,527 tissue proteins using pressure cycling technology (PCT)-Pulse
data-independent acquisition (PulseDIA)49, as well as 1660 plasma pro-
teins using tandemmass tag (TMT)-based proteomics. We have verified
eight biomarker candidates of EOCs using plasma samples from 2551
ascending proteins of tissue samples along tumor progression. Our
findings provide insights into the molecular alterations underlying the
five distinct histological subtypes of EOCs. Moreover, we have devel-
oped protein-basedmachine learningmodels capable of predicting one-
year recurrence using pre-surgical plasma samples and surgically
resected tissue specimens. Lastly, we performed integrative analysis of
proteomic data and targeted region sequencing to further elucidate the
molecular landscape of both primary and relapsed EOCs. These results
provide valuable clues for the development of diagnostic and
prognostic tools.

Results
A proteomic landscape of Chinese EOCs
We collected 753 surgically resected EOC tissues from three Chinese
cohorts, namely a primary cohort with primary debulking surgery (PDS-
EOC,N= 555), a primary cohort with neoadjuvant chemotherapy (NACT-
EOC, N= 74), and a relapsed cohort (RLP-EOC, N= 124) (Fig. 1A, Table 1,
Supplementary Data 1). The PDS-EOC cohort comprised five histological
subtypes of EOC, namely high-grade serous (HGSOC, 80.2%), low-grade
serous (LGSOC, 3.4%), clear-cell (CCOC, 6.8%), endometrioid (EMOC,
7.0%) andmucinous (MCOC, 2.5%), while almost all samples in the other
two cohorts were HGSOC (Fig. S1A, Table 1, Supplementary Data 1). In
the PDS-EOC cohort, most cases (80.9%) were diagnosed as being in the
advanced stage, with 30.3% of them becoming increasingly che-
motherapy-resistant, resulting in recurrence within one year (Fig. S1A,
Table 1, Supplementary Data 1). In addition, we enrolled 108 cases of
patients with normal, benign and borderline ovarian tissues for com-
parison (Fig. 1A, Table 1, Supplementary Data 1).

Then, we performed proteomic profiling of 1114 ovarian tissue
samples from 861 patients using PulseDIA49, of which 1041 samples
passed quality control (details in Method). In total, we quantified
10,527proteins at high confidence (Fig. 1A, SupplementaryData 2)with
negligible batch effects (Fig. S1B–E) and high reproducibility between
replicates (Fig. S1F–G). A significantly greater number of proteins were
identified in the carcinoma tissues compared with non-carcinoma tis-
sues (Fig. 1B, Supplementary Data 3). Remarkably, unsupervised clus-
tering of global proteome well separated normal and carcinoma
tissues (Fig. 1C).

Malignancy-associated proteins in EOC tissue and plasma
samples
We hypothesize that a subset of proteins, whose expression levels
correlate with the tumor malignancy in tissue biopsies, can also be
detected in blood samples. These proteins may serve as viable bio-
markers for differentiating between benign and malignant states in a
non-invasive manner, thereby augmenting the diagnostic capabilities
for cancermanagement. First, we sought to identify proteins implicated
in increasing malignancy degrees in ovarian tissues by comparing the
proteome from normal, benign, borderline, early stage, to late-stage
primary carcinoma samples. We utilized the Mfuzz method for this
analysis (details in the Methods section)50. We identified eight clusters
of proteins that were consistently upregulated along with the increased
malignant degree (Figs. 1D, S2, Supplementary Data 3). Furthermore,
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2551 of these ascending proteins were significantly upregulated in the
primary carcinoma compared to normal tissues (Benjamini–Hochberg
[B–H] adjusted p-value <0.05 and |log2(fold change)| > 1) (Fig. 1E, Sup-
plementary Data 3). These malignancy-associated proteins were mostly
enriched in energy metabolism and tumor necrosis factor (TNF)
involved pathways (Supplementary Data 3). TNF is an important com-
ponent of the malignant cell-autonomous network of inflammatory
cytokines51 and has been reported to induce angiogenesis, infiltration of

myeloid cells, and extracellularmatrix remodeling in the ovarian cancer
microenvironment52,53. Our data indicate that inflammatory-associated
pathways, such as the neutrophil degranulation, tumoricidal function of
hepatic natural killer cells, Fcγ receptor-mediated phagocytosis, leu-
kocyte extravasation signaling, and metastasis-associated pathways,
such as RHO GTPase cycle, were all significantly activated along with
increasing degree of tumor malignancy by Ingenuine pathway analysis
(IPA) (Supplementary Data 3).

Fig. 1 | The proteomic landscape of Chinese EOCs. AWorkflow for the generation
of the proteomic landscape of Chinese EOCs. N represents patient number, n
represents sample number, DDA represents data-dependent acquisition, DIA
represents data-independent acquisition. Created with BioRender.com released
under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Interna-
tional license (https://creativecommons.org/licenses/by-nc-nd/4.0/deed.en).B The
quantified protein numbers of four groups, namely normal, benign, borderline and
carcinoma groups. The box in each group is constructed from the first to the third
quartile, with a horizontal line indicating the median value. The whiskers extend
from the box to represent the range of datawithin 1.5 times the interquartile range.
C The unsupervised clustering of tissue samples using global proteomic data and
t-distributed stochastic neighbor embedding (t-SNE). No represents normal group,
Be represents benign group, Bo represents borderline group, Pr represents PDS-
EOC cohort, Rl represents RLP-EOC cohort, Na represents NACT-EOCcohort.DThe

eight clusters selected by their ascending trend along with the increased malig-
nancy. Proteins were considered significantly dysregulated across five groups if
they presented a Benjamini–Hochberg (B–H) adjusted p-value of less than 0.05, as
determined by one-way ANOVA. Following this initial selection, mFuzz clustering
was employed to further categorize these proteins. The proteins with membership
values by mFuzz less than 0.4 were excluded. E The volcano plot represents dif-
ferentially expressed proteins (DEPs) between carcinoma samples from PDS-EOC
cohort and normal tissues using two-sided unpaired Welch’s t test. The colored
dots represent those with B–H adjusted p-value less than 0.05 and fold change
larger than 2. Those with B–H adjusted p-value greater than 0.05 among five
groups, namely normal, benign, borderline, early stage carcinoma, and late-stage
carcinoma groups, by One-Way ANOVA were labeled with orange and green. The
solid red dots were amplified to highlight the selected DEPs. P.adj represents B–H
adjusted p-value. Source data are provided as a Source Data file.
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Next, we focused on tissue-leakage proteins among these
malignancy-associated proteins. Among 2551 ascending proteins, we
identified 43 annotated as secreted proteins by Human Proteome
Atlas54. As predicted, we found that carbohydrate antigen 125 (CA125),
the well-established EOC biomarker for monitoring the response to
chemotherapy and detecting recurrence, was also singled out by this
strategy (Fig. 1E, Supplementary Data 3). Moreover, 28 out of these
were significantly upregulated between non-carcinoma groups
(including benign and borderline samples) and at least one histotypes
(B–H adjusted p-value < 0.05 and FC> 1.5) (Supplementary Data 3),
indicating their potential to distinguish benign or borderline from
carcinoma samples.

To further verify these 43 proteins in blood, we collected 168
plasma samples collected from the PDS-EOC cohort immediately
before PDS and conducted proteomic profiling on them (Fig. 2A,
Supplementary Data 1). We quantified 1660 proteins at 70% of the NA
threshold (Fig. 2A, Supplementary Data 2) with negligible batch effects
(Fig. S3A, S3B) and high reproducibility between technical replicates
(Fig. S3C). Similar to the results of tissue proteome, unsupervised
clustering of the global proteome showed that normal and benign

samples clustered tightly apart from carcinoma samples (Fig. S3D).We
confirmed eight of these secreted candidates to be upregulated in the
plasma of HGSOC patients compared to non-carcinoma individuals
(Fig. 2A–C). These candidates included CA125 (also known as MUC16),
mucin-1 (MUC1)55, kunitz-type protease inhibitor 1 (SPINT1)56, serum
amyloid A-2 protein (SAA2)57, chitinase-3-like protein 1 (CHI3L1)58,
matrix-remodeling-associated protein 5 (MXRA5)59, and heparanase
(HPSE)60. All these proteins have been previously reported as over-
expressed in clinical specimens (tissues, serum, uterine aspirates,
ascites, etc.) from ovarian cancer patients relative to non-carcinoma
controls. Notably, acid sphingomyelinase-like phosphodiesterase 3b
(SMPDL3B) was also significantly upregulated in HGSOC group
(Fig. 2B, C). SMPDL3B, an enzyme involved in lipid modulation of the
cell membrane and a negative regulator of Toll-like receptor signaling
on macrophages61, has been associated with impaired migration and a
favorable prognosis in localized prostate cancer due to its high
expression62. Our findings suggest that SMPDL3B may also serve as a
potential biomarker for EOC.

To differentiate ovarian carcinoma from non-carcinoma, we
constructed 15 machine-learning models. These models were

Table 1 | Patient information of EOC cohorts

Variables Non-carcinoma Carcinoma

Normal (N = 33) Benign (N = 44) Borderline (N = 31) PDS-EOC (N = 555) RLP-EOC (N = 124) NACT-EOC (N = 74)

Age—year

Mean ± SD. 52.0 ± 9.4 45.6 ± 16.4 45.4 ± 14.4 53.5 ± 9.3 53.6 ± 8.6 54.2 ± 9.0

Median (IQR) 52.0 (49.0–55.0) 45.0 (35.0–59.2) 43.0 (35.0–58.0) 53.0 (47.0–60.0) 53.0 (48.0–59.2) 56.5 (46.0–59.8)

Range 18–68 16–87 22–77 23–80 32–76 36–77

Histology—no. (%)

HGSOC 445 (80.2) 121 (97.6) 74 (100.0)

LGSOC 19 (3.4) 1 (0.8) 0 (0.0)

CCOC 38 (6.8) 0 (0.0) 0 (0.0)

EMOC 39 (7.0) 2 (1.6) 0 (0.0)

MCOC 14 (2.5) 0 (0.0) 0 (0.0)

FIGO stage—no. (%)

I 44 (7.9) 0 (0.0)

II 62 (11.2) 2 (2.7)

III 373 (67.2) 43 (58.1)

IV 76 (13.7) 29 (39.2)

Residual tumor—no. (%)

No residual 310 (55.8) 97 (78.2) 38 (51.4)

Less than 1 cm 182 (32.8) 19 (15.3) 29 (39.2)

Greater than 1 cm 62 (11.2) 5 (4.0) 7 (9.4)

NA 1 (0.2) 3 (2.4) 0 (0.0)

Lymphatic metastasis—no. (%)

Yes 297 (53.5) 67 (54.0) 42 (56.8)

No 209 (37.6) 21 (16.9) 23 (31.1)

NA 49 (8.8) 36 (29.0) 9 (12.2)

Frequency of chemotherapy—no. (%)

0–2 32 (5.8) 4 (3.2) 0 (0.0)

3–5 40 (7.2) 26 (21.0) 4 (5.4)

6–8 478 (86.1) 85 (68.5) 62 (83.8)

>8 5 (0.9) 3 (2.4) 8 (10.8)

NA 0 (0.0) 6 (4.8) 0 (0.0)

Relapse-free survival—month

Mean ± SD 25.1 ± 23.7 14.4 ± 12.2 12.8 ± 14.4

Median (IQR) 18.0 (9.0–34.0) 10.0 (6.0–19.0) 8.0 (5.0–13.0)

Range 1–154 1–80 1–89

no. (%) number, SD standard deviation, IQR interquartile range.
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developed using the eight validated proteins aforementioned and
their varying combinations, applying random forest algorithms. More
details are provided in the Methods. Our analysis prioritized an eight-
feature classifier (Fig. 2D–F, Supplementary Data 3). Remarkably, the
importance of MUC16/CA125 as detected in our experiment was
inferior to the other seven proteins (Fig. 2E).

Our data nominate the eight-feature classifier as a promising
approach for distinguishing ovarian carcinoma from non-carcinoma.

However, further validation in independent prospective cohorts is
necessary in the future.

Proteomic features among five histological subtypes of
Chinese EOC
The five histological subtypes of EOC present varying risk factors, cells
of origin, genetic characteristics, clinical features, and treatments6.
Our analysis of the PDS-EOC cohort revealed a significantly higher
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incidence of lymphatic metastasis, advanced stage, and chemoresis-
tance in HGSOC compared to other histological subtypes, as deter-
mined by the Fisher's exact test (Fig. 3A and S4A Supplementary
Data 1). Yet, the majority of molecular studies have predominantly
focused on HGSOC, leaving the systematic molecular characterization
of the five histotypes underexplored.

Given that the RLP and NACT cohorts predominantly comprised
HGSOC cases, the comparative molecular signatures among histo-
types have been constrained to the PDS cohort. Our initial objective
was to assess the reproducibility of potential biomarkers distinguished
between histological subtypes.We began by comparing the proteomic
data of HGSOC with each of the four other histotypes in the PDS-EOC
cohort (Supplementary Data 4), as existing published datasets typi-
cally only compare two of them. As anticipated, several reported
subtype-enriched proteins, such as MC-enriched PIGR, HGD, and
CAPN633, as well as CC-enriched NAPSA, CRYAB, and NID232,63, were
identified in our analysis (Fig. S4B). This underscores the high repro-
ducibility of these histotype biomarkers.

To systematically investigated the proteomic feature among five
histotypes from the PDS cohort, we identified a total of 4313 differen-
tially expressed proteins (DEPs) between each histological subtype and
normal ovarian tissue samples (Fig. S4C, Supplementary Data 4), with
2709 of them showing significant dysregulation among the five histo-
types (Supplementary Data 4). Among the 2709 DEPs, 727 were com-
monly dysregulated in all subtypes, while 606 were subtype-specific
dysregulated proteins (Fig. 3A, S4D, Supplementary Data 4). Through
unsupervised clustering, we found that CCOC-specific upregulated pro-
teins in cluster 4 were enriched in neutrophil degranulation, comple-
ment and coagulation cascades and multiple metabolic processes
(Fig. 3A and S4E, Supplementary Data 4), which aligns with the observed
higher incidence of thromboembolic complications64 as well as the
morphological enrichment of glycogen within the CCOC group. Due to
the genomic similarities between clear cell histological subtypes of
ovarian cancer (CCOC) and renal cancer (CCRC)65, anti-angiogenic drugs,
which are licensed treatments for CCRC, have been tested in multiple
clinical trials for CCOC but have shown limited benefit (NCT00979992,
NCT02315430 and NCT01914510)66–68. Intriguingly, our CCOC-specific
protein patterns revealed upregulated protease inhibitors, such as ITIH1,
ITIH3, and SERPINA1 in cluster 4 (Fig. 3A, B, Supplementary Data 4), as
well as downregulated VEGF-associated proangiogenic proteins, such as
SMAD169 andARHGEF4070 in cluster 2 (Fig. 3A, B, Supplementary Data 4).
These findings suggest that angiogenesis is downregulated in CCOC,
which may help explain the failure of VEGF inhibitors in clinical trials.

Our study reveals that a systematic analysis of five histotypes from
the PDS cohort offers a more comprehensive perspective of differential
biomarkers compared to previous studies that have only investigated
two histotypes. For instance, earlier research reported polymeric
immunoglobulin receptor (PIGR) as a diagnostic marker for EMOC, and
its inclusion in the standard clinical marker panel (WT1 and TP53)
improved diagnostic potential between HGSOC and EMOC33. However,
in our study, we observed that PIGR was significantly upregulated not
only in EMOC but also in HGSOC, CCOC and MCOC groups when
comparedwith normal groups. Although the fold change (FC) in HGSOC
(FC= 16.65) wasmuch smaller than that in EMOC (FC=60.91), the values
in CCOC (FC= 163.46) and MCOC (FC= 100.21) were larger than that in
EMOC (Fig. 3C). Consequently, PIGR was not included in our histotype-
specific DEP list due to its lack of specificity. Similar biases were also
found in annexin A4 (ANXA4)71 and cellular retinoic acid-binding protein
2 (CRABP2)32 (Fig. 3C), indicating that these biomarker candidates might
not be suitable for directly distinguishing the five histotypes of PDS-EOC.

Proteins potentially correlated with prognosis of
advanced HGSOC
Recurrence was observed in over 80% of women with advanced
ovarian cancer, unfortunately, the majority of recurrent cases are

incurable6. We identified 572, 346, and 486 potentially prognostic
proteins associated with RFS in advanced HGSOC tissues from PDS-,
RLP- and NACT-EOC cohorts, respectively (Univariable Cox regression
analysis, likelihood-ratio test, p-value < 0.05, Fig. 4A, Supplementary
Data 5). Notably, most of these potentially prognostic proteins were
cohort-specific (Fig. 4A, Supplementary Data 5), highlighting the
diverse host responses following resection of primary cancer, relapsed
cancer, and cancer with NACT. To further substantiate the prognostic
relevance of the identified proteins, we compared our data with the
proteomic findings of Zhang et al.39 and Chowdury et al.42. We found a
significant overlap of potential prognostic proteins between our PDS-
HGSOC cohort and those identified in these studies (linear regression
model, p-value < 0.05) (Supplementary Data 5). In the PDS-EOC cohort,
inhibitionof angiogenesis by thrombospondin-1 (TSP1)was specifically
activated in patients with favorable prognoses (Fig. 4B, Supplementary
Data 5). This finding is consistent with previous studies that have
shown that the antiangiogenetic domain of TSP1 could be utilized to
design peptide mimetics for advanced EOC treatment, resulting in
survival benefits in mouse models72. Although TSP1 expression in tis-
sues is not significantly associated with prognosis, our data showed
that its expression in plasma from patients in the PDS-HGSOC cohort
correlated with an unfavorable prognostic (Supplementary Data 5).

In the NACT-HS cohort, we observed that spliceosomal cycle was
specifically activated inpatientswith unfavorable prognosis (Fig. 4B, C,
Supplementary Data 5). The PD-1/PD-L1 cancer immunotherapy path-
way was inhibited in both primary and NACT cohorts with favorable
prognosis (Fig. 4B, C, Supplementary Data 5), indicating the survival
benefit of PD-L1/PD-1 blockade for these patients.

In the RLP-HGSOC cohort, we found that growth hormone sig-
naling, erythropoietin signaling pathway, ERBB4 signaling, and
autophagy were specifically inhibited in patients with unfavorable
prognosis (Fig. 4B, Supplementary Data 5). Furthermore, the super-
pathway of inositol phosphate compounds and D-myo-inositol-5-
phosphate metabolism were inhibited in patients with unfavorable
prognosis of RLP -HGSOC cohort but activated in those of PDS-HGSOC
cohort (Fig. 4B, D, Supplementary Data 5), indicating contrasting
anticancer activities of inositol compounds between primary and
relapsed cohorts. For instance, phosphoinositide phospholipase C
(PLC) is a family of metabolic enzymes in the Phosphoinositide (PI)
cycle, catalyzing the generation of two intracellular second messen-
gers, DAG and InsP3. These messengers have been reported to influ-
ence major oncogenic signaling pathways, including PI3K/Akt/mTOR
and protein kinase C signaling, which in turn regulate cancer cell
motility, division, and death73,74. In our data, elevated PIK3R3, PLCB1
and PLCB4were associatedwith unfavorable prognoses in the primary
HS, while upregulated PIK3R4 and PLCG2 in relapsed HGSOC were
associated with favorable prognoses (Fig. 4C, E, Supplementary
Data 5), highlighting the complex biology. In line with this, the ther-
apeutic efficacy ofmultiple PI3K/Akt/mTOR inhibitors in recent clinical
trials has demonstrated limited effectiveness in recurrent ovarian
cancer patients (NCT01031381, NCT01283035, NCT01833169)75–77,
emphasizing the need for more combination treatment strategies.

Characterizing prognostic plasma proteins of primary HGSOC
patients
To investigate the prognostic proteins in the plasma of the PDS-
HGSOC cohort, we performed a Univariable Cox regression analysis
for the plasma proteome and found 124 unfavorable prognostic pro-
teins and 73 favorable prognostic proteins (likelihood-ratio test, p-
value < 0.05, Supplementary Data 5). These unfavorable prognostic
proteins are mainly involved in inflammatory responses and extra-
cellular matrix organization, whereas the favorable prognostic pro-
teins are enriched in the adaptive immune system (Fig. 4F,
Supplementary Data 5). Alpha-1-antitrypsin (SERPINA1), platelet-
derived growth factor subunit A (PDGFA) and gelsolin (GSN) were
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identified as the most significant risk factors, independent of clinical
factors (Fig. 4G, SupplementaryData 5). SERPINA1, a protease inhibitor
with anti-inflammatory and tissue-protective properties78, has been
reported to be elevated in both relapsed and nonresponsive patients
with ovarian cancer79.

Additionally, we identified 17 proteins as potentially prognostic in
both tissue and plasma samples of the PDS-HGSOC cohort (likelihood-

ratio test, p-value < 0.05) (Fig. 4H, Supplementary Data 5). Among
them, 14 were independent prognostic proteins, predominantly
involved in immune responses and extracellular matrix organization
(Fig. 4H). Proteasome subunit beta type-9 (PSMB9), a catalytic subunit
of the immunoproteasome, outstood as an independent risk factor
with favorable prognosis in both plasma and tissue samples (Fig. 4H,
Supplementary Data 5). Its favorable prognosis at the mRNA level has
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been reported in multiple cancer types, including ovarian cancer80,
which might be associated with enhanced tumor-infiltrating
lymphocytes81. Leucine-rich alpha-2-glycoprotein (LRG1) was an inde-
pendent and unfavorable prognostic protein in both plasma and tissue
samples (Fig. 4H, Supplementary Data 5). LRG1, a regulator of patho-
genic angiogenesis82, has been reported to induce epithelial-
mesenchymal transition (EMT), leading to the migration of cancer
cells83. Therefore, the higher expression of LRG1 might promote
angiogenesis and EMT, resulting in enhanced metastasis and earlier
recurrence. The overlap between the prognostic proteins identified in
tissue andplasma samples suggests thatplasmaproteomicsmight be a
useful tool for non-invasive monitoring of ovarian cancer progression.
Nonetheless, further validation studies in larger cohorts are needed to
confirm the prognostic utility of these biomarkers.

Protein classifiers for prognosis prediction
To validate the prognostic proteins in tissue and plasma samples, we
employed targeted proteomic methods and confirmed that 38 tissue
proteins and 34 plasma proteins were associated with prognosis
(Fig. 5A and S5A, Supplementary Data 6). Using these verified protein
features and seven clinical factors, we developed three machine-
learningmodels to predict one-year recurrence following the last cycle
of chemotherapy (Fig. 5A and S5A). Model A, based on five clinical
factors, failed to distinguish between two groups with significant
prognostic differences (Fig. S5B–D). However, when tissue or plasma
protein features were incorporated, both tissue model B and plasma
model C effectively predict one-year recurrence in advanced primary
HGSOC patients from an external validation cohort which comprises
clinical samples collected at a different period from discovery and test
cohort (Log-rank test, p = 0.0094 and 0.012, respectively,
Figs. 5B–E and S5E–G). The CPTAC cohort also served as an external
validation set to verify the tissue model B’s applicability beyond the
Chinese patient cohort. Due to the unavailability of two clinical factors
and the AGRE5 protein expression data in the CPTAC cohort, we
adjusted our model by retaining the original parameters of the
remaining eleven protein features for predicting one-year recurrence.
The revised model demonstrated significant predictive power in the
CPTAC cohort (Log-rank test, p = 0.047, Fig. 5F).

In the tissue model B, multiple proteins have been identified as
diagnosis biomarkers for ovarian cancer, such as alpha-2-
macroglobulin (A2MG)84, serum amyloid A-1 protein (SAA1)57,85,86 and
transthyretin (TTHY)25,87. Other proteins have been reported to be
associatedwith chemoresistance andmetastasis, including adhesionG
protein-coupled receptor E5 (AGRE5)88,89, 14-3-3 protein sigma
(1433S)90, surfeit locus protein 4 (SURF4)91 and mitochondrial proton/
calcium exchanger protein (LETM1)92 (Fig. 5B). It is noteworthy that
proteasome subunit beta type-6 (PSMB6) in the tissue model B was
also included in the prognostic model using copy-number alteration
trans-affected proteins, and isochorismatase domain-containing pro-
tein 2 (ISOC2)was identified asprognostic proteins inCPTACdataset39.
PSMB6, exhibiting hydrolytic activity for the cleavage of peptide
bonds93, is a component of ubiquitin-proteasome system (UPS), which
has been demonstrated to be exploited by cancer cells to support their
aberrant proliferation94. Furthermore, multiple UPS inhibitors have

been approved for the treatment of patients with hematological
malignancies94,95, and some in vitro and in vivo studies have confirmed
their antitumor activity in cell line andmousemodels of EOCs96,97. Our
study has discovered and verified the prognostic significance of
PSMB6 in HGSOC patients, warranting evaluation in clinical trials. In
the plasma Model C, three proteins, namely properdin (PROP), C4b-
binding protein alpha chain (C4BPA) and complement component C8
(CO8G), belong to the complement system (Fig. 5D), which has been
implicated in proliferation and drug resistance in ovarian cancer cells,
as well as being associated with unfavorable prognosis in patients98.
Additionally, coagulation factor XIII A chain (F13A) and alpha-1-
antitrypsin (A1AT) are involved in coagulation process (Fig. 5D),
which has been reported to have diagnosis99 and prognosis100–102

potential.

Divergent DNA Damage Response in HGSOC: Primary vs.
Relapsed
To compare the potential drivers of chemoresistance between PDS
and RLPS HGSOC patients, we conducted targeted genomic sequen-
cing of a 295-gene panel for four groups of patients, namely primary
sensitive, primary resistant, relapsed sensitive and relapsed resistant
groups (Supplementary Data 7, Details in Methods). Consistent with
previous reports8,103, TP53 was the most common mutation, occurring
in approximately 85% of patients in both PDS and RLPS cohorts
(Fig. 6A, Supplementary Data 7). We observed a TP53 mutation pre-
valence comparable to that reported in Asian populations, approxi-
mately 80%104,105. We then focused on the homologous recombination
repair (HRR) pathway, as deficiency in HRR has been reported as a
target for PARP inhibitors in HGSOC106. We identified germline or
somatic mutations of 14 HRR genes107 in 56.20% of primary patients
and 53.39% of relapsed patients (Fig. 6A, Supplementary Data 7), which
mirrors the mutation prevalence reported in the TCGA project8.
Mutations in HRR genes were significantly more prevalent in the pri-
mary sensitive group than the primary resistance group by Fisher’s
exact test. However, no difference was observed in relapsed patients
(Fig. 6A, Supplementary Data 7).

To characterize the effect of HRR pathway mutations on chemo-
sensitivity in primary HGSOC patients, we compared the proteome
between chemosensitive HGSOC patients with HRR mutations and
chemoresistant ones without any HRR mutations. We identified 53
upregulated and 206 downregulated proteins in chemosensitive
HGSOC patients with HRR mutations (Fig. 6B, Supplementary Data 7).
Among them, 33 proteins have been annotated to have direct inter-
actions with 14 genes in the HRR pathway, and 32 out of these 33
proteins were downregulated in chemosensitive patients with HRR
mutations (Fig. S6A). These 33 proteins were mainly involved in cel-
lular response to DNA damage stimulus, mitotic cell cycle, chromo-
some organization and mismatch repair (Fig. S6B), suggesting that
these processes might drive the chemosensitivity mediated by HRR
mutations.

We also performed Fisher’s exact tests for all mutated genes
identified in our study between the sensitive and resistant groups of
relapsed cohorts and found that none of them showed a difference
between the twogroups (Fig. 6A, Supplementary Data 7). This led us to

Fig. 3 | Histotype-specific proteins and their functions in the PDS-EOC cohort.
A The heatmap visualizes the expression of 606 histotype-specific proteins among
normal and five histotypes of primary EOCs. Five clusters of histotype-specificDEPs
were highlighted in blue or red frame to label its dysregulation. Top two enriched
pathways by Metascape were labeled by connecting lines with corresponding
proteins. Outliers of z scores of protein expression were defined according to
Tukey’s fences where k equals 2. NA represents not available. B Differential
expression of proteins involved in angiogenesis between normal (n = 31) and CCOC
(n = 40) group by two-sided unpaired Welch’s t test. The box in each group is
constructed from the first to the third quartile, with a horizontal line indicating the

median value. The whiskers extend from the box to represent the range of data
within 1.5 times the interquartile range. C Protein expression among normal group
(n = 31) and five histotypes from PDS-EOC cohort (485 samples in HGSOC group,
18 samples in LGSOCgroup, 40 samples in CCOCgroup, 15 samples inMCOCgroup
and 43 samples in EMOC group) by two-sided unpaired Welch’s t test. The box in
each group is constructed from the first to the third quartile, with a horizontal line
indicating the median value. The whiskers extend from the box to represent the
range of data within 1.5 times the interquartile range. Source data are provided as a
Source Data file.
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hypothesize that proteomic profiling could provide additional insights
into the molecular mechanisms underlying chemoresistance in recur-
rent HGSOC patients, beyond gene mutations.

We then identified DEPs stratified by chemotherapy responses in
the relapsed cohort. Only 11 DEPs were found to overlap between the
primary and relapsed cohorts (Fig. 6C). Notably, we observed thatDNA
repair-involved proteins were upregulated in relapsed chemosensitive

patients (Fig. 6D, E). This is in contrast to primary chemosensitive
patients with HRR mutations, where these proteins were down-
regulated (Fig. 6E). Thesefindings suggest that the chemosensitivity of
the relapsed cohort may not be primarily driven by HRR-associated
processes. Besides, a total of 163 upregulated proteins in relapsed
chemosensitive patients were also enriched in histone modification
and adaptive immune, while 193 downregulated ones were involved in
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innate immune, wound healing and VEGF-associated signals
(Fig. S6C, S6D).

Discussion
In our study, we have successfully identified eight potential tumor-
leakage biomarkers in blood through an integrative proteomic analysis
of tissue and plasma samples. We also pinpointed 606 differentially
expressed proteins specific to histotypes, thus revealing pathological
alterations unique to five histotypes and the potential molecular
mechanisms influencing clinical outcomes. Notably, when prognostic
proteins were compared across three cohorts of HGSOCwith differing
therapeutic regimens, we observed a clear contrast in the impact of
inositol compound metabolism on recurrence between primary and
relapsing EOC patients. To predict one-year recurrence, we first vali-
dated prognostic proteins using multiple reaction monitoring assays
and then constructed two machine learning models, each based on
tissue and plasma proteomic data. Both models exhibited significant
differences in recurrence-free survival when applied to two groups in
the external validation cohort (Log-rank test, p-values = 0.0094 and
0.012, respectively), outshining the model based solely on five clinical
factors (p-value = 0.079). Our integrative analysis of sequencing data
from 295 genes and proteome data revealed that mutations in genes
associated with HRR and resultant proteomic alterations in cellular
responses to DNA damage stimuli could potentially drive chemore-
sistance in primary EOC patients. Interestingly, in relapsing patients,
mutations in the HRR pathway seemed to have limited associations
with chemoresistance. Simultaneously, proteomic regulation in DNA
damage and repair appeared to exert an inverse effect on chemore-
sistance compared to primary cases.

EOC is a highly fatal gynecologic cancer with stagnant mortality
rates, underscoring the need for effective biomarkers for early diag-
nosis, treatment monitoring, and prognosis prediction. Although
CA125 andHE4 are approved formonitoring disease progression, their
diagnostic specificity and sensitivity remain limited46,47. Recent trials
have shown some promise in early detection through longitudinal
screening, yet the impact on mortality reduction remains minimal,
highlighting the urgent need for additional diagnostic biomarkers4,5.
To enhance diagnostic specificity, we focused on secreted proteins
upregulated with increased malignancy in EOC tissues, validated in
plasma samples for potential diagnosis.

Previous research has underscored the utility of multiple bio-
markers in detecting ovarian cancer, with multi-marker panels like
ROMA, OVA1, and OVA2 being pivotal for assessing the malignancy of
ovarian adnexal masses25,47,48. In our study, we constructed machine
learning models based on individual proteins and a combination of
multiple proteins. The eight-protein model notably outperformed the
single protein model in AUC, emphasizing the advantages of multiple
biomarkers. Among these proteins, SPINT1, HPSE, and MXRA5 were
the top performers in terms of Mean Decrease Accuracy, reflecting
their crucial role in differentiating between carcinoma and non-
carcinoma conditions. Interestingly, the MXRA5-based model
demonstrated the highest AUC (0.82) in single protein modeling,
surpassing the AUC of the CA125-based model and indicating the

potential discriminatory power of MXRA5. Although MXRA5 is known
to be overexpressed in the ascites of ovarian cancer patients59, ascitic
fluid is not ideal for routine risk assessment due to its prevalence in
advanced-stage patients. The potential diagnostic significance of
plasma MXRA5 level has not been reported in the literature. However,
additional validation is needed in multicenter cohorts, including early
stage EOC patients and samples from other pelvic conditions.

HGSOC is the most prevalent and aggressive histological sub-
type of ovarian cancer, accounting for approximately 70% of all
ovarian cancer-related fatalities. While the initial response to che-
motherapy in most HGSOC patients is often positive, a significant
number of patients unfortunately experience a relapse within a short
time frame, with some even developing resistance to treatment14.
This has led us to focus the following analysis on HGSOC, aiming to
identify potential prognostic biomarkers and reveal the underlying
molecular mechanisms responsible for chemoresistance. The cap-
ability to foresee chemoresistance before commencing chemother-
apy could be crucial in tailoring treatment strategies, thereby
improving patient outcomes.

To address this challenge, we have developed two predictive
models based on the multi-protein expression of surgical tissue spe-
cimens and plasma samples collected before surgery. The models
imply that if a patient’s score exceeds 0.5, they may be more respon-
sive to chemotherapy. These biomarkers could potentially segregate
patients who are likely to be more sensitive to chemotherapy. The
success of these predictive models underscores the promising
potential of proteomicprofilingof peripheralblood in guidingpatients
towards specific therapies, including immunotherapies, thereby con-
tributing significantly to the advancement of precisionmedicine in the
context of heterogeneous EOC.

A recently published proteogenomic study aimed to distinguish
between refractory EOC cases (those with disease progression or sta-
bility during chemotherapy) and sensitive cases (thosewithout disease
progression within 2 years) in a dataset of 242 high-grade serous
ovarian cancer (HGSOC) tissue samples42. The study unveiled a 64-
protein model with potential predictive power for refractory diseases.
Our study, in contrast, aspired to construct chemoresistance pre-
dictive models with more substantial clinical translational potential
within a Chinese cohort. Firstly, we sought to predict one-year recur-
rence in an expanded cohort of 380 HGSOC patients without applying
any selection criteria based on clinical factors. Secondly, we examined
the feasibility of predicting chemoresistance using both surgical tissue
samples and blood samples collected immediately before surgery,
thereby exploring the potential of liquid biopsy-based predictions as a
less invasive and more accessible approach. Thirdly, to ensure the
practical applicability of our predictive models, we developed high-
throughput and clinical-grade assays for both tissue and plasma pro-
tein features. These assays employ a 15-minute gradient usingmultiple
reaction monitoring (MRM), implemented on a clinically approved
medical-device mass spectrometer, facilitating efficient and rapid
analysis of protein biomarkers. Furthermore, the MRM assays were
rigorously validated in independent cohorts, guaranteeing the relia-
bility and robustness of our predictive models.

Fig. 4 | Prognostic analysis of tissue and plasma samples from three HGSOC
cohorts. A UpSet plot shows the intersections of prognostic proteins of tissues
among advanced carcinoma samples from PDS-HGSOC, RLP- HGSOC and NACT-
HGSOC cohorts. n represents samples numbers. B Pathway enrichment for prog-
nostic proteins of tissues across three cohorts by IPA. P-values are derived from
one-sided Fisher’s Exact Test for pathway enrichment. Pathways with −lg (p-value)
larger than 4 in each cohort were selected and those without Z scores were
excluded. The radius of the circle represents −lg (p-value) for each pathway while
the color represents the Z score of each pathway. C Prognostic differences dis-
tinguished by the expression of prognostic proteins from the representative
pathway in each cohort. The optimal cutpoint for each protein was determined by

surv_cutpoint funtion in R package survminer. n represents samples numbers.
D The heatmap represents the pathways with opposing roles in prognosis among
different cohorts. E The hazard ratios of the key proteins in metabolism of inositol
compounds between PDS-HGSOC (n = 382) and RLP-HGSOC (n = 87) cohorts. Data
are presented as mean values accompanied by a 95% confidence interval. F The
enriched pathways for prognostic proteins of plasma usingMetascape. P-values are
derived from one-sided Fisher’s Exact Test for pathway enrichment. G The
Kaplan–Meier plots represent the prognostic significance of three clinical factor-
independent proteins from plasma samples. H Prognostic proteins in both tissue
and plasma samples. Source data are provided as a Source Data file.
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Fig. 5 | Prognostic models to predict one-year recurrence in primary HGSOC
patients. A The workflow of machine learning model based on tissue proteomic
data. n represents sample numbers. B The impact of 12 tissue proteins and two
clinical factors on tissueModel B output. C The Kaplan–Meier plot of the predicted
groups by the tissueModel B in the internal test and external validation sets.D The
impact of 7 plasma proteins and four clinical factors on plasma Model C output.

E The Kaplan–Meier plot of the predicted groups by the plasma Model C in the
internal test and external validation sets. F The Kaplan–Meier plot for groups
predicted by the classifier, which incorporates the remaining 11 features from tissue
Model B, as applied to the CPTAC dataset. Source data are provided as a Source
Data file.

Article https://doi.org/10.1038/s41467-024-50786-z

Nature Communications |         (2024) 15:6462 11



Our validation efforts extended to cohorts beyond China,
including the CPTAC39 and Chowdhury cohorts42. Despite only being
able to utilize 11 of the 14 features from our model, the CPTAC cohort
was still instrumental in stratifying patients into two groups with sig-
nificantly different Recurrence-Free Survival (RFS), albeit with a p-
value in close proximity to 0.0539. The two factors that were excluded
from the model were both clinical factors, namely CA125 and HE4
levels, both of which are routinely measured indicators in clinical

practice. Additionally, the absent protein, AGRE5, can be quantified
using MRM, underscoring its feasibility of detection in a clinical
environment. This reinforces the robustness and validity of ourmodel.
However, our model did not demonstrate the same efficacy in distin-
guishing between chemotherapeutic refractory and sensitive patients
within the Chowdhury cohort, even though there was some overlap in
prognostic proteins between the twocohorts42. This discrepancycould
be attributed to several factors: (1) variations in themethods employed
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for mass spectrometry quantification; (2) the inherent high hetero-
geneity observed in high-grade serous ovarian cancers; and (3) the
complex interplay of mechanisms that underpin responses to
platinum-based treatments. Despite these promising results, further
validation in prospective cohorts, as well as absolute quantification
employing stable isotope-labeled peptides, remains necessary before
these models can be integrated into clinical practice.

Our study, while offering insights, is not without its constraints,
which are necessary to acknowledge for a holistic understanding of
our findings. Firstly, ovarian carcinoma can originate either from the
Ovarian Surface Epithelium (OSE) or the Fallopian Tube Epithelial
(FTE)108. Given the inherent challenges in distinguishing the precise
origin of each carcinoma and obtaining FTE samples from the same
patients in a clinical setting, we have attempted to reduce potential
biases. Thiswas achievedby excludingDEPs that couldbe attributed to
differences in tissue type36 when comparing ovarian carcinoma and
normal ovarian tissue samples (details inMethod). Secondly, this study
provides a comprehensive collection of clinical specimens from EOC
samples. We have endeavored to interpret the biological significance
of differentially expressed proteins from each comparison as thor-
oughly as possible. However, due to the vast amount of data and the
exploratory nature of this study, we have not provided an exhaustive
analysis of the biological significance of all identified differentially
expressed proteins. Thirdly, while numerous histotype-specific bio-
markers have been identified in our cohort, the predominance of
HGSOC tumors over the four other less common histological subtypes
of EOCmay introducepotential biases in the analysis ofDEPs. Fourthly,
while our study reveals a higher frequency of chemoresistance in
HGSOC compared to other subtypes, we acknowledge the established
chemoresistant nature of most mucinous and LGSOC tumors as
reported by Lheureux et al.13. The lower frequency of chemoresistance
in these subtypes observed in our study may be attributed to their
relative rarity, resulting in a smaller sample size. Lastly, clinical speci-
mens for the NACT cohort were collected at the time of interval
debulking surgery. Consequently, neoadjuvant chemotherapies could
potentially influence the identification of prognostic proteins across
the three cohorts. To further elucidate these changes, the collection of
serial samples would be beneficial for future studies.

Methods
Ethics statement
This study was approved by theMedical Ethics Committee of Zhejiang
Cancer Hospital (IRB-2020-155) and Medical Ethical Committee of
Westlake University (20190401GTN0009). The methodologies
employed in this study adhered to the ethical standards outlined in the
Declaration of Helsinki. Informed consent was signed before sample
collection.

For the purposes of quality control within our mass spectrometry
analysis, liver samples were sourced from a single eight-week-oldmale
C57BL/6mouse. Upon collection, these samples were promptly stored
at −80 °C to ensure their preservation until required for protein

extraction. It is important to note that thesemouse liver peptides were
solely employed as a technical reference to validate the accuracy and
reproducibility of our mass spectrometry procedures and were not
utilized for any comparative proteomic analyses. As such, their use
does not bear on the scientific findings related to the human clinical
samples that are central to our study. The use of a single male mouse
wasdeemed sufficient for the technical purpose it served, which iswhy
additional consideration of sex in the study’s design and analysis was
not applicable.

All experimental procedures involving animals were conducted in
strict accordance with ethical standards and were approved by the
Laboratory Animal Resources Center ofWestlake University, under the
approval number 19-027-GTN.

Sample collection and histological analysis
In our study on ovarian cancer, we focused solely on female patients
because this type of cancer occurs only in women. Therefore, our
research did not include a comparison of sexes or genders.We did not
collect gender identity through self-report since our study was based
on the biological characteristics of the disease, which are specific to
female reproductive organs.

Surgically resected EOC tissue samples were collected from 753
patients, comprising 555 primary EOC patients who underwent pri-
mary debulking surgery (PDS cohort), 74 primary EOC treated with
neoadjuvant chemotherapy (NACT cohort), and 124 relapsed EOC
patients (RLP cohort; Supplementary Data 1). Additionally, 108 non-
carcinoma patients were included for comparison, consisting of 33
normal cases with uterine myoma or cervical cancer but without his-
tologically documented ovarian involvement, 48 benign cases and 31
borderline cases. All patients were diagnosed between 2006 and 2018
following the WHO classification of Tumors: Female genital Tumors
(fifth edition). Tissue specimens were collected without any clinical
factor-based selection criteria other than availability and were stored
at −80 °C. Samples of NACT cohort were collected at the interval
debulking surgery. Prior to pathological examination, the tissue spe-
cimens were embedded in optimal cutting temperature (OCT) com-
pound, and subsequently subjected to freezingmicrotome sectioning.
Two senior pathologists independently confirmed the histologic sub-
types and proportions of tumor nuclei (>60%) using the hematoxylin
and eosin-stained histological slices. Surgical staging was determined
according to the 1988 International Federation of Gynecology and
Obstetrics (FIGO) staging system. A total of 180 plasma samples were
collected immediately prior to surgery from 34 cases of patients with
normal or benign ovarian tissues and 134 cases of primary patients
with high-grade serous carcinoma of PDS-EOC cohort.

Supplementary Data 1 contains comprehensive patient data,
including age atdiagnosis, residual tumor size, histotype, tumorgrade,
International Federation of Gynecology and Obstetrics (FIGO) stage,
lymph metastasis status, chemotherapy frequency, recurrence status,
recurrence-free survival time, pre-treatment levels of CA125 and HE4,
CA125 levels after the last chemotherapy cycle, and the administration

Fig. 6 | Integrative analysis of target sequencing and proteome. A Genetic
variants of 295-gene panel in 53 primary HGSOC (PDS-HGSOC) patients and 43
relapsed HGSOC (RLP-HGSOC) patients. The associations between genemutations
and chemoresistance were performed by Fisher’s exact test: **, 0.001 ≤ p-value <
0.01. B The volcano plot showed comparison of proteome between chemosensi-
tive HGSOC patients with HRR mutations and chemoresistant ones without any
HRR mutations by two-sided unpaired Welch’s t test. The colored dots represent
DEPs. The orange dots represent 33 DEPs which were annotated to have direct
interactionswith 14 genes in theHRRpathway, and thosewith significant p-value or
fold change were labeled with gene names. HRR, homologous recombination
repair; WT, patients without gene mutations in HRR pathway. C The overlapping
relationship of chemoresistance associated DEPs between primary and relapsed

HGSOC cohorts. PDS-HGSOC, primary HGSOC patients; RLP-HGSOC, relapsed
HGSOC patients. D The most enriched network using DEPs between chemoresis-
tant and chemosensitive groups of relapsed HGSOC cohort. P-values are derived
from one-sided Fisher’s Exact Test for pathway enrichment. The green and red
patterns represent downregulated and upregulated proteins in chemosensitive
groups, while the blue ones were predicted to be inhibited by IPA. The shape of
each molecule is according to legends of IPA. E The heatmap showed the expres-
sion of DNA damage repair associated DEPs between chemosensitive and che-
moresistant groups of primary and relapsed patients by two-sided unpaired
Welch’s t test. The outliers of protein expression were defined as those with
absolute values of Z-score larger than 2.5, and these outliers were imputed as 2.5 in
the heatmap. Source data are provided as a Source Data file.
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of Bevacizumab or PARP inhibitor therapy. All patients included in this
study received platinum and taxane therapy. Any additional treat-
ments with Bevacizumab or PARP inhibitors are indicated in Supple-
mentary Data 1. Patients were divided into two groups based on their
response to adjuvant therapy. Those who relapsed within 6 months
following the last cycle were classified as the resistant group, while
those who relapsed more than 6 months after the last cycle were
identified as the sensitive group.

For external validation, 57 tissue samples from49primaryHGSOC
patients with PDS and 30 paired plasma samples were collected
between 2018 and 2019. All patients were diagnosed as FIGO stage III
and IV. These patients received a minimum of six cycles of platinum-
based chemotherapy following PDS. Detailed clinical information is
listed in Supplementary Data 1.

Batch design
In the discovery cohort, tissue samples were randomly distributed to
68 batches to minimize the batch effect. Multiple replicate samples
were designed to monitor the quality during Pressure Cycling Tech-
nology (PCT)-assisted sample preparation and PulseDIA on the sameQ
Exactive HF hybrid Quadrupole-Orbitrap (QE-HF) (Thermo Fisher Sci-
entific). During sample preparation, each batch contained one mouse
liver sample and 121 cases of biological replicates, which represent
different ovarian tissue samples dissected from the same patient.
During MS acquisition, each batch included one pooled peptide sam-
ple combined from all samples and 132 cases of technical replicates,
which represent the same peptide sample were run twice (Supple-
mentary Data 1). Plasma samples were randomly distributed into 12
batches. Twelve biological replicates were designed during sample
preparation, while during MS acquisition, each batch contained one
pooled peptide sample labeled with the TMT126 channel.

Proteomics data acquisition
Approximately 1mg of fresh frozen specimens was weighed and
washed sequentially with ethanol solutions to remove OCT
compound109. The process included an initial wash with 70% ethanol,
followed by a rinse with water, and subsequent washes with increasing
ethanol concentrations (70%, 85%, and 100%) for efficient OCT
removal, each involving vortexing and supernatant discarding steps. A
four-step PCT-assisted lysis and digestion were then performed, gen-
erating peptide samples for each tissue specimen49,109,110. The proce-
dure involved lysing tissues in urea-thiourea buffer within PCT-
MicroTubes under pressure cycling, followed by reduction and alky-
lation with TCEP and IAA. Lys-C (enzyme-to-substrate ratio = 1:40) and
trypsin (enzyme-to-substrate ratio = 1:50) were then sequentially
added for proteolytic digestion under pressure cycling. The reaction
was quenched with TFA, and peptides were obtained by centrifuga-
tion, yielding the peptide samples for analysis. The peptide samples
were desalted, dried, redissolved in buffer A (2% ACN, 0.1% formic
acid), and their concentrations were measured prior to MS analysis109.
Generated peptides were injected and separated over a 30-minute LC
gradient on a nanoflow DIONEX UltiMate 3000 RSLC nano System
connected to a Q Exactive HF-X hybrid Quadrupole-Orbitrap (Thermo
Fisher ScientificTM, San Jose, USA). PulseDIA parameters were set with
two schemes of complementary and discontinuous isolation windows
across two injections, each with 1m/z overlap between adjacent
windows49. MS1 scans covered a range of 390–1210m/z at 60,000
resolution, with an AGC target of 3e6 and a maximum ion injection
timeof 80ms.MS2 scanswereperformed at 30,000 resolutionwith an
AGC target of 1e6 and amaximum ion injection time of 50ms. The two
parts of PulseDIA raw files were analyzed using DIA-NN (1.7.12) against
the spectral library, respectively. The spectral library for ovarian tissue
specimens contains 130,735 proteotypic peptides and 10,780 protein
groups as previously released110, while spectral library for mouse liver
samples for quality control contains 134,856 proteotypic peptides and

8764 protein groups. In the DIA-NN setting, RT profiling was per-
formed, and other parameters were set to default. Quantitative data
for precursor and proteins were both controlled below 1%, and those
for precursors in two injections were merged by their average values
using the R program named Pulsedia_DIANN_OpenSWATH_Spec-
tronautResult_combine (https://github.com/guomics-lab/PulseDIA).
The combined peptide matrix was converted into a protein matrix
using themean of the top 3 precursor intensities in ProteomeExpert111.

Peptides were generated from plasma samples after depleting 14
high-abundance plasma proteins.. Plasma was mixed with the High
Select™ Top14 Abundant Protein Depletion Resin (Thermo Fisher
Scientific, San Jose, USA) and incubated to deplete high-abundance
proteins112 Post-incubation, the proteins were digested using TCEP and
IAA for reduction and alkylation, followed by a two-step trypsin
digestion at a 1:100 enzyme-to substrate ratio, and the reaction was
halted by adding TFA. The peptides were then desalted using SOLAμ™
HRP columns (Thermo Fisher Scientific, San Jose, USA), dried in a
vacuum concentrator, and resuspended in MS buffer A for con-
centration measurement. A 16-plex labeling using TMTpro reagents
(Thermo Fisher Scientific, San Jose, USA) was performed for 5μg of
peptides112, and 16 samples from each batch were pooled together for
high-pH fractionation using basic pH reversed-phase liquid
chromatography112. The 30 concatenated fractions per batch were
initially separated over a 60-min gradient from 7% to 30% buffer B
(buffer A: 2% ACN, 0.1% formic acid; buffer B: 98% ACN, 0.1% formic
acid) and then analyzedusing data-dependent acquisition (DDA)mode
on a nanoflow DIONEX UltiMate 3000 RSLC nano System (Thermo
Fisher ScientificTM, San Jose, USA) connected to an Orbitrap Exploris
480 mass spectrometer (Thermo Fisher ScientificTM, San Jose, USA).
Themass spectrometer was operated in positivemode, equipped with
a FAIMS Pro interface. Optimal compensation voltages were set at
−48V and −68V with a cycle time of 1 s per FAIMS experiment.
MS1 scanswere performed at a resolution of 60,000with a normalized
AGC target of 300% over a mass range of 375-1800m/z. Dynamic
exclusion was customized with an exclusion duration of 40 s.
MS2 scanswerecarriedout at a resolutionof 30,000with a normalized
AGC target of 200%, using an isolation window of 0.7m/z and setting
the first mass at 100m/z. Normalized HCD collision energy was set to
36%, Turbo-TMT was enabled, and MS/MS data were recorded in
centroid mode. The mass raw data were analyzed by Proteome Dis-
coverer (Version 2.5.0.400, Thermo Fisher Scientific) using a FASTA
file (downloaded on 2018-02-09) containing 20,259 reviewed Homo
sapiens protein sequences. The Proteome Discoverer settings were
configured with trypsin as the protease, allowing up to two missed
cleavages. Static modifications included carbamidomethylation
(+57.021464) on cysteine, TMTpro (+304.207145) on lysine residues,
and acetylation (+42.010565) on peptides’ N-termini. Variable mod-
ifications were oxidation (+15.994915) on methionine and acetylation
(+42.010565) on peptides’ N-termini. Precursor and product ion mass
tolerances were set to 10 ppm and 0.02Da, respectively, with peptide-
spectrummatch validation at 1% target FDR (strict) and 5% target FDR
(relaxed). Normalization was conducted against the total peptide
amount, and all other parameters were maintained at default settings.
Protein expression levels were calculated as grouped abundance ratios
using the pooled sample labeled by the TMT126 channel for batch
alignment.

Preprocessing of the protein matrix and quality control
Protein counts for each sample were summarized into four groups,
namely normal, benign, borderline, and carcinoma groups. Outliers
with fewer proteins in eachgroupwere identified using Tukey’s fences,
where k equals 1.5, resulting in the exclusion of 50 samples from 34
patients. Then, the protein matrix of solid specimens was then stan-
dardized by quantile normalization, and the missing values were
imputed as 0.8 times the minimum value. Unsupervised clustering of
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six groups, namely normal, benign, borderline, PDS-EOC, RLP-EOC,
and NACT-EOC groups, was performed using global proteome, and
23 samples with incorrect grouping were excluded.

Toevaluate the reproducibility during samplepreparation andMS
acquisition, Pearson correlation coefficientswere calculated (a) among
mouse liver samples, (b) among pooled samples, (c) between technical
replicates, and (d) between biological replicates using log2(intensity).
Potential batch effects derived from designed batches, different col-
umns, and injected peptide amounts were assessed through unsu-
pervised clustering of pooled samples and ovarian tissue specimens.

In the protein matrix of plasma samples, proteins with a missing
value rate higher than 70% were excluded. Batch correction based on
the designed batch was then performed using Combat in BatchServer
for the remaining protein matrix of 1660 proteins113. After batch cor-
rection, reproducibility during sample preparation andMS acquisition
was evaluated by calculating the median coefficient of variation (CV)
between biological replicates (using the ratio) and among pooled
samples (using log2(abundance)), respectively. The batch effect of the
designed batch and MS machines was assessed through unsupervised
clustering of Principal component analysis (PCA) for the
proteomics data.

The selection of upregulated proteins along with the increased
malignancy and their validation in plasma
One-Way Analysis of variance (ANOVA) was performed among five
ovarian tissue groups: normal, benign, borderline, early stage carci-
noma (FIGO stage I and II) of the PDS cohort and late-stage carcinoma
(FIGO stage III and IV) of the PDS cohort. Proteins with
Benjamini–Hochberg [B–H] adjusted p-value < 0.05 were selected for
Mfuzz clustering (Supplementary Data 3). As a result, 8741 proteins
were classified into 20 clusters amongfive groups. Two-sidedunpaired
Welch’s t test was also performed to identify dysregulated proteins (a)
between normal and carcinoma groups of PDS cohort using log2(a-
bundance); (b) between non-carcinoma and carcinoma groups of pri-
mary HGSOC plasma samples using the ratio. Considering that ovarian
carcinoma can originate not only from ovarian cells but also from FTE
cells, we implemented a control measure to reduce potential biases.
Five proteins (LYPLA2, MED17, RAB27B, and VMP1), which have been
previously reported to exhibit significant upregulation in FTE com-
pared to OSE (with a p-value < 0.05)36, were excluded from our list of
identified dysregulated proteins.

The criteria for the potential biomarkers of ovarian cancerwere as
follows: (a) Seven clusters exhibited upregulation alongwith increased
malignancy with membership values > 0.4; (b) B–H adjusted p-
value < 0.05 by two-sided unpaired Welch’s t test and fold change > 2
between normal and carcinoma groups of ovarian tissue samples
(Supplementary Data 3); (c) The human secretome and membrane
proteome annotated by The Human Protein Atlas (Supplementary
Data 3); (d) B–Hadjusted p-value < 0.05 by two-sided unpairedWelch’s
t test and fold change > 1.2 between non-carcinoma and carcinoma
groups of ovarian plasma samples (Supplementary Data 3).

Plasma protein classifiers to distinguish ovarian carcinoma and
non-carcinoma patients
Firstly, we identified secreting proteins associated with malignancy
and validated these proteins in plasma samples. Subsequently, utiliz-
ing the Random Forest package, models were built using either single
or combinations of two to eight proteins to distinguish carcinoma
patients from non-carcinoma patients.

For the protein matrix of the eight selected potential biomarkers,
missing values were imputed as 0. We employed the R package ran-
domForest (version 4.6.14) to build a thousand trees with five-fold
cross-validation. Initially, we constructed nine models: one using all
eight features and eight additional models, each employing one of
these features individually. For the model encompassing all eight

features, we calculated the average value of the mean decrease accu-
racy for each feature across the five-fold cross-validation as an
importance value. Subsequently, we excluded the least important
protein in sequence to construct models using seven to two features.
The total area under the curve (AUC) was calculated for 168 plasma
samples when each was grouped into test set. Statistical differences
between receiver operating characteristic (ROC) curves of different
models were evaluated using bootstrap test with the pROC package114.

Histotype-specific differentially expressed proteins (DEPs) and
pathways
First, two-sided unpaired Welch’s t test was performed to identify
dysregulated proteins (B–H adjusted p-value < 0.05 and fold change >
2) between eachhistological subtype of primary carcinomabyPDS and
normal ovarian tissues. Considering that ovarian carcinoma can ori-
ginate not only from ovarian cells but also from FTE cells, we imple-
mented a control measure to reduce potential biases. Fourteen
proteins (CDKN2AIPNL, DDB2, H1-0, H1-10, H1-1, HMGB2, LYPLA2,
MED17, PHGDH, PRKAG1, PTMS, RAB27B, TNRC6B, and VMP1), which
have been previously reported to exhibit significant dysregulation
between FTEandOSE (with ap-value < 0.05)36, were excluded fromour
list of identified dysregulated proteins. Second, One-Way ANOVA was
carried out among the five histological subtypes of the PDS cohort and
found that 4534 proteins were differentially expressed among five
group (B–H adjusted p-value < 0.05). Additionally, 2709 proteins were
identified as dysregulated both by two-sided unpaired Welch’s t test
and One-Way ANOVA.

The criteria for the histotype-specific DEPs were as follows: (a)
DEPs were defined as those with a B–H adjusted p-value < 0.05 by two-
sided unpaired Welch’s t test and fold change > 2 between normal and
each histotype group; (b) B–H adjusted p-value < 0.05 by One-Way
ANOVA; (c) DEPs present in only one histotype.

Unsupervised clustering was then performed for these histotype-
specific DEPs usingWard’s minimum variancemethod. In each cluster,
the major histotype to which the DEPs belong was chosen, and path-
way enrichment was performed for DEPs of these major histotype
using Metascape.

Univariable and Multivariable Cox regression analysis
Proteins with a missing value ratio of less than 70% were included for
univariable Cox regression analysis. Residuals of the linear regression
models were calculated to remove the potential effect of age at diag-
nosis on protein expressions. These residuals were then standardized
using rank-based inverse normal transformation. After standardiza-
tion, univariable Cox regression analysis was performed to identify
prognostic proteins with a p-value < 0.05 based on the likelihood p-
value. Kaplan–Meier plots were drawn for representative proteins to
show their significant relationship between protein expression and the
optimal cut point for each protein, determined by surv_cutpoint.

Univariate Cox regression analysis was also performed for clinical
factors, and missing values in CA125 and HE4 levels were imputed as
median values. To determine the prognostic proteins’ independence
of clinical factors, multivariable Cox regression analysis was per-
formed for each protein to adjust the effects of four prognostic clinical
factors.

To validate the prognostic proteins identified in our study, we
performed a comparative analysis with the potential prognostic pro-
teins pinpointed in Chowdury et al.‘s paper (linear regression model,
p-value < 0.05)42.

Targeted genomic sequencing
For the targeted genomic sequencing, a 295-gene panel was employed
for four balanced patient groups: primary sensitive (N = 27), primary
resistant (N = 26), relapsed sensitive (N = 26), and relapsed resistant
(N = 17). No other specific inclusion criteria were applied for these
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samples, and we did not include patients who underwent NACT.
Somatic DNA was extracted from fresh frozen tumor tissues using the
NucleoSpin TriPrep Kit (Macherey-Nagel, Germany), and patient-
matched genomic DNA was extracted from peripheral blood lym-
phocytes using NucleoSpin Blood Kit (Macherey-Nagel, Germany)
according to manufacturer’s instructions. The quality of isolated
genomic DNA was verified through agarose gel electrophoresis and
concentration measurement using Qubit® DNA Assay Kit in Qubit® 3.0
Flurometer (Invitrogen, USA).

Extracted DNA was fragmented into 180–280bp by hydro-
dynamic shearing system (Covaris, Massachusetts, USA). DNA frag-
ments underwent end repair, 3’ ends adenylation and ligation-
mediated PCR (LM-PCR). The fragments were then hybridized to
probes designed for each targeted gene, and non-hybridized ones
were washed out. Real-time PCR was performed to estimate the pro-
duct magnitude from LM-PCR. After library quality assessment, the
clustering of the index-coded sampleswas generated using Illumina PE
Cluster Kit (Illumina, USA) on a cBot Cluster Generation System, and
then high-throughput sequencing was conducted on an Illumina
platform to generate 150bp paired-end reads.

Sequence artifacts, including those paired reads in either read
containing adapter contamination (>10 nucleotides aligned to the
adapter, allowing ≤ 10%mismatches), uncertain bases (more than 10%)
or low-quality bases (Phred quality <5, proportion > 50%), were dis-
carded. More detailed quality control statistics are summarized in
Supplementary Data 7.

Valid sequencing data were mapped to the reference genome
(GRCh37/hg19) usingBurrows-Wheeler Aligner (BWA) software (http://
github.com/lh3/bwa)115. BAM files were sorted, and duplicate-marking
was done using SAMtools116 and Sambamba117. Somatic single-
nucleotide variants (SNVs) and insertions/deletions (indels) were
retrieved with MuTect (v 3.1-0-g72492bb) (http://github.com/
broadinstitute/mutect) and Strelka (v 1.0.14) (http://github.com/
Illumina/strelka), respectively. Germline SNVs and indels were called
using GenomeAnalysis Toolkit (GATK, v 3.1-0-g72492bb).Mutations in
coding regions were manually checked using Integrative Genomics
Viewer (IGV, version 2.3.34), and filtered variants were annotated using
Oncotator (version 1.5.1.0) (http://github.com/broadinstitute/
oncotator) and Variant Effect Predictor (VEP, v 83) (http://github.
com/Ensembl/ensembl-vep). Copy number variations were analyzed
using Cnvkit v0.9.9118.

Bioinformatic analysis for genomic and proteomic data
Firstly, Fisher’s exact test was performed to evaluate the associations
between each gene mutation (combining germline and somatic
mutations) and chemoresistance in the 295-gene panel. This panel
included 14 genes with a direct or indirect role in homologous
recombination repair (HRR)107. The associations between HRR muta-
tions and chemoresistance were also evaluated.

Next, two-sided unpairedWelch’s t test was performed to identify
dysregulated proteins between (i) chemosensitive HGSOC patients
with HRR mutations versus chemoresistant ones without any HRR
mutations; (ii) chemosensitive versus chemoresistant HGSOC patients
in the relapsed cohort. Dysregulated proteins were defined as those
with a p-value less than 0.05 and a fold change greater than 1.5. Lastly,
pathway enrichment for these dysregulated proteins was performed
using Metascape and String.

Targeted proteome by MRM
Quantification of prognostic proteins was performed using multiple
reaction monitoring (MRM) in tissue and plasma samples. For tissue
samples, 71 out of 281 prognostic proteins were quantified by MRM,
while for plasma samples, 51 out of 241 prognostic proteins were
quantified by MRM (Supplementary Data 6). Common internal reten-
tion time (CiRT) standard peptides were used for retention time

prediction, with 13 and 12 peptides selected from OVLib110 and a pub-
lished blood spectral library119, respectively (Supplementary Data 6).
Peptides were separated at a flow rate of 0.2mL/min over a 15-min LC
gradient from 10% to 40% buffer B (buffer A: 0.1% formic acid aqueous
solution; buffer B: 0.1% formic acid in acetonitrile solution) in JasperTM
HPLC system (SCIEX, CA, USA). The ionized peptides were transferred
into TRIPLE QUADTM 4500MD (SCIEX, CA, USA) for analysis.

A total of 388 transitions of 100 peptides from tissue samples and
389 transitions of 101 peptides fromplasma sampleswere selected and
analyzed within a ± 1min time window using time-scheduled acquisi-
tion. The target scan time per cycle was set as 2.5 s for tissue samples
and 1.7 s for plasma samples.

Machine learning
To predict one-year relapse after the last chemotherapy, we first
identified prognostic proteins in the global proteomic data of the
discovery cohort, and verified these prognostic proteins using tar-
geted proteomics and optimized models by machine learning. Finally,
we evaluated the predictive utility of the final model using an inde-
pendent validation cohort. The discovery cohort consisted of primary
HGSOC patients with at least six cycles of platinum-based che-
motherapy from PDS cohort. We excluded patients with an incon-
clusive outcome of recurrence within one year, resulting in 400 tissue
samples from 347 patients and 141 plasma samples from 131 patients
(Supplementary Data 1).

Prognostic proteinswere identified by univariate Cox analysis and
two-sided unpaired Welch’s t test. For ovarian tissues, 281 prognostic
proteins met both criteria (p-value < 0.05 by univariate Cox analysis
and p-value < 0.05 by two-sided unpaired Welch’s t test between
patients relapsing within one year and those after one year). For
plasma samples, 241 prognostic proteins met either of the two criteria
mentioned above. Then, 71 out of 281 prognostic proteins from ovar-
ian tissues and 51 out of 241 prognostic proteins from plasma were
quantified by MRM. Forty tissue proteins and 34 plasma proteins were
verified using MRM assay (Supplementary Data 6). Two immunoglo-
bins among verified tissue proteins were excluded. Thus, 38 tissue
proteins and34plasmaproteinswere left tobuild thepredictivemodel
by eXtreme Gradient Boosting (XGBoost) algorithm.

Seven clinical factors, including age at diagnosis, residual tumor
size, FIGO stage, metastasis of lymph, CA125 and HE4 levels before the
treatment, and CA125 at the last cycle of chemotherapy, and verified
prognostic proteins quantified byMRMwere used to select features to
optimize three predictive models (A, B, and C). Model A was based on
clinical factors only, while Model B and C were based on clinical and
protein features from tissue and plasma samples, respectively.

We randomly split the discovery cohort into a training set and an
internal test set at a ratio of 3:1. Then, one hundred iterations of 60%
under-sampling of the training set were performed to build models
using XGBoost. Two parameters, namely subsample (from 0.5 to 1 at a
step of 0.05) and leaning rate (from 0.1 to 0.3 at a step of 0.04), were
optimized. The features were ranked by frequency in each model and
top 5 to 15 features were selected to build models for the entire
training set using XGBoost. The other four parameters, namely gamma
(from0 to 0.2with a step at 0.05), max_depth (from3 to 10 with a step
at 1), colsamp_bytree (from0.1 to 1 with a step at 0.1), min_child_weight
(from 1 to 5 with a step at 1), were optimized. Themodel with maximal
accuracy of discovery cohort was selected finally. The independent
validation set was used to evaluate the predictive utility of the
final model.

We utilized the CPTAC cohort as an external validation set to
verify the generalizability of our model beyond the Chinese popula-
tion. This cohort had 32 samples withmeasurements obtained by both
Johns Hopkins University (JHU) and Pacific Northwest National
Laboratory (PNNL). To avoid redundancy, we removed the 32 dupli-
cate samples assayed by PNNL, resulting in a final set of 126 unique
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samples. The protein matrix of these samples underwent Z-score
normalization for standardization. As the CPTAC dataset lacked two
clinical factors and the expression data for the AGRE5 protein, we
adapted tissue model B by retaining the original parameters of the
remaining eleven protein features. This revised model was then
applied to predict one-year recurrence in the CPTAC cohort.

Statistics and reproducibility
All patient diagnoses were established between 2006 and 2018,
adhering to theWHOClassification of Tumors: Female Genital Tumors
(5th edition). Tissue specimens were collected based solely on their
availability, without any clinical factor-based selection criteria. While a
formal sample-size calculation was not performed, we ensured that
each analyzed group contained at least 10 samples, a number deemed
sufficient for statistical purposes.

To verify the reproducibility of our proteomic data, biological
replicates were utilized during experimentation. Any additional repli-
cation data not reported in the manuscript, whether successful or
unsuccessful, are not available.

Protein counts from individual samples were categorized into
four groups: normal, benign, borderline, and carcinoma.We identified
and excluded outliers with abnormally low protein counts in each
category using Tukey’s fences (k = 1.5), resulting in the removal of
50 samples from 34 patients. Unsupervised clustering was applied to
six designated groups—normal, benign, borderline, primary debulking
surgery epithelial ovarian cancer (PDS-EOC), recurrent low platinum-
sensitive epithelial ovarian cancer (RLP-EOC), and neoadjuvant che-
motherapy epithelial ovarian cancer (NACT-EOC)—based on global
proteome profiles; 23 samples that clustered incorrectly were exclu-
ded from the analysis.

Statistical analyses were conducted using R software (versions
4.0.5 and 4.3.1). Within the stats package (v4.3.1), we performed Ana-
lysis of Variance (ANOVA), Welch’s t test, and Principal Component
Analysis (PCA). The Benjamini-Hochberg procedure was utilized to
adjust p-values for multiple comparisons using the p.adjust function.
We calculated correlation coefficients with the corrplot package
(v0.92) and conducted soft clustering using the Mfuzz package
(v2.60.0). The randomForest package (v4.6.14) was employed to
develop plasma protein classifiers to differentiate between carcinoma
and non-carcinoma cases. Cox proportional hazards regression ana-
lysis was carried out using the survival package (v3.5-7). Heatmaps
were generated with the pheatmap package (v1.0.12), employing
ward.D2 linkage for protein clustering. Prognostic predictive models
were built using the xgboost function in the xgboost package
(v1.6.0.1), with SHAP values derived from the SHAPforxgboost pack-
age (v0.1.3).

Language polishing
During the preparation of this work the authors used ChatGPT in order
to improve language and readability. After using this tool, the authors
reviewed and edited the content as needed and take full responsibility
for the content of the publication.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The raw proteomics data generated during this study have been
archived in the iProX database and are accessible via the following
identifier: PXD053625, also available as IPX0004169000. The raw
targeted genomic data are available at the Genome Sequence Archive
(GSA) under accession ID HRA007126; also available under accession
number PRJCA024971. The remaining data are available within the
Article, Supplementary Information or Source Data file.

Code availability
The specific R codes used in this study is publicly available on Zenodo
at https://doi.org/10.5281/zenodo.11284219120.
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